Skip to content
Snippets Groups Projects
Commit 3083fb40 authored by Dachet Victor's avatar Dachet Victor
Browse files

Upload New File

parent ffbedfb2
No related branches found
No related tags found
No related merge requests found
Pipeline #28370 canceled
#TIMEHORIZON
T=43800; // hours
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS = import SOLAR_PV_PLANTS from "GENERAL.txt";
#NODE WIND_PLANTS = import WIND_PLANTS from "GENERAL.txt";
#NODE BATTERY_STORAGE = import BATTERY_STORAGE from "GENERAL.txt";
#NODE HVDC = import HVDC from "GENERAL.txt";
#NODE ELECTROLYSIS_PLANTS = import ELECTROLYSIS_PLANTS from "GENERAL.txt";
#NODE DESALINATION_PLANTS = import DESALINATION_PLANTS from "GENERAL.txt";
#NODE HYDROGEN_STORAGE = import HYDROGEN_STORAGE from "GENERAL.txt";
#NODE WATER_STORAGE = import WATER_STORAGE from "GENERAL.txt";
#NODE HYDROGEN_LIQUEFACTION_PLANTS
// Data from DNV.GL, october 2020
// Conversion factor for electricity from Connelly et al, 2019
#PARAMETERS
full_capex = 45000.0; //M€ / Kt/h
lifetime = 40.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 1125.0; // M€/(kt/h)-year
vom = 0.0; // M€/kt
conversion_factor_electricity = 12;
conversion_factor_hydrogen = 1.0;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: hydrogen[T]; // kt/h
external: liquefied_hydrogen[T]; // kt /h
#CONSTRAINTS
liquefied_hydrogen[t] <= capacity;
minimum_level * capacity <= liquefied_hydrogen[t];
electricity[t] == conversion_factor_electricity * liquefied_hydrogen[t];
hydrogen[t] == conversion_factor_hydrogen * liquefied_hydrogen[t];
liquefied_hydrogen[t] <= liquefied_hydrogen[t-1] + ramp_rate_up * capacity;
liquefied_hydrogen[t-1] <= liquefied_hydrogen[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
liquefied_hydrogen[t] >= 0;
hydrogen[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_hydrogen[t];
#NODE HYDROGEN_STORAGE_HUB
// Data from ens.dk
#PARAMETERS
full_capex_stock = 25; // M€/ Kt
full_capex_flow = 0.0; //M€ /kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_flow = 0.0; // M€/(kt/h)-yr
fom_stock = 0.5; // M€/kt-yr
vom_flow = 0.0; // M€/kt
vom_stock = 0.0; // M€/kt
charge_discharge_ratio = 1.0;
self_discharge = 0.00008;
efficiency_in = 1.0;
efficiency_out = 1.0;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_hydrogen_stored[T]; // kt
external: liquefied_hydrogen_in[T]; // kt/h
external: liquefied_hydrogen_out[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen_in[t] <= capacity_flow;
liquefied_hydrogen_out[t] <= capacity_flow;
liquefied_hydrogen_stored[t] <= capacity_stock;
liquefied_hydrogen_stored[0] == liquefied_hydrogen_stored[T-1];
liquefied_hydrogen_stored[t+1] == (1 - self_discharge) * liquefied_hydrogen_stored[t] + efficiency_in * liquefied_hydrogen_in[t] - liquefied_hydrogen_out[t] / efficiency_out;
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_hydrogen_stored[t] >= 0;
liquefied_hydrogen_in[t] >= 0;
liquefied_hydrogen_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_hydrogen_stored[t] + vom_flow * liquefied_hydrogen_in[t];
#NODE LIQUEFIED_HYDROGEN_CARRIERS
// Data from ens.dk
#PARAMETERS
number_carriers = 7;
full_capex = 14; //M€ /Kt
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 0.07; // MEur/kt-year
vom = 0.0;
schedule = import "Data/carrier_schedule.csv";
loading_time = 24;
travel_time = 116;
conversion_factor = 0.945;
#VARIABLES
internal: capacity; // kt
external: liquefied_hydrogen_in[T]; // kt/h
external: liquefied_hydrogen_out[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen_in[t] <= schedule[t] * capacity;
liquefied_hydrogen_out[t+travel_time] == conversion_factor * liquefied_hydrogen_in[t];
liquefied_hydrogen_out[t] == 0 where t < travel_time;
capacity >= 0;
liquefied_hydrogen_in[t] >= 0;
liquefied_hydrogen_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity * loading_time * number_carriers;
min: vom * liquefied_hydrogen_in[t];
#NODE HYDROGEN_STORAGE_DESTINATION
// Data from ens.dk
#PARAMETERS
full_capex_stock = 25; // M€/kt
full_capex_flow = 0.0; // M€/kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.5; // M€/kt-yr
fom_flow = 0.0; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
charge_discharge_ratio = 1.0;
self_discharge = 0.00008;
efficiency_in = 1.0;
efficiency_out = 1.0;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_hydrogen_stored[T]; // kt
external: liquefied_hydrogen_in[T]; // kt/h
external: liquefied_hydrogen_out[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen_in[t] <= capacity_flow;
liquefied_hydrogen_out[t] <= capacity_flow;
liquefied_hydrogen_stored[t] <= capacity_stock;
liquefied_hydrogen_stored[0] == liquefied_hydrogen_stored[T-1];
liquefied_hydrogen_stored[t+1] == (1 - self_discharge) * liquefied_hydrogen_stored[t] + efficiency_in * liquefied_hydrogen_in[t] - liquefied_hydrogen_out[t] / efficiency_out;
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_hydrogen_stored[t] >= 0;
liquefied_hydrogen_in[t] >= 0;
liquefied_hydrogen_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_hydrogen_stored[t] + vom_flow * liquefied_hydrogen_in[t];
#NODE LIQUEFIED_HYDROGEN_REGASIFICATION
// Data from DNV.GL, octobre 2020
#PARAMETERS
full_capex = 9099.909; //M€/kt/h
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 227.498; // MEur/(kt/h)-year
vom = 0.0; // M€/kt
conversion_factor = 1;
#VARIABLES
internal: capacity; // kt/h
external: liquefied_hydrogen[T]; // kt/h
external: hydrogen[T]; // kt/h
#CONSTRAINTS
liquefied_hydrogen[t] <= capacity;
hydrogen[t] == conversion_factor * liquefied_hydrogen[t];
capacity >= 0;
hydrogen[t] >= 0;
liquefied_hydrogen[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_hydrogen[t];
#HYPEREDGE INLAND_POWER_BALANCE
#CONSTRAINTS
SOLAR_PV_PLANTS.electricity[t] + WIND_PLANTS.electricity[t] + BATTERY_STORAGE.electricity_out[t] == BATTERY_STORAGE.electricity_in[t] + HVDC.electricity_in[t];
#HYPEREDGE COASTAL_POWER_BALANCE
#CONSTRAINTS
HVDC.electricity_out[t] == ELECTROLYSIS_PLANTS.electricity[t] + HYDROGEN_STORAGE.electricity[t] + DESALINATION_PLANTS.electricity[t] + WATER_STORAGE.electricity[t] + HYDROGEN_LIQUEFACTION_PLANTS.electricity[t];
#HYPEREDGE COASTAL_HYDROGEN_BALANCE
#CONSTRAINTS
ELECTROLYSIS_PLANTS.hydrogen[t] + HYDROGEN_STORAGE.hydrogen_out[t] == HYDROGEN_STORAGE.hydrogen_in[t] + HYDROGEN_LIQUEFACTION_PLANTS.hydrogen[t];
#HYPEREDGE COASTAL_WATER_BALANCE
#CONSTRAINTS
DESALINATION_PLANTS.water[t] + WATER_STORAGE.water_out[t] == WATER_STORAGE.water_in[t] + ELECTROLYSIS_PLANTS.water[t] ;
#HYPEREDGE COASTAL_LIQUEFIED_HYDROGEN_BALANCE
#CONSTRAINTS
HYDROGEN_LIQUEFACTION_PLANTS.hydrogen[t] + HYDROGEN_STORAGE_HUB.liquefied_hydrogen_out[t] == HYDROGEN_STORAGE_HUB.liquefied_hydrogen_in[t] + LIQUEFIED_HYDROGEN_CARRIERS.liquefied_hydrogen_in[t];
#HYPEREDGE DESTINATION_LIQUEFIED_HYDROGEN_BALANCE
#CONSTRAINTS
LIQUEFIED_HYDROGEN_CARRIERS.liquefied_hydrogen_out[t] + HYDROGEN_STORAGE_DESTINATION.liquefied_hydrogen_out[t] == HYDROGEN_STORAGE_DESTINATION.liquefied_hydrogen_in[t] + LIQUEFIED_HYDROGEN_REGASIFICATION.liquefied_hydrogen[t];
#HYPEREDGE DESTINATION_GAS_H2_BALANCE
#PARAMETERS
demand = import "Data/H2_demand.csv";
#CONSTRAINTS
LIQUEFIED_HYDROGEN_REGASIFICATION.hydrogen[t] == demand[t];
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment