diff --git a/cxxfem/src/femProblem.h b/cxxfem/src/femProblem.h index fec3242b5ff48f485a8d3340cb5b25c7343edf8f..fde0369c08cfe720fb23f3c6af1da69935426d13 100644 --- a/cxxfem/src/femProblem.h +++ b/cxxfem/src/femProblem.h @@ -28,9 +28,10 @@ public: std::vector<Medium *> media; std::vector<Dirichlet *> dirichlets; std::vector<Neumann *> neumanns; +#endif std::string quadrature; -#endif + public: Problem(); ~Problem(); diff --git a/models/bonemodel2.py b/models/bonemodel2.py index 6f8e08fd56c0a8af11b4c43c84e3fdcf8998ac3c..85c5d596480f749827fdb9587ecec6b3dd014343 100644 --- a/models/bonemodel2.py +++ b/models/bonemodel2.py @@ -48,26 +48,26 @@ def parms(d={}): 'axis_pt2': ['x', 'y', 'z'] } # rigid cylinder (used if p['food']=='cylinder') - R = 20 - p['cylinder'] = { - 'origin': [-R-8, 0, -150], - 'radius': R, - 'width': 100, - 'friction': 0.1, - 'penalty': 1e3 - } + # R = 20 + # p['cylinder'] = { + # 'origin': [-R-8, 0, -150], + # 'radius': R, + # 'width': 100, + # 'friction': 0.1, + # 'penalty': 1e3 + # } # material properties - p['density'] = 1.850e-9 # [T/mm³] - bone: 1.850 kg/l + # p['density'] = 1.850e-9 # [T/mm³] - bone: 1.850 kg/l p['Young'] = 17000. # [MPa] elastic modulus - bone: 17-20 GPa p['Poisson'] = 0.3 # [-] Poisson's ratio # numerical parameters - p['tolNR'] = 1e-6 # [-] equilibrium tolerance - p['dt0'] = 1.0 # [s] time step size + # p['tolNR'] = 1e-6 # [-] equilibrium tolerance + # p['dt0'] = 1.0 # [s] time step size # gmsh toolbox - p['use_gmshOld'] = False # use old gmsh interface + # p['use_gmshOld'] = False # use old gmsh interface p.update(d) return p @@ -175,6 +175,7 @@ def solve(p={}): # Time integration scheme # print (pbl) print('SOLVE.......') + pbl.quadrature = 'Gauss1' # 1 GP/tetra is enough solver = fem.Solver(pbl) solver.linear_solver = "pardiso"