Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
gboml
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
smart_grids
public
gboml
Commits
3083fb40
Commit
3083fb40
authored
10 months ago
by
Dachet Victor
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
ffbedfb2
No related branches found
No related tags found
No related merge requests found
Pipeline
#28370
canceled
10 months ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/energy_carrier_comparison/GBOML/Hydrogen.txt
+216
-0
216 additions, 0 deletions
examples/energy_carrier_comparison/GBOML/Hydrogen.txt
with
216 additions
and
0 deletions
examples/energy_carrier_comparison/GBOML/Hydrogen.txt
0 → 100644
+
216
−
0
View file @
3083fb40
#TIMEHORIZON
T=43800; // hours
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS = import SOLAR_PV_PLANTS from "GENERAL.txt";
#NODE WIND_PLANTS = import WIND_PLANTS from "GENERAL.txt";
#NODE BATTERY_STORAGE = import BATTERY_STORAGE from "GENERAL.txt";
#NODE HVDC = import HVDC from "GENERAL.txt";
#NODE ELECTROLYSIS_PLANTS = import ELECTROLYSIS_PLANTS from "GENERAL.txt";
#NODE DESALINATION_PLANTS = import DESALINATION_PLANTS from "GENERAL.txt";
#NODE HYDROGEN_STORAGE = import HYDROGEN_STORAGE from "GENERAL.txt";
#NODE WATER_STORAGE = import WATER_STORAGE from "GENERAL.txt";
#NODE HYDROGEN_LIQUEFACTION_PLANTS
// Data from DNV.GL, october 2020
// Conversion factor for electricity from Connelly et al, 2019
#PARAMETERS
full_capex = 45000.0; //M€ / Kt/h
lifetime = 40.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 1125.0; // M€/(kt/h)-year
vom = 0.0; // M€/kt
conversion_factor_electricity = 12;
conversion_factor_hydrogen = 1.0;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: hydrogen[T]; // kt/h
external: liquefied_hydrogen[T]; // kt /h
#CONSTRAINTS
liquefied_hydrogen[t] <= capacity;
minimum_level * capacity <= liquefied_hydrogen[t];
electricity[t] == conversion_factor_electricity * liquefied_hydrogen[t];
hydrogen[t] == conversion_factor_hydrogen * liquefied_hydrogen[t];
liquefied_hydrogen[t] <= liquefied_hydrogen[t-1] + ramp_rate_up * capacity;
liquefied_hydrogen[t-1] <= liquefied_hydrogen[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
liquefied_hydrogen[t] >= 0;
hydrogen[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_hydrogen[t];
#NODE HYDROGEN_STORAGE_HUB
// Data from ens.dk
#PARAMETERS
full_capex_stock = 25; // M€/ Kt
full_capex_flow = 0.0; //M€ /kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_flow = 0.0; // M€/(kt/h)-yr
fom_stock = 0.5; // M€/kt-yr
vom_flow = 0.0; // M€/kt
vom_stock = 0.0; // M€/kt
charge_discharge_ratio = 1.0;
self_discharge = 0.00008;
efficiency_in = 1.0;
efficiency_out = 1.0;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_hydrogen_stored[T]; // kt
external: liquefied_hydrogen_in[T]; // kt/h
external: liquefied_hydrogen_out[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen_in[t] <= capacity_flow;
liquefied_hydrogen_out[t] <= capacity_flow;
liquefied_hydrogen_stored[t] <= capacity_stock;
liquefied_hydrogen_stored[0] == liquefied_hydrogen_stored[T-1];
liquefied_hydrogen_stored[t+1] == (1 - self_discharge) * liquefied_hydrogen_stored[t] + efficiency_in * liquefied_hydrogen_in[t] - liquefied_hydrogen_out[t] / efficiency_out;
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_hydrogen_stored[t] >= 0;
liquefied_hydrogen_in[t] >= 0;
liquefied_hydrogen_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_hydrogen_stored[t] + vom_flow * liquefied_hydrogen_in[t];
#NODE LIQUEFIED_HYDROGEN_CARRIERS
// Data from ens.dk
#PARAMETERS
number_carriers = 7;
full_capex = 14; //M€ /Kt
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 0.07; // MEur/kt-year
vom = 0.0;
schedule = import "Data/carrier_schedule.csv";
loading_time = 24;
travel_time = 116;
conversion_factor = 0.945;
#VARIABLES
internal: capacity; // kt
external: liquefied_hydrogen_in[T]; // kt/h
external: liquefied_hydrogen_out[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen_in[t] <= schedule[t] * capacity;
liquefied_hydrogen_out[t+travel_time] == conversion_factor * liquefied_hydrogen_in[t];
liquefied_hydrogen_out[t] == 0 where t < travel_time;
capacity >= 0;
liquefied_hydrogen_in[t] >= 0;
liquefied_hydrogen_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity * loading_time * number_carriers;
min: vom * liquefied_hydrogen_in[t];
#NODE HYDROGEN_STORAGE_DESTINATION
// Data from ens.dk
#PARAMETERS
full_capex_stock = 25; // M€/kt
full_capex_flow = 0.0; // M€/kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.5; // M€/kt-yr
fom_flow = 0.0; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
charge_discharge_ratio = 1.0;
self_discharge = 0.00008;
efficiency_in = 1.0;
efficiency_out = 1.0;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_hydrogen_stored[T]; // kt
external: liquefied_hydrogen_in[T]; // kt/h
external: liquefied_hydrogen_out[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen_in[t] <= capacity_flow;
liquefied_hydrogen_out[t] <= capacity_flow;
liquefied_hydrogen_stored[t] <= capacity_stock;
liquefied_hydrogen_stored[0] == liquefied_hydrogen_stored[T-1];
liquefied_hydrogen_stored[t+1] == (1 - self_discharge) * liquefied_hydrogen_stored[t] + efficiency_in * liquefied_hydrogen_in[t] - liquefied_hydrogen_out[t] / efficiency_out;
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_hydrogen_stored[t] >= 0;
liquefied_hydrogen_in[t] >= 0;
liquefied_hydrogen_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_hydrogen_stored[t] + vom_flow * liquefied_hydrogen_in[t];
#NODE LIQUEFIED_HYDROGEN_REGASIFICATION
// Data from DNV.GL, octobre 2020
#PARAMETERS
full_capex = 9099.909; //M€/kt/h
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 227.498; // MEur/(kt/h)-year
vom = 0.0; // M€/kt
conversion_factor = 1;
#VARIABLES
internal: capacity; // kt/h
external: liquefied_hydrogen[T]; // kt/h
external: hydrogen[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen[t] <= capacity;
hydrogen[t] == conversion_factor * liquefied_hydrogen[t];
capacity >= 0;
hydrogen[t] >= 0;
liquefied_hydrogen[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_hydrogen[t];
#HYPEREDGE INLAND_POWER_BALANCE
#CONSTRAINTS
SOLAR_PV_PLANTS.electricity[t] + WIND_PLANTS.electricity[t] + BATTERY_STORAGE.electricity_out[t] == BATTERY_STORAGE.electricity_in[t] + HVDC.electricity_in[t];
#HYPEREDGE COASTAL_POWER_BALANCE
#CONSTRAINTS
HVDC.electricity_out[t] == ELECTROLYSIS_PLANTS.electricity[t] + HYDROGEN_STORAGE.electricity[t] + DESALINATION_PLANTS.electricity[t] + WATER_STORAGE.electricity[t] + HYDROGEN_LIQUEFACTION_PLANTS.electricity[t];
#HYPEREDGE COASTAL_HYDROGEN_BALANCE
#CONSTRAINTS
ELECTROLYSIS_PLANTS.hydrogen[t] + HYDROGEN_STORAGE.hydrogen_out[t] == HYDROGEN_STORAGE.hydrogen_in[t] + HYDROGEN_LIQUEFACTION_PLANTS.hydrogen[t];
#HYPEREDGE COASTAL_WATER_BALANCE
#CONSTRAINTS
DESALINATION_PLANTS.water[t] + WATER_STORAGE.water_out[t] == WATER_STORAGE.water_in[t] + ELECTROLYSIS_PLANTS.water[t] ;
#HYPEREDGE COASTAL_LIQUEFIED_HYDROGEN_BALANCE
#CONSTRAINTS
HYDROGEN_LIQUEFACTION_PLANTS.hydrogen[t] + HYDROGEN_STORAGE_HUB.liquefied_hydrogen_out[t] == HYDROGEN_STORAGE_HUB.liquefied_hydrogen_in[t] + LIQUEFIED_HYDROGEN_CARRIERS.liquefied_hydrogen_in[t];
#HYPEREDGE DESTINATION_LIQUEFIED_HYDROGEN_BALANCE
#CONSTRAINTS
LIQUEFIED_HYDROGEN_CARRIERS.liquefied_hydrogen_out[t] + HYDROGEN_STORAGE_DESTINATION.liquefied_hydrogen_out[t] == HYDROGEN_STORAGE_DESTINATION.liquefied_hydrogen_in[t] + LIQUEFIED_HYDROGEN_REGASIFICATION.liquefied_hydrogen[t];
#HYPEREDGE DESTINATION_GAS_H2_BALANCE
#PARAMETERS
demand = import "Data/H2_demand.csv";
#CONSTRAINTS
LIQUEFIED_HYDROGEN_REGASIFICATION.hydrogen[t] == demand[t];
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment