Skip to content
Snippets Groups Projects
Commit 38cf7d0a authored by Lachnitt's avatar Lachnitt
Browse files

Merge branch 'fixAndArgs' into 'master'

Positional arguments start at 0.

See merge request !15
parents 4fd59f84 a1d13dd2
Branches devel/rules-index-arg
No related tags found
1 merge request!15Positional arguments start at 0.
Pipeline #48744 passed
......@@ -586,7 +586,7 @@ with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
......@@ -811,18 +811,18 @@ done during clausification.
\begin{RuleDescription}{and}
\begin{AletheX}
$i$. & \ctxsep & $\varphi_1 \land \cdots \land \varphi_n$ & ($\dots$) \\
$i$. & \ctxsep & $\varphi_0 \land \cdots \land \varphi_n$ & ($\dots$) \\
$j$. & \ctxsep & $\varphi_k$ & (\currule\;$i$)\, k\\
\end{AletheX}
and $1 \leq k \leq n$.
and $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{not_or}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \lor \cdots \lor \varphi_n)$ & ($\dots$) \\
$i$. & \ctxsep & $\neg (\varphi_0 \lor \cdots \lor \varphi_n)$ & ($\dots$) \\
$j$. & \ctxsep & $\neg \varphi_k$ & (\currule\;$i$)\, k\\
\end{AletheX}
and $1 \leq k \leq n$.
and $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{or}
......@@ -952,10 +952,10 @@ $j$. & \ctxsep & $\neg\varphi_1, \neg\varphi_2$ & (\currule\;$i$) \\
\begin{RuleDescription}{and_pos}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \land \cdots \land \varphi_n) , \varphi_k$ &
$i$. & \ctxsep & $\neg (\varphi_0 \land \cdots \land \varphi_n) , \varphi_k$ &
\currule\, k\\
\end{AletheX}
with $1 \leq k \leq n$.
with $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{and_neg}
......@@ -972,10 +972,10 @@ $i$. & \ctxsep & $\neg (\varphi_1 \lor \cdots \lor \varphi_n) , \varphi_1 , \dot
\begin{RuleDescription}{or_neg}
\begin{AletheX}
$i$. & \ctxsep & $(\varphi_1 \lor \cdots \lor \varphi_n), \neg \varphi_k$ &
$i$. & \ctxsep & $(\varphi_0 \lor \cdots \lor \varphi_n), \neg \varphi_k$ &
\currule\, k\\
\end{AletheX}
with $1 \leq k \leq n$.
with $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{xor_pos1}
......@@ -1557,8 +1557,8 @@ $k$. & $\Gamma$ & \ctxsep &
\begin{RuleDescription}{bind_let}
This rule corresponds to the \proofRule{bind} rule for \inlineAlethe{let}.
It allows the renaming of the variables bound by the \inlineAlethe{let} step,
the rewriting of the substituted terms, and the rewriting of the body of the
\inlineAlethe{let}, resulting in a new \inlineAlethe{let} term.
the rewriting of the substituted terms, and the rewriting of the body of the
\inlineAlethe{let}, resulting in a new \inlineAlethe{let} term.
It has the form
\begin{AletheXS}
......@@ -1597,7 +1597,7 @@ symmetry of equality.
(let ((p (= 1 0))) (= false p))))
:rule bind_let :premises (t1))
\end{AletheVerb}
\end{RuleExample}
\begin{RuleDescription}{distinct_elim}
......@@ -1760,7 +1760,7 @@ above when $x$ and $y$ are ``$\lsymb{bbT}$'' applications. So given that
y&=&(\lsymb{bbT}\ y_0\ \ldots\ y_i\ \ldots \ y_j\ \ldots\ y_n)\\
\end{array}
\]
then ``$\mathrm{res}$'' can be defined, for $i \geq 0$, as
then ``$\mathrm{res}$'' can be defined, for $i \geq 0$, as
\[
\begin{array}{lcl}
\mathrm{res}_0&=&\neg x_0 \wedge y_0\\
......@@ -1807,7 +1807,7 @@ $i$. & \ctxsep & $(\mathrm{bvadd}\ x\ y) ≈ A_2$ & (\currule) \\
\end{AletheX}
with $A_2 := (\lsymb{bbT}\ (x_0 \,\lsymb{xor}\, y_0)\,\lsymb{xor}\,\mathrm{carry}_0\ \ldots\ (x_{n-1}
\,\lsymb{xor}\, y_{n-1})\,\lsymb{xor}\,\mathrm{carry}_{n-1})$ and
``$\mathrm{carry}$'' being defined, for $i \geq 0$, as
``$\mathrm{carry}$'' being defined, for $i \geq 0$, as
\[
\begin{array}{lcl}
\mathrm{carry}_0&=&\bot\\
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment