Skip to content
Snippets Groups Projects

Add la_mult_pos and la_mult_neg rules

Merged Lachnitt requested to merge Add-la_mult-rules into master
+ 69
0
@@ -51,6 +51,8 @@ to quickly find the definition of rules.
\ruleref{la_disequality} & $t_1 ≈ t_2 \lor \neg (t_1 \leq t_2) \lor \neg (t_2 \leq t_1)$ \\
\ruleref{la_totality} & $t_1 \leq t_2 \lor t_2 \leq t_1$ \\
\ruleref{la_tautology} & A trivial linear tautology. \\
\ruleref{la_mult_pos} & Multiplication with a positive factor. \\
\ruleref{la_mult_neg} & Multiplication with a negative factor.\\
\ruleref{forall_inst} & Quantifier instantiation. \\
\ruleref{refl} & Reflexivity after applying the context. \\
\ruleref{eq_reflexive} & $t ≈ t$ without context. \\
@@ -111,6 +113,8 @@ to quickly find the definition of rules.
\ruleref{la_disequality} & $t_1 ≈ t_2 \lor \neg (t_1 \leq t_2) \lor \neg (t_2 \leq t_1)$ \\
\ruleref{la_totality} & $t_1 \leq t_2 \lor t_2 \leq t_1$ \\
\ruleref{la_tautology} & A trivial linear tautology. \\
\ruleref{la_mult_pos} & Multiplication with a positive factor. \\
\ruleref{la_mult_neg} & Multiplication with a negative factor.\\
\ruleref{la_rw_eq} & $(t ≈ u)(t \leq u \land u \leq t)$ \\
\ruleref{div_simplify} & Simplification of division. \\
\ruleref{prod_simplify} & Simplification of products. \\
@@ -542,6 +546,71 @@ The inequalities $s_1 \bowtie d$ are the result of applying normalization
as for the rule \proofRule{la_generic}.
\end{RuleDescription}
\begin{RuleDescription}{la_mult_pos}
Either of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\
\noindent Or of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
\end{RuleDescription}
\begin{RuleDescription}{la_mult_neg}
Either of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \land t_2 \bowtie t_3) \rightarrow t_1 * t_2 \bowtie_{inv} t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$ and $\bowtie_{inv}$ being defined according to the following table.
\begin{center}
\begin{tabular}{|c | c|}
\hline
$\bowtie$ & $\bowtie_{inv}$ is defined as: \\
\hline
$ < $ & $ > $ \\
$ \le $ & $ \ge $ \\
$$ & $$ \\
$ > $ & $ < $ \\
$ \ge $ & $ \le $ \\
\hline
\end{tabular}
\end{center}
\noindent Or of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
.
\end{RuleDescription}
\begin{RuleDescription}{la_totality}
\begin{AletheX}
$i$. & \ctxsep & $t_1 \leq t_2 \lor t_2 \leq t_1$ & (\currule) \\
\end{AletheX}
\end{RuleDescription}
\begin{RuleDescription}{bind}
The \currule{} rule is used to rename bound variables.
Loading