Skip to content
Snippets Groups Projects

Fix typos

Merged Lachnitt requested to merge typo into master
1 file
+ 2
2
Compare changes
  • Side-by-side
  • Inline
+ 2
2
@@ -1385,7 +1385,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x
\end{AletheXS}
where $m \leq n$ and $Q\in\{\forall, \exists\}$. Furthermore, $k_1, \dots, k_m$ is
a monotonic map to $1, \dots, n$ and if $x\in \{x_j\; |\; j \in \{1, \dots,
n\} \land j\in\not \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$.
n\} \land j\notin \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$.
\end{RuleDescription}
\begin{RuleDescription}{eq_simplify}
@@ -1410,7 +1410,7 @@ This rule simplifies a division by applying equivalence-preserving
transformations. The general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\, t_2) t_3$ & \currule \\
$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\, t_2) t_3$ & \currule \\
\end{AletheXS}
The possible transformations are:
\begin{itemize}
Loading