Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
gboml
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
smart_grids
public
gboml
Commits
29c1f09b
Commit
29c1f09b
authored
10 months ago
by
Dachet Victor
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
b653e9fa
No related branches found
No related tags found
No related merge requests found
Pipeline
#28374
canceled
10 months ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/energy_carrier_comparison/GBOML/GENERAL.txt
+329
-0
329 additions, 0 deletions
examples/energy_carrier_comparison/GBOML/GENERAL.txt
with
329 additions
and
0 deletions
examples/energy_carrier_comparison/GBOML/GENERAL.txt
0 → 100644
+
329
−
0
View file @
29c1f09b
#TIMEHORIZON
T=43800; // hours
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 380.0; // M€/GW
lifetime = 25.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 7.25; // M€/year
vom = 0.0;
capacity_factor_PV = import "Data/pv_capacity_factors.csv"; // Dimensionless
max_capacity = 500.0; // GW
#VARIABLES
internal: capacity; //GW
external: electricity[T]; //GWh
#CONSTRAINTS
electricity[t] <= capacity_factor_PV[t] * capacity;
capacity <= max_capacity;
capacity >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity[t];
#NODE WIND_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 1040.0; // M€/GW
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 12.6; // MEur/year
vom = 0.00135; // MEur/GWh
capacity_factor_wind = import "Data/wind_capacity_factors.csv"; // Dimensionless
max_capacity = 500.0; // GW
#VARIABLES
internal: capacity; // GW
external: electricity[T]; // GWh
#CONSTRAINTS
electricity[t] <= capacity_factor_wind[t] * capacity;
capacity <= max_capacity;
capacity >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity[t];
#NODE BATTERY_STORAGE
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_stock = 142.0; // M€/GWh
full_capex_flow = 160.0; // M€/GW
lifetime_stock = 10.0; // year
lifetime_flow = 10.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 0.0; // M€/GWh-year
fom_flow = 0.5; // M€/GW-year
vom_stock = 0.0018; // M€/GWh
vom_flow = 0.0; // M€/GWh
charge_discharge_ratio = 1.0;
self_discharge = 0.00004;
efficiency_in = 0.959;
efficiency_out = 0.959;
#VARIABLES
internal: capacity_flow; //GW
internal: capacity_stock; //GWh
internal: electricity_stored[T]; //GWh
external: electricity_in[T]; //GWh
external: electricity_out[T]; //GWh
#CONSTRAINTS
electricity_in[t] <= capacity_flow;
electricity_out[t] <= charge_discharge_ratio * capacity_flow;
electricity_stored[t] <= capacity_stock;
electricity_stored[0] == electricity_stored[T-1];
electricity_stored[t+1] == (1 - self_discharge) * electricity_stored[t] + efficiency_in * electricity_in[t] - electricity_out[t] / efficiency_out;
capacity_flow >= 0;
capacity_stock >= 0;
electricity_stored[t] >= 0;
electricity_in[t] >= 0;
electricity_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * electricity_stored[t] + vom_flow * electricity_in[t];
#NODE HVDC
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_lines = 0.25*1000; // M€/GW
full_capex_stations = 2*115.0; // M€/GW
lifetime_lines = 40.0; // year
lifetime_stations = 40.0; // year
annualised_capex_lines = full_capex_lines * global.wacc * (1 + global.wacc)**lifetime_lines / ((1 + global.wacc)**lifetime_lines - 1); // M€
annualised_capex_stations = full_capex_stations * global.wacc * (1 + global.wacc)**lifetime_stations / ((1 + global.wacc)**lifetime_stations - 1); // M€
annualised_capex = annualised_capex_lines + annualised_capex_stations; // M€/GW-year (Lines + Stations)
fom = 2.5 + 4.6; // M€/year
vom = 0.0; // M€/GWh
efficiency_HVDC = 0.9499;
#VARIABLES
internal: capacity; //GW
external: electricity_in[T]; //GWh
external: electricity_out[T]; //GWh
#CONSTRAINTS
electricity_in[t] <= capacity;
electricity_out[t] == efficiency_HVDC * electricity_in[t];
capacity >= 0;
electricity_in[t] >= 0;
electricity_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity_in[t];
#NODE ELECTROLYSIS_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 600.0; // M€/GW(e)
lifetime = 15.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 30.0; // M€/GW(e)-year
vom = 0.0; // M€/GWh(e)
conversion_factor_electricity = 50.6;
conversion_factor_water = 9.0;
minimum_level = 0.05;
#VARIABLES
internal: capacity; // GW - reference flow for sizing is electricity
external: electricity[T]; // GWh/h
external: water[T]; // kt/h
external: hydrogen[T]; // kt/h
#CONSTRAINTS
electricity[t] <= capacity;
minimum_level * capacity <= electricity[t];
electricity[t] == conversion_factor_electricity * hydrogen[t];
water[t] == conversion_factor_water * hydrogen[t];
capacity >= 0;
electricity[t] >= 0;
hydrogen[t] >= 0;
water[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity[t];
#NODE DESALINATION_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 28.08; // M€/(kt/h) - freshwater is the reference flow for sizing
lifetime = 20.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 0.0; // M€/year
