Skip to content
Snippets Groups Projects
Commit 170ae6ef authored by Boman Romain's avatar Boman Romain
Browse files

use 1GP/tetra

parent 86782470
No related branches found
No related tags found
No related merge requests found
...@@ -28,9 +28,10 @@ public: ...@@ -28,9 +28,10 @@ public:
std::vector<Medium *> media; std::vector<Medium *> media;
std::vector<Dirichlet *> dirichlets; std::vector<Dirichlet *> dirichlets;
std::vector<Neumann *> neumanns; std::vector<Neumann *> neumanns;
#endif
std::string quadrature; std::string quadrature;
#endif
public: public:
Problem(); Problem();
~Problem(); ~Problem();
......
...@@ -48,26 +48,26 @@ def parms(d={}): ...@@ -48,26 +48,26 @@ def parms(d={}):
'axis_pt2': ['x', 'y', 'z'] 'axis_pt2': ['x', 'y', 'z']
} }
# rigid cylinder (used if p['food']=='cylinder') # rigid cylinder (used if p['food']=='cylinder')
R = 20 # R = 20
p['cylinder'] = { # p['cylinder'] = {
'origin': [-R-8, 0, -150], # 'origin': [-R-8, 0, -150],
'radius': R, # 'radius': R,
'width': 100, # 'width': 100,
'friction': 0.1, # 'friction': 0.1,
'penalty': 1e3 # 'penalty': 1e3
} # }
# material properties # material properties
p['density'] = 1.850e-9 # [T/mm³] - bone: 1.850 kg/l # p['density'] = 1.850e-9 # [T/mm³] - bone: 1.850 kg/l
p['Young'] = 17000. # [MPa] elastic modulus - bone: 17-20 GPa p['Young'] = 17000. # [MPa] elastic modulus - bone: 17-20 GPa
p['Poisson'] = 0.3 # [-] Poisson's ratio p['Poisson'] = 0.3 # [-] Poisson's ratio
# numerical parameters # numerical parameters
p['tolNR'] = 1e-6 # [-] equilibrium tolerance # p['tolNR'] = 1e-6 # [-] equilibrium tolerance
p['dt0'] = 1.0 # [s] time step size # p['dt0'] = 1.0 # [s] time step size
# gmsh toolbox # gmsh toolbox
p['use_gmshOld'] = False # use old gmsh interface # p['use_gmshOld'] = False # use old gmsh interface
p.update(d) p.update(d)
return p return p
...@@ -175,6 +175,7 @@ def solve(p={}): ...@@ -175,6 +175,7 @@ def solve(p={}):
# Time integration scheme # Time integration scheme
# print (pbl) # print (pbl)
print('SOLVE.......') print('SOLVE.......')
pbl.quadrature = 'Gauss1' # 1 GP/tetra is enough
solver = fem.Solver(pbl) solver = fem.Solver(pbl)
solver.linear_solver = "pardiso" solver.linear_solver = "pardiso"
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment