Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Alethe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
veriT
Alethe
Commits
4fd59f84
Commit
4fd59f84
authored
7 months ago
by
Hans-Jörg
Browse files
Options
Downloads
Plain Diff
Merge branch 'add/bind_let' into 'master'
Add bind_let rule See merge request
!14
parents
432c59c0
e6edb93a
No related branches found
Branches containing commit
No related tags found
1 merge request
!14
Add bind_let rule
Pipeline
#44764
passed
7 months ago
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
spec/changelog.tex
+3
-0
3 additions, 0 deletions
spec/changelog.tex
spec/rule_list.tex
+47
-1
47 additions, 1 deletion
spec/rule_list.tex
with
50 additions
and
1 deletion
spec/changelog.tex
+
3
−
0
View file @
4fd59f84
...
...
@@ -15,6 +15,9 @@ Proof rules:
clause.
\item
Addition of the
\proofRule
{
reordering
}
rule to represent reordering of
the literals in a clause.
\item
Addition of the
\proofRule
{
bind
_
let
}
rule. This rule can be used to
preprocess
\inlineAlethe
{
let
}
expressions similar to the
\proofRule
{
bind
}
rule used with ordinary quantifiers.
\end{itemize}
\noindent
...
...
This diff is collapsed.
Click to expand it.
spec/rule_list.tex
+
47
−
1
View file @
4fd59f84
...
...
@@ -1551,9 +1551,55 @@ $k$. & $\Gamma$ & \ctxsep &
The premise
$
i
_
1
,
\dots
, i
_
n
$
must be in the same subproof as
the
\currule
{}
step. If for
$
t
_
i≈ s
_
i
$
the
$
t
_
i
$
and
$
s
_
i
$
are syntactically equal, the premise
is
skipp
ed.
is
omitt
ed.
\end{RuleDescription}
\begin{RuleDescription}
{
bind
_
let
}
This rule corresponds to the
\proofRule
{
bind
}
rule for
\inlineAlethe
{
let
}
.
It allows the renaming of the variables bound by the
\inlineAlethe
{
let
}
step,
the rewriting of the substituted terms, and the rewriting of the body of the
\inlineAlethe
{
let
}
, resulting in a new
\inlineAlethe
{
let
}
term.
It has the form
\begin{AletheXS}
$
i
_
1
$
.
&
$
\Gamma
$
&
\ctxsep
&
$
t
_{
1
}
≈ s
_{
1
}$
&
(
$
\dots
$
)
\\
\aletheLineS
$
i
_
n
$
.
&
$
\Gamma
$
&
\ctxsep
&
$
t
_{
n
}
≈ s
_{
n
}$
&
(
$
\dots
$
)
\\
\aletheLineS
$
j
$
.
&
\spctx
{$
\Gamma
, y
_
1
,
\dots
, y
_
n, x
_
1
\mapsto
y
_
1
,
\dots
, x
_
n
\mapsto
y
_
n
$}
&
\ctxsep
&
$
u ≈ u'
$
&
(
$
\dots
$
)
\\
\spsep
$
k
$
.
&
$
\Gamma
$
&
\kern
-5.5em
\ctxsep
&
% The kern hacking here is to make the rule readable
$
\kern
-
3
em
(
\lsymb
{
let
}
\,
x
_
1
~
=
~t
_
1
,
\,
\dots
,
\,
x
_
n~
=
~t
_
n
\lsymb
{
in
}
\,
u
)
≈
(
\lsymb
{
let
}
\,
y
_
1
~
=
~s
_
1
,
\,
\dots
,
\,
y
_
n~
=
~s
_
n
\,\lsymb
{
in
}
\,
u'
)
$
&
(
\currule
{}
\;
$
i
_
1
$
,
\dots
,
$
i
_
n
$
)
\\
\end{AletheXS}
The variables
$
y
_
1
,
\dots
, y
_
n
$
are neither free in
$
(
\lsymb
{
let
}
\,
x
_
1
=
t
_
1
,
\,
\dots
,
\,
x
_
n
=
t
_
n
\,\lsymb
{
in
}
\,
u
)
$
nor, for each
$
y
_
i
$
different from
$
x
_
i
$
, occur in
$
\Gamma
$
.
The premise
$
i
_
1
,
\dots
, i
_
n
$
must be in the same subproof as
the
\currule
{}
step. If for
$
t
_
i≈ s
_
i
$
the
$
t
_
i
$
and
$
s
_
i
$
are syntactically equal, the premise
is omitted.
\end{RuleDescription}
\begin{RuleExample}
The following example shows how this rule is used in a proof generated
by Carcara's elaborator. It elaborates an implicit application of
symmetry of equality.
\begin{AletheVerb}
(step t1 (cl (= (= 0 1) (= 1 0))) :rule eq
_
symmetric)
(anchor :step t2 :args ((p Bool) (:= (p Bool) p)))
(step t2.t1 (cl (= (= p false) (= false p))) :rule eq
_
symmetric)
(step t2 (cl (= (let ((p (= 0 1))) (= p false))
(let ((p (= 1 0))) (= false p))))
:rule bind
_
let :premises (t1))
\end{AletheVerb}
\end{RuleExample}
\begin{RuleDescription}
{
distinct
_
elim
}
This rule eliminates the
$
\lsymb
{
distinct
}$
predicate. If called with one
argument this predicate always holds:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment