From 3083fb4051f831000a742e3cf5a34b878100391a Mon Sep 17 00:00:00 2001 From: Dachet Victor <victor.dachet@uliege.be> Date: Thu, 13 Jun 2024 08:15:36 +0000 Subject: [PATCH] Upload New File --- .../GBOML/Hydrogen.txt | 216 ++++++++++++++++++ 1 file changed, 216 insertions(+) create mode 100644 examples/energy_carrier_comparison/GBOML/Hydrogen.txt diff --git a/examples/energy_carrier_comparison/GBOML/Hydrogen.txt b/examples/energy_carrier_comparison/GBOML/Hydrogen.txt new file mode 100644 index 0000000..9af36a3 --- /dev/null +++ b/examples/energy_carrier_comparison/GBOML/Hydrogen.txt @@ -0,0 +1,216 @@ +#TIMEHORIZON +T=43800; // hours + +#GLOBAL +wacc = 0.07; +number_years_horizon = T/8760; + +#NODE SOLAR_PV_PLANTS = import SOLAR_PV_PLANTS from "GENERAL.txt"; + +#NODE WIND_PLANTS = import WIND_PLANTS from "GENERAL.txt"; + +#NODE BATTERY_STORAGE = import BATTERY_STORAGE from "GENERAL.txt"; + +#NODE HVDC = import HVDC from "GENERAL.txt"; + +#NODE ELECTROLYSIS_PLANTS = import ELECTROLYSIS_PLANTS from "GENERAL.txt"; + +#NODE DESALINATION_PLANTS = import DESALINATION_PLANTS from "GENERAL.txt"; + +#NODE HYDROGEN_STORAGE = import HYDROGEN_STORAGE from "GENERAL.txt"; + +#NODE WATER_STORAGE = import WATER_STORAGE from "GENERAL.txt"; + +#NODE HYDROGEN_LIQUEFACTION_PLANTS +// Data from DNV.GL, october 2020 +// Conversion factor for electricity from Connelly et al, 2019 +#PARAMETERS +full_capex = 45000.0; //M€ / Kt/h +lifetime = 40.0; // year +annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur +fom = 1125.0; // M€/(kt/h)-year +vom = 0.0; // M€/kt +conversion_factor_electricity = 12; +conversion_factor_hydrogen = 1.0; +minimum_level = 1.0; +ramp_rate_up = 0.0; +ramp_rate_down = 0.0; +#VARIABLES +internal: capacity; // kt/h +external: electricity[T]; // GWh +external: hydrogen[T]; // kt/h +external: liquefied_hydrogen[T]; // kt /h +#CONSTRAINTS +liquefied_hydrogen[t] <= capacity; +minimum_level * capacity <= liquefied_hydrogen[t]; +electricity[t] == conversion_factor_electricity * liquefied_hydrogen[t]; +hydrogen[t] == conversion_factor_hydrogen * liquefied_hydrogen[t]; +liquefied_hydrogen[t] <= liquefied_hydrogen[t-1] + ramp_rate_up * capacity; +liquefied_hydrogen[t-1] <= liquefied_hydrogen[t] + ramp_rate_down * capacity; +capacity >= 0; +electricity[t] >= 0; +liquefied_hydrogen[t] >= 0; +hydrogen[t] >= 0; +#OBJECTIVES +min: global.number_years_horizon * (annualised_capex + fom) * capacity; +min: vom * liquefied_hydrogen[t]; + +#NODE HYDROGEN_STORAGE_HUB +// Data from ens.dk +#PARAMETERS +full_capex_stock = 25; // M€/ Kt +full_capex_flow = 0.0; //M€ /kt/h +lifetime_stock = 30.0; // year +lifetime_flow = 30.0; // year +annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur +annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur +fom_flow = 0.0; // M€/(kt/h)-yr +fom_stock = 0.5; // M€/kt-yr +vom_flow = 0.0; // M€/kt +vom_stock = 0.0; // M€/kt +charge_discharge_ratio = 1.0; +self_discharge = 0.00008; +efficiency_in = 1.0; +efficiency_out = 1.0; +#VARIABLES +internal: capacity_flow; // kt/h +internal: capacity_stock; // kt +internal: liquefied_hydrogen_stored[T]; // kt +external: liquefied_hydrogen_in[T]; // kt/h +external: liquefied_hydrogen_out[T]; // kt/h +#CONSTRAINTS +liquefied_hydrogen_in[t] <= capacity_flow; +liquefied_hydrogen_out[t] <= capacity_flow; +liquefied_hydrogen_stored[t] <= capacity_stock; +liquefied_hydrogen_stored[0] == liquefied_hydrogen_stored[T-1]; +liquefied_hydrogen_stored[t+1] == (1 - self_discharge) * liquefied_hydrogen_stored[t] + efficiency_in * liquefied_hydrogen_in[t] - liquefied_hydrogen_out[t] / efficiency_out; +capacity_flow >= 0; +capacity_stock >= 0; +liquefied_hydrogen_stored[t] >= 0; +liquefied_hydrogen_in[t] >= 0; +liquefied_hydrogen_out[t] >= 0; +#OBJECTIVES +min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow; +min: vom_stock * liquefied_hydrogen_stored[t] + vom_flow * liquefied_hydrogen_in[t]; + +#NODE LIQUEFIED_HYDROGEN_CARRIERS +// Data from ens.dk +#PARAMETERS +number_carriers = 7; +full_capex = 14; //M€ /Kt +lifetime = 30.0; // year +annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur +fom = 0.07; // MEur/kt-year +vom = 0.0; +schedule = import "Data/carrier_schedule.csv"; +loading_time = 24; +travel_time = 116; +conversion_factor = 0.945; +#VARIABLES +internal: capacity; // kt +external: liquefied_hydrogen_in[T]; // kt/h +external: liquefied_hydrogen_out[T]; // kt/h +#CONSTRAINTS +liquefied_hydrogen_in[t] <= schedule[t] * capacity; +liquefied_hydrogen_out[t+travel_time] == conversion_factor * liquefied_hydrogen_in[t]; +liquefied_hydrogen_out[t] == 0 where t < travel_time; +capacity >= 0; +liquefied_hydrogen_in[t] >= 0; +liquefied_hydrogen_out[t] >= 0; +#OBJECTIVES +min: global.number_years_horizon * (annualised_capex + fom) * capacity * loading_time * number_carriers; +min: vom * liquefied_hydrogen_in[t]; + +#NODE HYDROGEN_STORAGE_DESTINATION +// Data from ens.dk +#PARAMETERS +full_capex_stock = 25; // M€/kt +full_capex_flow = 0.0; // M€/kt/h +lifetime_stock = 30.0; // year +lifetime_flow = 30.0; // year +annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur +annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur +fom_stock = 0.5; // M€/kt-yr +fom_flow = 0.0; // M€/(kt/h)-yr +vom_stock = 0.0; // M€/kt +vom_flow = 0.0; // M€/kt +charge_discharge_ratio = 1.0; +self_discharge = 0.00008; +efficiency_in = 1.0; +efficiency_out = 1.0; +#VARIABLES +internal: capacity_flow; // kt/h +internal: capacity_stock; // kt +internal: liquefied_hydrogen_stored[T]; // kt +external: liquefied_hydrogen_in[T]; // kt/h +external: liquefied_hydrogen_out[T]; // kt/h +#CONSTRAINTS +liquefied_hydrogen_in[t] <= capacity_flow; +liquefied_hydrogen_out[t] <= capacity_flow; +liquefied_hydrogen_stored[t] <= capacity_stock; +liquefied_hydrogen_stored[0] == liquefied_hydrogen_stored[T-1]; +liquefied_hydrogen_stored[t+1] == (1 - self_discharge) * liquefied_hydrogen_stored[t] + efficiency_in * liquefied_hydrogen_in[t] - liquefied_hydrogen_out[t] / efficiency_out; +capacity_flow >= 0; +capacity_stock >= 0; +liquefied_hydrogen_stored[t] >= 0; +liquefied_hydrogen_in[t] >= 0; +liquefied_hydrogen_out[t] >= 0; +#OBJECTIVES +min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow; +min: vom_stock * liquefied_hydrogen_stored[t] + vom_flow * liquefied_hydrogen_in[t]; + +#NODE LIQUEFIED_HYDROGEN_REGASIFICATION +// Data from DNV.GL, octobre 2020 +#PARAMETERS +full_capex = 9099.909; //M€/kt/h +lifetime = 30.0; // year +annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur +fom = 227.498; // MEur/(kt/h)-year +vom = 0.0; // M€/kt +conversion_factor = 1; +#VARIABLES +internal: capacity; // kt/h +external: liquefied_hydrogen[T]; // kt/h +external: hydrogen[T]; // kt/h +#CONSTRAINTS +liquefied_hydrogen[t] <= capacity; +hydrogen[t] == conversion_factor * liquefied_hydrogen[t]; +capacity >= 0; +hydrogen[t] >= 0; +liquefied_hydrogen[t] >= 0; +#OBJECTIVES +min: global.number_years_horizon * (annualised_capex + fom) * capacity; +min: vom * liquefied_hydrogen[t]; + +#HYPEREDGE INLAND_POWER_BALANCE +#CONSTRAINTS +SOLAR_PV_PLANTS.electricity[t] + WIND_PLANTS.electricity[t] + BATTERY_STORAGE.electricity_out[t] == BATTERY_STORAGE.electricity_in[t] + HVDC.electricity_in[t]; + +#HYPEREDGE COASTAL_POWER_BALANCE +#CONSTRAINTS +HVDC.electricity_out[t] == ELECTROLYSIS_PLANTS.electricity[t] + HYDROGEN_STORAGE.electricity[t] + DESALINATION_PLANTS.electricity[t] + WATER_STORAGE.electricity[t] + HYDROGEN_LIQUEFACTION_PLANTS.electricity[t]; + +#HYPEREDGE COASTAL_HYDROGEN_BALANCE +#CONSTRAINTS +ELECTROLYSIS_PLANTS.hydrogen[t] + HYDROGEN_STORAGE.hydrogen_out[t] == HYDROGEN_STORAGE.hydrogen_in[t] + HYDROGEN_LIQUEFACTION_PLANTS.hydrogen[t]; + +#HYPEREDGE COASTAL_WATER_BALANCE +#CONSTRAINTS +DESALINATION_PLANTS.water[t] + WATER_STORAGE.water_out[t] == WATER_STORAGE.water_in[t] + ELECTROLYSIS_PLANTS.water[t] ; + +#HYPEREDGE COASTAL_LIQUEFIED_HYDROGEN_BALANCE +#CONSTRAINTS +HYDROGEN_LIQUEFACTION_PLANTS.hydrogen[t] + HYDROGEN_STORAGE_HUB.liquefied_hydrogen_out[t] == HYDROGEN_STORAGE_HUB.liquefied_hydrogen_in[t] + LIQUEFIED_HYDROGEN_CARRIERS.liquefied_hydrogen_in[t]; + +#HYPEREDGE DESTINATION_LIQUEFIED_HYDROGEN_BALANCE +#CONSTRAINTS +LIQUEFIED_HYDROGEN_CARRIERS.liquefied_hydrogen_out[t] + HYDROGEN_STORAGE_DESTINATION.liquefied_hydrogen_out[t] == HYDROGEN_STORAGE_DESTINATION.liquefied_hydrogen_in[t] + LIQUEFIED_HYDROGEN_REGASIFICATION.liquefied_hydrogen[t]; + +#HYPEREDGE DESTINATION_GAS_H2_BALANCE +#PARAMETERS +demand = import "Data/H2_demand.csv"; +#CONSTRAINTS +LIQUEFIED_HYDROGEN_REGASIFICATION.hydrogen[t] == demand[t]; + + + -- GitLab