From eef3b61a2e8ffe980c7b74da749822532694ddf6 Mon Sep 17 00:00:00 2001 From: Hanna Lachnitt <lachnitt@stanford.edu> Date: Thu, 28 Nov 2024 16:41:49 -0800 Subject: [PATCH] Fix typos --- spec/rule_list.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/spec/rule_list.tex b/spec/rule_list.tex index e6f46e7..386f60d 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -1385,7 +1385,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x \end{AletheXS} where $m \leq n$ and $Q\in\{\forall, \exists\}$. Furthermore, $k_1, \dots, k_m$ is a monotonic map to $1, \dots, n$ and if $x\in \{x_j\; |\; j \in \{1, \dots, - n\} \land j\in\not \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$. + n\} \land j\notin \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$. \end{RuleDescription} \begin{RuleDescription}{eq_simplify} @@ -1410,7 +1410,7 @@ This rule simplifies a division by applying equivalence-preserving transformations. The general form is \begin{AletheXS} -$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\, t_2) ⇒ t_3$ & \currule \\ +$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\, t_2) ≈ t_3$ & \currule \\ \end{AletheXS} The possible transformations are: \begin{itemize} -- GitLab