Skip to content
Snippets Groups Projects

Update forall_inst

Merged Hans-Jörg requested to merge devel/new-forall_inst into master
All threads resolved!
1 file
+ 12
5
Compare changes
  • Side-by-side
  • Inline
+ 12
5
@@ -670,15 +670,22 @@ $k$. & $\Gamma$ & \ctxsep & $\forall x_1, \dots, x_n.\varphi ≈ \psi$ & \curru
\begin{AletheX}
$i$. & \ctxsep &
$\neg (\forall x_1, \dots, x_n. P) \lor P[x_1\mapsto t_1]\dots[x_n\mapsto t_n]$
& \currule\, [$(x_{k_1}, t_{k_1})$, $\dots$, $(x_{k_n}, t_{k_n})$] \\
& \currule\, [$t_1$, $\dots$, $t_n$] \\
\end{AletheX}
\noindent
where $k_1, \dots, k_n$ is a permutation of $1, \dots, n$ and $x_{k_i}$ and
$t_{k_i}$ have the same sort. The arguments $(x_{k_i}, t_{k_i})$ are printed as
\inlineAlethe{(:= xki tki)}.
where $x_i$ and $t_i$ have the same sort.
\end{RuleDescription}
\begin{RuleExample}
An application of the \proofRule{forall_inst} rule.
\begin{AletheVerb}
(step t16 (cl (or (not (forall ((x S) (y T)) (P y x )))
(P b (f a))
:rule forall_inst :args ((f a) b)
\end{AletheVerb}
\end{RuleExample}
\begin{RuleDescription}{refl}
\begin{AletheXS}
@@ -1763,7 +1770,7 @@ $j$. & \ctxsep & $ \neg (\psi ≈ \varphi)$ & (\currule\; $i$) \\
\noindent
If $\varphi \neq \psi$ then the conclusion \emph{must not} be $\neg (\varphi\psi)$.
See \ruleref{symm} for an explanation of this rule.
See \proofRule{symm} for an explanation of this rule.
\end{RuleDescription}
Loading