vom = 0.000315; // M€/kt
conversion_factor_electricity = 0.004;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: water[T]; // kt
#CONSTRAINTS
water[t] <= capacity;
minimum_level * capacity <= water[t];
electricity[t] == conversion_factor_electricity * water[t];
water[t] <= water[t-1] + ramp_rate_up * capacity;
water[t-1] <= water[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
water[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * water[t];
#NODE HYDROGEN_STORAGE
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_stock = 45.0; // M€/kt
full_capex_flow = 0.0; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 2.25; // M€/kt-yr
fom_flow = 0.0;
vom_stock = 0.0; // M€/kt
vom_flow = 0.0;
conversion_factor_electricity = 1.3;
minimum_level = 0.05;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: hydrogen_stored[T]; // kt
external: electricity[T]; // GWh
external: hydrogen_in[T]; // kt/h
external: hydrogen_out[T]; // kt/h
#CONSTRAINTS
hydrogen_in[t] <= capacity_flow;
hydrogen_out[t] <= capacity_flow;
minimum_level * capacity_stock <= hydrogen_stored[t];
hydrogen_stored[t] <= capacity_stock;
hydrogen_stored[0] == hydrogen_stored[T-1];
hydrogen_stored[t+1] == hydrogen_stored[t] + hydrogen_in[t] - hydrogen_out[t];
electricity[t] == conversion_factor_electricity * hydrogen_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
hydrogen_stored[t] >= 0;
hydrogen_in[t] >= 0;
hydrogen_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * hydrogen_stored[t] + vom_flow * hydrogen_in[t];
#NODE WATER_STORAGE
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_stock = 0.065; // M€/kt
full_capex_flow = 1.55923; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 0.0013; // M€/kt-yr
fom_flow = 0.0312; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
conversion_factor_electricity = 0.00036;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: water_stored[T]; // kt
external: electricity[T]; // GWh
external: water_in[T]; // kt
external: water_out[T]; // kt
#CONSTRAINTS
water_in[t] <= capacity_flow;
water_out[t] <= capacity_flow;
water_stored[t] <= capacity_stock;
water_stored[0] == water_stored[T-1];
water_stored[t+1] == water_stored[t] + water_in[t] - water_out[t];
electricity[t] == conversion_factor_electricity * water_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
water_stored[t] >= 0;
water_in[t] >= 0;
water_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * water_stored[t] + vom_flow * water_in[t];
#NODE DIRECT_AIR_CAPTURE_PLANTS
// Data from Keith.D et al, 2018
#PARAMETERS
full_capex = 4801.4; // M€/(kt/h)
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 0.0; // MEur/year
vom = 0.0207; // MEur/kt
conversion_factor_electricity = 0.1091;
conversion_factor_water = 5.0;
conversion_factor_hydrogen = 1.46 / 33.3; // heat consumption / LHV of hydrogen
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h - carbon dioxide is the reference flow for sizing
external: electricity[T]; // GWh
external: hydrogen[T]; // kt/h
external: water[T]; // kt/h
external: carbon_dioxide[T]; // kt/h
#CONSTRAINTS
carbon_dioxide[t] <= capacity;
minimum_level * capacity <= carbon_dioxide[t];
electricity[t] == conversion_factor_electricity * carbon_dioxide[t];
water[t] == conversion_factor_water * carbon_dioxide[t];
hydrogen[t] == conversion_factor_hydrogen * carbon_dioxide[t];
carbon_dioxide[t] <= carbon_dioxide[t-1] + ramp_rate_up * capacity;
carbon_dioxide[t-1] <= carbon_dioxide[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
water[t] >= 0;
hydrogen[t] >= 0;
carbon_dioxide[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * carbon_dioxide[t];
#NODE CARBON_DIOXIDE_STORAGE
// Data from Mitsubishi Heavy Industries, 2004
#PARAMETERS
full_capex_stock = 1.35; // M€/kt
full_capex_flow = 32.4+16.2; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.0675; // M€/kt-yr
fom_flow = 1.62 + 0.81; // MEur/(kt/h)-year (carbon dioxide liquefaction + regasification)
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
conversion_factor_electricity = 0.105;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: carbon_dioxide_stored[T]; //kt
external: electricity[T]; // GWh
external: carbon_dioxide_in[T]; // kt/h
external: carbon_dioxide_out[T]; // kt/h
#CONSTRAINTS
carbon_dioxide_in[t] <= capacity_flow;
carbon_dioxide_out[t] <= capacity_flow;
carbon_dioxide_stored[t] <= capacity_stock;
carbon_dioxide_stored[0] == carbon_dioxide_stored[T-1];
carbon_dioxide_stored[t+1] == carbon_dioxide_stored[t] + carbon_dioxide_in[t] - carbon_dioxide_out[t];
electricity[t] == conversion_factor_electricity * carbon_dioxide_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
carbon_dioxide_stored[t] >= 0;
carbon_dioxide_in[t] >= 0;
carbon_dioxide_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * carbon_dioxide_stored[t] + vom_flow * carbon_dioxide_in[t];
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment