Skip to content
Snippets Groups Projects
Commit b653e9fa authored by Dachet Victor's avatar Dachet Victor
Browse files

Upload New File

parent 26e84d4d
No related branches found
No related tags found
No related merge requests found
Pipeline #28373 canceled
#TIMEHORIZON
T=43800; // hours
#GLOBAL
wacc = 0.07;
number_years_horizon = T/8760;
#NODE SOLAR_PV_PLANTS = import SOLAR_PV_PLANTS from "GENERAL.txt";
#NODE WIND_PLANTS = import WIND_PLANTS from "GENERAL.txt";
#NODE BATTERY_STORAGE = import BATTERY_STORAGE from "GENERAL.txt";
#NODE HVDC = import HVDC from "GENERAL.txt";
#NODE ELECTROLYSIS_PLANTS = import ELECTROLYSIS_PLANTS from "GENERAL.txt";
#NODE DESALINATION_PLANTS = import DESALINATION_PLANTS from "GENERAL.txt";
#NODE HYDROGEN_STORAGE = import HYDROGEN_STORAGE from "GENERAL.txt";
#NODE WATER_STORAGE = import WATER_STORAGE from "GENERAL.txt";
#NODE ASU
// Article from Eric R. Morgan, 2013 was used for the node
#PARAMETERS
full_capex = 850; // M€/(kt/h) - nitrogen is the reference flow for sizing
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // MEur
fom = 50.0; // M€/year
vom = 0.0; // M€/kt
conversion_factor_electricity = 0.1081;
minimum_level = 1.0;
ramp_rate_up = 0.0;
ramp_rate_down = 0.0;
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: nitrogen[T]; // kt/h
#CONSTRAINTS
nitrogen[t] <= capacity;
minimum_level * capacity <= nitrogen[t];
electricity[t] == conversion_factor_electricity * nitrogen[t];
nitrogen[t] <= nitrogen[t-1] + ramp_rate_up * capacity;
nitrogen[t-1] <= nitrogen[t] + ramp_rate_down * capacity;
capacity >= 0;
electricity[t] >= 0;
nitrogen[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * nitrogen[t];
#NODE NITROGEN_STORAGE
// Hypothesis : capex same as capex from hydrogen storage
// Conversion factor electricity from ASPEN
#PARAMETERS
full_capex_stock = 45.0; // M€/kt - nitrogen is the reference flow for sizing
full_capex_flow = 0.0; // M€/(kt/h)
lifetime_stock = 30.0; // year
lifetime_flow = 30.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 2.25; // MEur/(kt)-year
fom_flow = 0.0; // MEur/(kt/h)-year
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
conversion_factor_electricity = 0.1081;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: nitrogen_stored[T]; // kt
external: electricity[T]; // GWh
external: nitrogen_in[T]; // kt/h
external: nitrogen_out[T]; // kt/h
#CONSTRAINTS
nitrogen_in[t] <= capacity_flow;
nitrogen_out[t] <= capacity_flow;
nitrogen_stored[t] <= capacity_stock;
nitrogen_stored[0] == nitrogen_stored[T-1];
nitrogen_stored[t+1] == nitrogen_stored[t] + nitrogen_in[t] - nitrogen_out[t];
electricity[t] == conversion_factor_electricity * nitrogen_in[t];
capacity_flow >= 0;
capacity_stock >= 0;
nitrogen_stored[t] >= 0;
nitrogen_in[t] >= 0;
nitrogen_out[t] >= 0;
electricity[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * nitrogen_stored[t] + vom_flow * nitrogen_in[t];
#NODE NH3_PROD
// Data from ens.dk
#PARAMETERS
full_capex = 6825; // M€ per kt/h NH3
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 204.75; // M€/y per kt/h
vom = 0.000105; // M€ per kt
conversion_factor_electricity = 0.32;
conversion_factor_hydrogen = 0.18;
conversion_factor_nitrogen = 0.84;
minimum_level = 0.2;
ramp_rate_up = 1; // hypo : stockage N2 (&H2) FR FRD =Ramp 100% within less than 30s
ramp_rate_down = 1; // hypo : stockage N2 FCR-D =Ramp 50% within 5s and 100% within 30s
#VARIABLES
internal: capacity; // kt/h
external: electricity[T]; // GWh
external: hydrogen[T]; // kt
external: ammonia[T]; // kt
external: nitrogen[T]; // kt
#CONSTRAINTS
ammonia[t] <= capacity;
minimum_level * capacity <= ammonia[t];
hydrogen[t] == conversion_factor_hydrogen * ammonia[t];
electricity[t] == conversion_factor_electricity * ammonia[t];
nitrogen[t] == conversion_factor_nitrogen * ammonia[t];
ammonia[t] <= ammonia[t-1] + ramp_rate_up * capacity;
ammonia[t-1] <= ammonia[t] + ramp_rate_down * capacity;
capacity >= 0;
ammonia[t] >= 0 ;
electricity[t] >= 0;
hydrogen[T] >= 0;
nitrogen[T]>= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * ammonia[T];
#NODE LIQUEFIED_NH3_STORAGE_HUB
// Capex_flow, fom_flow and vom_flow from ens.dk
// Capex_stock, fomm_stock and vo_stock from Eric R. Morgan, 2013
// Efficencies from DNV.GL, october 2020
#PARAMETERS
full_capex_stock = 0.867; // M€ per kt
full_capex_flow = 0.10; // M€ per kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 50.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 0.01735; // M€/kt-yr
fom_flow = 0.001; // M€/(kt/h)-yr
vom_stock =0 ; // M€/kt
vom_flow = 0; // M€/kt
charge_discharge_ratio = 1.0;
self_discharge = 0.00003;
efficiency_in = 1.0;
efficiency_out = 1.0;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_ammonia_stored[T]; // kt
external: liquefied_ammonia_in[T]; // kt
external: liquefied_ammonia_out[T]; // kt
#CONSTRAINTS
liquefied_ammonia_in[t] <= capacity_flow;
liquefied_ammonia_out[t] <= capacity_flow;
liquefied_ammonia_stored[t] <= capacity_stock;
liquefied_ammonia_stored[0] == liquefied_ammonia_stored[T-1];
liquefied_ammonia_stored[t+1] == (1 - self_discharge) * liquefied_ammonia_stored[t] + liquefied_ammonia_in[t] - liquefied_ammonia_out[t];
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_ammonia_stored[t] >= 0;
liquefied_ammonia_in[t] >= 0;
liquefied_ammonia_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_ammonia_stored[t] + vom_flow * liquefied_ammonia_in[t];
#NODE LIQUEFIED_NH3_STORAGE_DESTINATION
// Capex_flow, fom_flow and vom_flow from ens.dk
// Capex_stock, fomm_stock and vo_stock from Eric R. Morgan, 2013
// Efficencies from DNV.GL, october 2020
#PARAMETERS
full_capex_stock = 0.867; // M€ per kt
full_capex_flow = 0.10; // M€ per kt/h
lifetime_stock = 30.0; // year
lifetime_flow = 50.0; // year
annualised_capex_stock = full_capex_stock * global.wacc * (1 + global.wacc)**lifetime_stock / ((1 + global.wacc)**lifetime_stock - 1); // M€
annualised_capex_flow = full_capex_flow * global.wacc * (1 + global.wacc)**lifetime_flow / ((1 + global.wacc)**lifetime_flow - 1); // M€
fom_stock = 0.01735; // M€/kt-yr
fom_flow = 0.001; // M€/(kt/h)-yr
vom_stock = 0.0; // M€/kt
vom_flow = 0.0; // M€/kt
charge_discharge_ratio = 1.0;
self_discharge = 0.00003;
efficiency_in = 1.0;
efficiency_out = 1.0;
#VARIABLES
internal: capacity_flow; // kt/h
internal: capacity_stock; // kt
internal: liquefied_ammonia_stored[T]; // kt
external: liquefied_ammonia_in[T]; // kt/h
external: liquefied_ammonia_out[T]; // kt/h
#CONSTRAINTS
liquefied_ammonia_in[t] <= capacity_flow;
liquefied_ammonia_out[t] <= capacity_flow;
liquefied_ammonia_stored[t] <= capacity_stock;
liquefied_ammonia_stored[0] == liquefied_ammonia_stored[T-1];
liquefied_ammonia_stored[t+1] == (1 - self_discharge) * liquefied_ammonia_stored[t] + liquefied_ammonia_in[t] - liquefied_ammonia_out[t];
capacity_flow >= 0;
capacity_stock >= 0;
liquefied_ammonia_stored[t] >= 0;
liquefied_ammonia_in[t] >= 0;
liquefied_ammonia_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex_stock + fom_stock) * capacity_stock + global.number_years_horizon * (annualised_capex_flow + fom_flow) * capacity_flow;
min: vom_stock * liquefied_ammonia_stored[t] + vom_flow * liquefied_ammonia_in[t];
#NODE LIQUEFIED_NH3_CARRIERS
// Data from ens.dk
#PARAMETERS
number_carriers = 7;
full_capex = 1.75; //M€ per kt
lifetime = 20.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 0.009; // M€/kt-year
vom = 0.0; // M€/kt
schedule = import "Data/carrier_schedule.csv";
loading_time = 24;
travel_time = 116;
conversion_factor = 0.994;
#VARIABLES
internal: capacity; // kt
external: liquefied_ammonia_in[T]; // kt/h
external: liquefied_ammonia_out[T]; // kt/h
#CONSTRAINTS
liquefied_ammonia_in[t] <= schedule[t] * capacity;
liquefied_ammonia_out[t+travel_time] == conversion_factor * liquefied_ammonia_in[t];
liquefied_ammonia_out[t] == 0 where t < travel_time;
capacity >= 0;
liquefied_ammonia_in[t] >= 0;
liquefied_ammonia_out[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity * loading_time * number_carriers;
min: vom * liquefied_ammonia_in[t];
#NODE LIQUEFIED_NH3_REGASIFICATION
// Hypothesis : data same as natural gas
// Data from Pospisil et al, 2019
#PARAMETERS
full_capex = 1248.3; // M€/kt/h
lifetime = 30.0; // year
annualised_capex = full_capex * global.wacc * (1 + global.wacc)**lifetime / ((1 + global.wacc)**lifetime - 1); // M€
fom = 41.62; // M€/(kt/h)-year
vom = 0.0; // M€/kt
conversion_factor = 0.98;
#VARIABLES
internal: capacity; // kt/h
external: liquefied_ammonia[T]; //kt
external: ammonia[T]; // kt
#CONSTRAINTS
liquefied_ammonia[t] <= capacity;
ammonia[t] == conversion_factor * liquefied_ammonia[t];
capacity >= 0;
ammonia[t] >= 0;
liquefied_ammonia[t] >= 0;
#OBJECTIVES
min: global.number_years_horizon * (annualised_capex + fom) * capacity;
min: vom * liquefied_ammonia[t];
#HYPEREDGE INLAND_POWER_BALANCE
#CONSTRAINTS
SOLAR_PV_PLANTS.electricity[t] + WIND_PLANTS.electricity[t] + BATTERY_STORAGE.electricity_out[t] == BATTERY_STORAGE.electricity_in[t] + HVDC.electricity_in[t];
#HYPEREDGE COASTAL_POWER_BALANCE
#CONSTRAINTS
HVDC.electricity_out[t] == ELECTROLYSIS_PLANTS.electricity[t] + HYDROGEN_STORAGE.electricity[t] + DESALINATION_PLANTS.electricity[t] + WATER_STORAGE.electricity[t] + NH3_PROD.electricity[t] + NITROGEN_STORAGE.electricity[t] + ASU.electricity[t];
#HYPEREDGE NITROGEN_BALANCE
#CONSTRAINTS
ASU.nitrogen[t] + NITROGEN_STORAGE.nitrogen_out[t] == NITROGEN_STORAGE.nitrogen_in[t] + NH3_PROD.nitrogen[t];
#HYPEREDGE COASTAL_HYDROGEN_BALANCE
#CONSTRAINTS
ELECTROLYSIS_PLANTS.hydrogen[t] + HYDROGEN_STORAGE.hydrogen_out[t] == HYDROGEN_STORAGE.hydrogen_in[t] + NH3_PROD.hydrogen[t];
#HYPEREDGE COASTAL_WATER_BALANCE
#CONSTRAINTS
DESALINATION_PLANTS.water[t] + WATER_STORAGE.water_out[t] == WATER_STORAGE.water_in[t] + ELECTROLYSIS_PLANTS.water[t];
#HYPEREDGE COASTAL_LIQUEFIED_NH3_BALANCE
#CONSTRAINTS
NH3_PROD.ammonia[t] + LIQUEFIED_NH3_STORAGE_HUB.liquefied_ammonia_out[t] == LIQUEFIED_NH3_STORAGE_HUB.liquefied_ammonia_in[t] + LIQUEFIED_NH3_CARRIERS.liquefied_ammonia_in[t];
#HYPEREDGE DESTINATION_LIQUEFIED_NH3_BALANCE
#CONSTRAINTS
LIQUEFIED_NH3_CARRIERS.liquefied_ammonia_out[t] + LIQUEFIED_NH3_STORAGE_DESTINATION.liquefied_ammonia_out[t] == LIQUEFIED_NH3_STORAGE_DESTINATION.liquefied_ammonia_in[t] + LIQUEFIED_NH3_REGASIFICATION.liquefied_ammonia[t] ;
#HYPEREDGE DESTINATION_GAS_NH3_BALANCE
#PARAMETERS
demand = import "Data/NH3_demand.csv";
#CONSTRAINTS
LIQUEFIED_NH3_REGASIFICATION.ammonia[t] == demand[t];
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment