Skip to content
Snippets Groups Projects
Commit 29c1f09b authored by Dachet Victor's avatar Dachet Victor
Browse files

Upload New File

parent b653e9fa
No related branches found
No related tags found
No related merge requests found
Pipeline #28374 canceled
#TIMEHORIZON
T=43800; // hours
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 380.0; // M€/GW
lifetime = 25.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 7.25; // M€/year
vom = 0.0;
capacity_factor_PV = import "Data/pv_capacity_factors.csv"; // Dimensionless
max_capacity = 500.0; // GW
#VARIABLES
internal: capacity; //GW
external: electricity[T]; //GWh
#CONSTRAINTS
electricity[t] <= capacity_factor_PV[t] * capacity;
capacity <= max_capacity;
capacity >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity[t];
#NODE WIND_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 1040.0; // M€/GW
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 12.6; // MEur/year
vom = 0.00135; // MEur/GWh
capacity_factor_wind = import "Data/wind_capacity_factors.csv"; // Dimensionless
max_capacity = 500.0; // GW
#VARIABLES
internal: capacity; // GW
external: electricity[T]; // GWh
#CONSTRAINTS
electricity[t] <= capacity_factor_wind[t] * capacity;
capacity <= max_capacity;
capacity >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity[t];
#NODE BATTERY_STORAGE
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_stock = 142.0; // M€/GWh
full_capex_flow = 160.0; // M€/GW
lifetime_stock = 10.0; // year
lifetime_flow = 10.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 0.0; // M€/GWh-year
fom_flow = 0.5; // M€/GW-year
vom_stock = 0.0018; // M€/GWh
vom_flow = 0.0; // M€/GWh
charge_discharge_ratio = 1.0;
self_discharge = 0.00004;
efficiency_in = 0.959;
efficiency_out = 0.959;
#VARIABLES
internal: capacity_flow; //GW
internal: capacity_stock; //GWh
internal: electricity_stored[T]; //GWh
external: electricity_in[T]; //GWh
external: electricity_out[T]; //GWh
#CONSTRAINTS
electricity_in[t] <= capacity_flow;
electricity_out[t] <= charge_discharge_ratio * capacity_flow;
electricity_stored[t] <= capacity_stock;
electricity_stored[0] == electricity_stored[T-1];
electricity_stored[t+1] == (1 - self_discharge) * electricity_stored[t] + efficiency_in * electricity_in[t] - electricity_out[t] / efficiency_out;
capacity_flow >= 0;
capacity_stock >= 0;
electricity_stored[t] >= 0;
electricity_in[t] >= 0;
electricity_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * electricity_stored[t] + vom_flow * electricity_in[t];
#NODE HVDC
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_lines = 0.25*1000; // M€/GW
full_capex_stations = 2*115.0; // M€/GW
lifetime_lines = 40.0; // year
lifetime_stations = 40.0; // year
annualised_capex_lines = full_capex_lines * global.wacc * (1 + global.wacc)**lifetime_lines / ((1 + global.wacc)**lifetime_lines - 1); // M€
annualised_capex_stations = full_capex_stations * global.wacc * (1 + global.wacc)**lifetime_stations / ((1 + global.wacc)**lifetime_stations - 1); // M€
annualised_capex = annualised_capex_lines + annualised_capex_stations; // M€/GW-year (Lines + Stations)
fom = 2.5 + 4.6; // M€/year
vom = 0.0; // M€/GWh
efficiency_HVDC = 0.9499;
#VARIABLES
internal: capacity; //GW
external: electricity_in[T]; //GWh
external: electricity_out[T]; //GWh
#CONSTRAINTS
electricity_in[t] <= capacity;
electricity_out[t] == efficiency_HVDC * electricity_in[t];
capacity >= 0;
electricity_in[t] >= 0;
electricity_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity_in[t];
#NODE ELECTROLYSIS_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 600.0; // M€/GW(e)
lifetime = 15.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 30.0; // M€/GW(e)-year
vom = 0.0; // M€/GWh(e)
conversion_factor_electricity = 50.6;
conversion_factor_water = 9.0;
minimum_level = 0.05;
#VARIABLES
internal: capacity; // GW - reference flow for sizing is electricity
external: electricity[T]; // GWh/h
external: water[T]; // kt/h
external: hydrogen[T]; // kt/h
#CONSTRAINTS
electricity[t] <= capacity;
minimum_level * capacity <= electricity[t];
electricity[t] == conversion_factor_electricity * hydrogen[t];
water[t] == conversion_factor_water * hydrogen[t];
capacity >= 0;
electricity[t] >= 0;
hydrogen[t] >= 0;
water[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * electricity[t];
#NODE DESALINATION_PLANTS
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex = 28.08; // M€/(kt/h) - freshwater is the reference flow for sizing
lifetime = 20.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 0.0; // M€/year
vom = 0.000315; // M€/kt
conversion_factor_electricity = 0.004;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: water[T]; // kt
#CONSTRAINTS
water[t] <= capacity;
minimum_level * capacity <= water[t];
electricity[t] == conversion_factor_electricity * water[t];
water[t] <= water[t-1] + ramp_rate_up * capacity;
water[t-1] <= water[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
water[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * water[t];
#NODE HYDROGEN_STORAGE
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_stock = 45.0; // M€/kt
full_capex_flow = 0.0; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 2.25; // M€/kt-yr
fom_flow = 0.0;
vom_stock = 0.0; // M€/kt
vom_flow = 0.0;
conversion_factor_electricity = 1.3;
minimum_level = 0.05;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: hydrogen_stored[T]; // kt
external: electricity[T]; // GWh
external: hydrogen_in[T]; // kt/h
external: hydrogen_out[T]; // kt/h
#CONSTRAINTS
hydrogen_in[t] <= capacity_flow;
hydrogen_out[t] <= capacity_flow;
minimum_level * capacity_stock <= hydrogen_stored[t];
hydrogen_stored[t] <= capacity_stock;
hydrogen_stored[0] == hydrogen_stored[T-1];
hydrogen_stored[t+1] == hydrogen_stored[t] + hydrogen_in[t] - hydrogen_out[t];
electricity[t] == conversion_factor_electricity * hydrogen_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
hydrogen_stored[t] >= 0;
hydrogen_in[t] >= 0;
hydrogen_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * hydrogen_stored[t] + vom_flow * hydrogen_in[t];
#NODE WATER_STORAGE
// Berger et al. 2019 have been used for the node
#PARAMETERS
full_capex_stock = 0.065; // M€/kt
full_capex_flow = 1.55923; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 0.0013; // M€/kt-yr
fom_flow = 0.0312; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
conversion_factor_electricity = 0.00036;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: water_stored[T]; // kt
external: electricity[T]; // GWh
external: water_in[T]; // kt
external: water_out[T]; // kt
#CONSTRAINTS
water_in[t] <= capacity_flow;
water_out[t] <= capacity_flow;
water_stored[t] <= capacity_stock;
water_stored[0] == water_stored[T-1];
water_stored[t+1] == water_stored[t] + water_in[t] - water_out[t];
electricity[t] == conversion_factor_electricity * water_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
water_stored[t] >= 0;
water_in[t] >= 0;
water_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * water_stored[t] + vom_flow * water_in[t];
#NODE DIRECT_AIR_CAPTURE_PLANTS
// Data from Keith.D et al, 2018
#PARAMETERS
full_capex = 4801.4; // M€/(kt/h)
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 0.0; // MEur/year
vom = 0.0207; // MEur/kt
conversion_factor_electricity = 0.1091;
conversion_factor_water = 5.0;
conversion_factor_hydrogen = 1.46 / 33.3; // heat consumption / LHV of hydrogen
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h - carbon dioxide is the reference flow for sizing
external: electricity[T]; // GWh
external: hydrogen[T]; // kt/h
external: water[T]; // kt/h
external: carbon_dioxide[T]; // kt/h
#CONSTRAINTS
carbon_dioxide[t] <= capacity;
minimum_level * capacity <= carbon_dioxide[t];
electricity[t] == conversion_factor_electricity * carbon_dioxide[t];
water[t] == conversion_factor_water * carbon_dioxide[t];
hydrogen[t] == conversion_factor_hydrogen * carbon_dioxide[t];
carbon_dioxide[t] <= carbon_dioxide[t-1] + ramp_rate_up * capacity;
carbon_dioxide[t-1] <= carbon_dioxide[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
water[t] >= 0;
hydrogen[t] >= 0;
carbon_dioxide[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * carbon_dioxide[t];
#NODE CARBON_DIOXIDE_STORAGE
// Data from Mitsubishi Heavy Industries, 2004
#PARAMETERS
full_capex_stock = 1.35; // M€/kt
full_capex_flow = 32.4+16.2; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // MEur
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // MEur
fom_stock = 0.0675; // M€/kt-yr
fom_flow = 1.62 + 0.81; // MEur/(kt/h)-year (carbon dioxide liquefaction + regasification)
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
conversion_factor_electricity = 0.105;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: carbon_dioxide_stored[T]; //kt
external: electricity[T]; // GWh
external: carbon_dioxide_in[T]; // kt/h
external: carbon_dioxide_out[T]; // kt/h
#CONSTRAINTS
carbon_dioxide_in[t] <= capacity_flow;
carbon_dioxide_out[t] <= capacity_flow;
carbon_dioxide_stored[t] <= capacity_stock;
carbon_dioxide_stored[0] == carbon_dioxide_stored[T-1];
carbon_dioxide_stored[t+1] == carbon_dioxide_stored[t] + carbon_dioxide_in[t] - carbon_dioxide_out[t];
electricity[t] == conversion_factor_electricity * carbon_dioxide_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
carbon_dioxide_stored[t] >= 0;
carbon_dioxide_in[t] >= 0;
carbon_dioxide_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * carbon_dioxide_stored[t] + vom_flow * carbon_dioxide_in[t];
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment