Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
gboml
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
smart_grids
public
gboml
Commits
fb21fa32
Commit
fb21fa32
authored
10 months ago
by
Dachet Victor
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
3083fb40
No related branches found
No related tags found
No related merge requests found
Pipeline
#28371
canceled
10 months ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/energy_carrier_comparison/GBOML/Methane.txt
+259
-0
259 additions, 0 deletions
examples/energy_carrier_comparison/GBOML/Methane.txt
with
259 additions
and
0 deletions
examples/energy_carrier_comparison/GBOML/Methane.txt
0 → 100644
+
259
−
0
View file @
fb21fa32
#TIMEHORIZON
T=43800;
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS = import SOLAR_PV_PLANTS from "GENERAL.txt";
#NODE WIND_PLANTS = import WIND_PLANTS from "GENERAL.txt";
#NODE BATTERY_STORAGE = import BATTERY_STORAGE from "GENERAL.txt";
#NODE HVDC = import HVDC from "GENERAL.txt";
#NODE ELECTROLYSIS_PLANTS = import ELECTROLYSIS_PLANTS from "GENERAL.txt";
#NODE DESALINATION_PLANTS = import DESALINATION_PLANTS from "GENERAL.txt";
#NODE DIRECT_AIR_CAPTURE_PLANTS = import DIRECT_AIR_CAPTURE_PLANTS from "GENERAL.txt";
#NODE HYDROGEN_STORAGE = import HYDROGEN_STORAGE from "GENERAL.txt";
#NODE CARBON_DIOXIDE_STORAGE = import CARBON_DIOXIDE_STORAGE from "GENERAL.txt";
#NODE WATER_STORAGE = import WATER_STORAGE from "GENERAL.txt";
#NODE METHANATION_PLANTS
// Capex from IEA, 2019
// Conversion parameters from Gotz et al, 2016
#PARAMETERS
HHV_CH4 = 15.441;
full_capex = 735.0 * HHV_CH4; // to obtain cost in MEur/(kt/h)
lifetime = 20.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 29.4 * HHV_CH4; // MEur/year
vom = 0.;
conversion_factor_hydrogen = 0.5;
conversion_factor_water = 2.25;
conversion_factor_carbon_dioxide = 2.75;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h - reference flow for sizing is methane
external: hydrogen[T]; // kt/h
external: carbon_dioxide[T]; // kt/h
external: methane[T]; // kt/h
external: water[T]; // kt/h
#CONSTRAINTS
methane[t] <= capacity;
minimum_level * capacity <= methane[t];
hydrogen[t] == conversion_factor_hydrogen * methane[t];
carbon_dioxide[t] == conversion_factor_carbon_dioxide * methane[t];
water[t] == conversion_factor_water * methane[t];
methane[t] <= methane[t-1] + ramp_rate_up * capacity;
methane[t-1] <= methane[t] + ramp_rate_down * capacity;
capacity >= 0;
methane[t] >= 0;
hydrogen[t] >= 0;
carbon_dioxide[t] >= 0;
water[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * methane[t];
#NODE METHANE_LIQUEFACTION_PLANTS
// Conversion factor electricity from Pospisil et al, 2019
// Capex from Brian Songhurst, 2018
#PARAMETERS
full_capex = 5913.0; // M€/(kt/h)
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 147.825; // MEur/year
vom = 0.0;
conversion_factor_electricity = 0.616;
conversion_factor_methane = 1.0;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: methane[T]; // kt/h
external: liquefied_methane[T]; // kt/h
#CONSTRAINTS
liquefied_methane[t] <= capacity;
minimum_level * capacity <= liquefied_methane[t];
electricity[t] == conversion_factor_electricity * liquefied_methane[t];
methane[t] == conversion_factor_methane * liquefied_methane[t];
liquefied_methane[t] <= liquefied_methane[t-1] + ramp_rate_up * capacity;
liquefied_methane[t-1] <= liquefied_methane[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
liquefied_methane[t] >= 0;
methane[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_methane[t];
#NODE LIQUEFIED_METHANE_STORAGE_HUB
// Data from Interior Gas Utility, 2013
#PARAMETERS
full_capex_stock = 2.641; // M€/kt
full_capex_flow = 0.001; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.05282; // M€/kt-yr
fom_flow = 0.0; //M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_methane_stored[T]; // kt
external: liquefied_methane_in[T]; // kt/h
external: liquefied_methane_out[T]; // kt/h
#CONSTRAINTS
liquefied_methane_in[t] <= capacity_flow;
liquefied_methane_out[t] <= capacity_flow;
liquefied_methane_stored[t] <= capacity_stock;
liquefied_methane_stored[0] == liquefied_methane_stored[T-1];
liquefied_methane_stored[t+1] == liquefied_methane_stored[t] + liquefied_methane_in[t] - liquefied_methane_out[t];
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_methane_stored[t] >= 0;
liquefied_methane_in[t] >= 0;
liquefied_methane_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_methane_stored[t] + vom_flow * liquefied_methane_in[t];
#NODE LIQUEFIED_METHANE_CARRIERS
// Conversion factor from Howard Rogers, 2018
// Capex from Economic Research Institute for ASEAN and East Asia (ERIA), 2018
#PARAMETERS
number_carriers = 7;
full_capex = 2.537; // M€/Kt
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 0.12685; // MEur/year
vom = 0.0;
schedule = import "Data/carrier_schedule.csv";
loading_time = 24;
travel_time = 116;
conversion_factor = 0.994;
#VARIABLES
internal: capacity; // kt
external: liquefied_methane_in[T]; // kt/h
external: liquefied_methane_out[T]; // kt/h
#CONSTRAINTS
liquefied_methane_in[t] <= schedule[t] * capacity;
liquefied_methane_out[t+travel_time] == conversion_factor * liquefied_methane_in[t];
liquefied_methane_out[t] == 0 where t < travel_time;
capacity >= 0;
liquefied_methane_in[t] >= 0;
liquefied_methane_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity * loading_time * number_carriers;
min: vom * liquefied_methane_in[t];
#NODE LIQUEFIED_METHANE_STORAGE_DESTINATION
#PARAMETERS
full_capex_stock = 2.641; // M€/kt
full_capex_flow = 0.001; // M€/kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.05282; // M€/kt-yr
fom_flow = 0.0; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_methane_stored[T]; // kt/h
external: liquefied_methane_in[T]; // kt/h
external: liquefied_methane_out[T]; // kt/h
#CONSTRAINTS
liquefied_methane_in[t] <= capacity_flow;
liquefied_methane_out[t] <= capacity_flow;
liquefied_methane_stored[t] <= capacity_stock;
liquefied_methane_stored[0] == liquefied_methane_stored[T-1];
liquefied_methane_stored[t+1] == liquefied_methane_stored[t] + liquefied_methane_in[t] - liquefied_methane_out[t];
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_methane_stored[t] >= 0;
liquefied_methane_in[t] >= 0;
liquefied_methane_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_methane_stored[t] + vom_flow * liquefied_methane_in[t];
#NODE LIQUEFIED_METHANE_REGASIFICATION
// Conversion factor from Pospisil et al, 2019
// Capex from Dongsha et al, 2017
#PARAMETERS
full_capex = 1248.3; // M€/kt/h
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 24.97; // MEur/year
vom = 0.0;
conversion_factor = 0.98;
#VARIABLES
internal: capacity; // kt/h
external: liquefied_methane[T]; // kt/h
external: methane[T]; // kt/h
#CONSTRAINTS
liquefied_methane[t] <= capacity;
methane[t] == conversion_factor * liquefied_methane[t];
capacity >= 0;
methane[t] >= 0;
liquefied_methane[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_methane[t];
#HYPEREDGE INLAND_POWER_BALANCE
#CONSTRAINTS
SOLAR_PV_PLANTS.electricity[t] + WIND_PLANTS.electricity[t] + BATTERY_STORAGE.electricity_out[t] == BATTERY_STORAGE.electricity_in[t] + HVDC.electricity_in[t];
#HYPEREDGE COASTAL_POWER_BALANCE
#CONSTRAINTS
HVDC.electricity_out[t] == ELECTROLYSIS_PLANTS.electricity[t] + HYDROGEN_STORAGE.electricity[t] + DESALINATION_PLANTS.electricity[t] + WATER_STORAGE.electricity[t] + DIRECT_AIR_CAPTURE_PLANTS.electricity[t] + CARBON_DIOXIDE_STORAGE.electricity[t] + METHANE_LIQUEFACTION_PLANTS.electricity[t];
#HYPEREDGE COASTAL_HYDROGEN_BALANCE
#CONSTRAINTS
ELECTROLYSIS_PLANTS.hydrogen[t] + HYDROGEN_STORAGE.hydrogen_out[t] == HYDROGEN_STORAGE.hydrogen_in[t] + DIRECT_AIR_CAPTURE_PLANTS.hydrogen[t] + METHANATION_PLANTS.hydrogen[t];
#HYPEREDGE COASTAL_WATER_BALANCE
#CONSTRAINTS
DESALINATION_PLANTS.water[t] + METHANATION_PLANTS.water[t] + WATER_STORAGE.water_out[t] == WATER_STORAGE.water_in[t] + ELECTROLYSIS_PLANTS.water[t] + DIRECT_AIR_CAPTURE_PLANTS.water[t];
#HYPEREDGE COASTAL_CARBON_DIOXIDE_BALANCE
#CONSTRAINTS
DIRECT_AIR_CAPTURE_PLANTS.carbon_dioxide[t] + CARBON_DIOXIDE_STORAGE.carbon_dioxide_out[t] == CARBON_DIOXIDE_STORAGE.carbon_dioxide_in[t] + METHANATION_PLANTS.carbon_dioxide[t];
#HYPEREDGE COASTAL_METHANE_BALANCE
#CONSTRAINTS
METHANATION_PLANTS.methane[t] == METHANE_LIQUEFACTION_PLANTS.methane[t];
#HYPEREDGE COASTAL_LIQUEFIED_METHANE_BALANCE
#CONSTRAINTS
METHANE_LIQUEFACTION_PLANTS.liquefied_methane[t] + LIQUEFIED_METHANE_STORAGE_HUB.liquefied_methane_out[t] == LIQUEFIED_METHANE_STORAGE_HUB.liquefied_methane_in[t] + LIQUEFIED_METHANE_CARRIERS.liquefied_methane_in[t];
#HYPEREDGE DESTINATION_LIQUEFIED_METHANE_BALANCE
#CONSTRAINTS
LIQUEFIED_METHANE_CARRIERS.liquefied_methane_out[t] + LIQUEFIED_METHANE_STORAGE_DESTINATION.liquefied_methane_out[t] == LIQUEFIED_METHANE_STORAGE_DESTINATION.liquefied_methane_in[t] + LIQUEFIED_METHANE_REGASIFICATION.liquefied_methane[t];
#HYPEREDGE DESTINATION_METHANE_BALANCE
#PARAMETERS
demand = import "Data/CH4_demand.csv";
#CONSTRAINTS
LIQUEFIED_METHANE_REGASIFICATION.methane[t] == demand[t];
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment