Skip to content
Snippets Groups Projects
Commit fb21fa32 authored by Dachet Victor's avatar Dachet Victor
Browse files

Upload New File

parent 3083fb40
No related branches found
No related tags found
No related merge requests found
Pipeline #28371 canceled
#TIMEHORIZON
T=43800;
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS = import SOLAR_PV_PLANTS from "GENERAL.txt";
#NODE WIND_PLANTS = import WIND_PLANTS from "GENERAL.txt";
#NODE BATTERY_STORAGE = import BATTERY_STORAGE from "GENERAL.txt";
#NODE HVDC = import HVDC from "GENERAL.txt";
#NODE ELECTROLYSIS_PLANTS = import ELECTROLYSIS_PLANTS from "GENERAL.txt";
#NODE DESALINATION_PLANTS = import DESALINATION_PLANTS from "GENERAL.txt";
#NODE DIRECT_AIR_CAPTURE_PLANTS = import DIRECT_AIR_CAPTURE_PLANTS from "GENERAL.txt";
#NODE HYDROGEN_STORAGE = import HYDROGEN_STORAGE from "GENERAL.txt";
#NODE CARBON_DIOXIDE_STORAGE = import CARBON_DIOXIDE_STORAGE from "GENERAL.txt";
#NODE WATER_STORAGE = import WATER_STORAGE from "GENERAL.txt";
#NODE METHANATION_PLANTS
// Capex from IEA, 2019
// Conversion parameters from Gotz et al, 2016
#PARAMETERS
HHV_CH4 = 15.441;
full_capex = 735.0 * HHV_CH4; // to obtain cost in MEur/(kt/h)
lifetime = 20.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 29.4 * HHV_CH4; // MEur/year
vom = 0.;
conversion_factor_hydrogen = 0.5;
conversion_factor_water = 2.25;
conversion_factor_carbon_dioxide = 2.75;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h - reference flow for sizing is methane
external: hydrogen[T]; // kt/h
external: carbon_dioxide[T]; // kt/h
external: methane[T]; // kt/h
external: water[T]; // kt/h
#CONSTRAINTS
methane[t] <= capacity;
minimum_level * capacity <= methane[t];
hydrogen[t] == conversion_factor_hydrogen * methane[t];
carbon_dioxide[t] == conversion_factor_carbon_dioxide * methane[t];
water[t] == conversion_factor_water * methane[t];
methane[t] <= methane[t-1] + ramp_rate_up * capacity;
methane[t-1] <= methane[t] + ramp_rate_down * capacity;
capacity >= 0;
methane[t] >= 0;
hydrogen[t] >= 0;
carbon_dioxide[t] >= 0;
water[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * methane[t];
#NODE METHANE_LIQUEFACTION_PLANTS
// Conversion factor electricity from Pospisil et al, 2019
// Capex from Brian Songhurst, 2018
#PARAMETERS
full_capex = 5913.0; // M€/(kt/h)
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 147.825; // MEur/year
vom = 0.0;
conversion_factor_electricity = 0.616;
conversion_factor_methane = 1.0;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: methane[T]; // kt/h
external: liquefied_methane[T]; // kt/h
#CONSTRAINTS
liquefied_methane[t] <= capacity;
minimum_level * capacity <= liquefied_methane[t];
electricity[t] == conversion_factor_electricity * liquefied_methane[t];
methane[t] == conversion_factor_methane * liquefied_methane[t];
liquefied_methane[t] <= liquefied_methane[t-1] + ramp_rate_up * capacity;
liquefied_methane[t-1] <= liquefied_methane[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
liquefied_methane[t] >= 0;
methane[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_methane[t];
#NODE LIQUEFIED_METHANE_STORAGE_HUB
// Data from Interior Gas Utility, 2013
#PARAMETERS
full_capex_stock = 2.641; // M€/kt
full_capex_flow = 0.001; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.05282; // M€/kt-yr
fom_flow = 0.0; //M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_methane_stored[T]; // kt
external: liquefied_methane_in[T]; // kt/h
external: liquefied_methane_out[T]; // kt/h
#CONSTRAINTS
liquefied_methane_in[t] <= capacity_flow;
liquefied_methane_out[t] <= capacity_flow;
liquefied_methane_stored[t] <= capacity_stock;
liquefied_methane_stored[0] == liquefied_methane_stored[T-1];
liquefied_methane_stored[t+1] == liquefied_methane_stored[t] + liquefied_methane_in[t] - liquefied_methane_out[t];
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_methane_stored[t] >= 0;
liquefied_methane_in[t] >= 0;
liquefied_methane_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_methane_stored[t] + vom_flow * liquefied_methane_in[t];
#NODE LIQUEFIED_METHANE_CARRIERS
// Conversion factor from Howard Rogers, 2018
// Capex from Economic Research Institute for ASEAN and East Asia (ERIA), 2018
#PARAMETERS
number_carriers = 7;
full_capex = 2.537; // M€/Kt
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 0.12685; // MEur/year
vom = 0.0;
schedule = import "Data/carrier_schedule.csv";
loading_time = 24;
travel_time = 116;
conversion_factor = 0.994;
#VARIABLES
internal: capacity; // kt
external: liquefied_methane_in[T]; // kt/h
external: liquefied_methane_out[T]; // kt/h
#CONSTRAINTS
liquefied_methane_in[t] <= schedule[t] * capacity;
liquefied_methane_out[t+travel_time] == conversion_factor * liquefied_methane_in[t];
liquefied_methane_out[t] == 0 where t < travel_time;
capacity >= 0;
liquefied_methane_in[t] >= 0;
liquefied_methane_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity * loading_time * number_carriers;
min: vom * liquefied_methane_in[t];
#NODE LIQUEFIED_METHANE_STORAGE_DESTINATION
#PARAMETERS
full_capex_stock = 2.641; // M€/kt
full_capex_flow = 0.001; // M€/kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.05282; // M€/kt-yr
fom_flow = 0.0; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_methane_stored[T]; // kt/h
external: liquefied_methane_in[T]; // kt/h
external: liquefied_methane_out[T]; // kt/h
#CONSTRAINTS
liquefied_methane_in[t] <= capacity_flow;
liquefied_methane_out[t] <= capacity_flow;
liquefied_methane_stored[t] <= capacity_stock;
liquefied_methane_stored[0] == liquefied_methane_stored[T-1];
liquefied_methane_stored[t+1] == liquefied_methane_stored[t] + liquefied_methane_in[t] - liquefied_methane_out[t];
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_methane_stored[t] >= 0;
liquefied_methane_in[t] >= 0;
liquefied_methane_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_methane_stored[t] + vom_flow * liquefied_methane_in[t];
#NODE LIQUEFIED_METHANE_REGASIFICATION
// Conversion factor from Pospisil et al, 2019
// Capex from Dongsha et al, 2017
#PARAMETERS
full_capex = 1248.3; // M€/kt/h
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 24.97; // MEur/year
vom = 0.0;
conversion_factor = 0.98;
#VARIABLES
internal: capacity; // kt/h
external: liquefied_methane[T]; // kt/h
external: methane[T]; // kt/h
#CONSTRAINTS
liquefied_methane[t] <= capacity;
methane[t] == conversion_factor * liquefied_methane[t];
capacity >= 0;
methane[t] >= 0;
liquefied_methane[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_methane[t];
#HYPEREDGE INLAND_POWER_BALANCE
#CONSTRAINTS
SOLAR_PV_PLANTS.electricity[t] + WIND_PLANTS.electricity[t] + BATTERY_STORAGE.electricity_out[t] == BATTERY_STORAGE.electricity_in[t] + HVDC.electricity_in[t];
#HYPEREDGE COASTAL_POWER_BALANCE
#CONSTRAINTS
HVDC.electricity_out[t] == ELECTROLYSIS_PLANTS.electricity[t] + HYDROGEN_STORAGE.electricity[t] + DESALINATION_PLANTS.electricity[t] + WATER_STORAGE.electricity[t] + DIRECT_AIR_CAPTURE_PLANTS.electricity[t] + CARBON_DIOXIDE_STORAGE.electricity[t] + METHANE_LIQUEFACTION_PLANTS.electricity[t];
#HYPEREDGE COASTAL_HYDROGEN_BALANCE
#CONSTRAINTS
ELECTROLYSIS_PLANTS.hydrogen[t] + HYDROGEN_STORAGE.hydrogen_out[t] == HYDROGEN_STORAGE.hydrogen_in[t] + DIRECT_AIR_CAPTURE_PLANTS.hydrogen[t] + METHANATION_PLANTS.hydrogen[t];
#HYPEREDGE COASTAL_WATER_BALANCE
#CONSTRAINTS
DESALINATION_PLANTS.water[t] + METHANATION_PLANTS.water[t] + WATER_STORAGE.water_out[t] == WATER_STORAGE.water_in[t] + ELECTROLYSIS_PLANTS.water[t] + DIRECT_AIR_CAPTURE_PLANTS.water[t];
#HYPEREDGE COASTAL_CARBON_DIOXIDE_BALANCE
#CONSTRAINTS
DIRECT_AIR_CAPTURE_PLANTS.carbon_dioxide[t] + CARBON_DIOXIDE_STORAGE.carbon_dioxide_out[t] == CARBON_DIOXIDE_STORAGE.carbon_dioxide_in[t] + METHANATION_PLANTS.carbon_dioxide[t];
#HYPEREDGE COASTAL_METHANE_BALANCE
#CONSTRAINTS
METHANATION_PLANTS.methane[t] == METHANE_LIQUEFACTION_PLANTS.methane[t];
#HYPEREDGE COASTAL_LIQUEFIED_METHANE_BALANCE
#CONSTRAINTS
METHANE_LIQUEFACTION_PLANTS.liquefied_methane[t] + LIQUEFIED_METHANE_STORAGE_HUB.liquefied_methane_out[t] == LIQUEFIED_METHANE_STORAGE_HUB.liquefied_methane_in[t] + LIQUEFIED_METHANE_CARRIERS.liquefied_methane_in[t];
#HYPEREDGE DESTINATION_LIQUEFIED_METHANE_BALANCE
#CONSTRAINTS
LIQUEFIED_METHANE_CARRIERS.liquefied_methane_out[t] + LIQUEFIED_METHANE_STORAGE_DESTINATION.liquefied_methane_out[t] == LIQUEFIED_METHANE_STORAGE_DESTINATION.liquefied_methane_in[t] + LIQUEFIED_METHANE_REGASIFICATION.liquefied_methane[t];
#HYPEREDGE DESTINATION_METHANE_BALANCE
#PARAMETERS
demand = import "Data/CH4_demand.csv";
#CONSTRAINTS
LIQUEFIED_METHANE_REGASIFICATION.methane[t] == demand[t];
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment