From eef3b61a2e8ffe980c7b74da749822532694ddf6 Mon Sep 17 00:00:00 2001
From: Hanna Lachnitt <lachnitt@stanford.edu>
Date: Thu, 28 Nov 2024 16:41:49 -0800
Subject: [PATCH] Fix typos

---
 spec/rule_list.tex | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/spec/rule_list.tex b/spec/rule_list.tex
index e6f46e7..386f60d 100644
--- a/spec/rule_list.tex
+++ b/spec/rule_list.tex
@@ -1385,7 +1385,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x
 \end{AletheXS}
   where $m \leq n$ and $Q\in\{\forall, \exists\}$. Furthermore, $k_1, \dots, k_m$ is
   a monotonic map to $1, \dots, n$ and if $x\in \{x_j\; |\; j \in \{1, \dots,
-  n\} \land j\in\not \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$.
+  n\} \land j\notin \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$.
 \end{RuleDescription}
 
 \begin{RuleDescription}{eq_simplify}
@@ -1410,7 +1410,7 @@ This rule simplifies a division by applying equivalence-preserving
 transformations. The general form is
 
 \begin{AletheXS}
-$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\,  t_2) ⇒ t_3$ & \currule \\
+$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\,  t_2) ≈ t_3$ & \currule \\
 \end{AletheXS}
 The possible transformations are:
 \begin{itemize}
-- 
GitLab