Skip to content
Snippets Groups Projects

Make the description of the comp_simplify rule clearer

Merged Hans-Jörg requested to merge add/or_intro into master
1 file
+ 62
59
Compare changes
  • Side-by-side
  • Inline
+ 62
59
@@ -573,20 +573,20 @@ as for the rule \proofRule{la_generic}.
Either of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie t_1 * t_3$
& (\currule) \\
\end{AletheX}
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\
\noindent Or of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
$i$. & \ctxsep &
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
\end{RuleDescription}
@@ -595,35 +595,35 @@ with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\
Either of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \land t_2 \bowtie t_3) \rightarrow t_1 * t_2 \bowtie_{inv} t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$ and $\bowtie_{inv}$ being defined according to the following table.
\begin{center}
\begin{tabular}{|c | c|}
\hline
$\bowtie$ & $\bowtie_{inv}$ is defined as: \\
\hline
$ < $ & $ > $ \\
$ \le $ & $ \ge $ \\
$$ & $$ \\
$ > $ & $ < $ \\
$ \ge $ & $ \le $ \\
\hline
\end{tabular}
\end{center}
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \land t_2 \bowtie t_3) \rightarrow t_1 * t_2 \bowtie_{inv} t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$ and $\bowtie_{inv}$ being defined according to the following table.
\begin{center}
\begin{tabular}{|c | c|}
\hline
$\bowtie$ & $\bowtie_{inv}$ is defined as: \\
\hline
$ < $ & $ > $ \\
$ \le $ & $ \ge $ \\
$$ & $$ \\
$ > $ & $ < $ \\
$ \ge $ & $ \le $ \\
\hline
\end{tabular}
\end{center}
\noindent Or of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
\end{RuleDescription}
\begin{RuleDescription}{bind}
@@ -1115,7 +1115,7 @@ $i$. & \ctxsep & $\Gamma$ &
\begin{RuleDescription}{and_simplify}
This rule simplifies an $\land$ term by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $\varphi_1\land \cdots\land\varphi_n ≈ \psi$ & \currule \\
@@ -1144,7 +1144,7 @@ The possible transformations are:
\begin{RuleDescription}{or_simplify}
This rule simplifies an $\lor$ term by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $(\varphi_1\lor \cdots\lor\varphi_n)\psi$ & \currule \\
@@ -1173,7 +1173,7 @@ The possible transformations are:
\begin{RuleDescription}{not_simplify}
This rule simplifies an $\neg$ term by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $\neg\varphi\psi$ & \currule \\
@@ -1190,7 +1190,7 @@ The possible transformations are:
\begin{RuleDescription}{implies_simplify}
This rule simplifies an $\rightarrow$ term by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $\varphi_1\rightarrow \varphi_2\psi$ & \currule \\
@@ -1213,7 +1213,7 @@ The possible transformations are:
\begin{RuleDescription}{equiv_simplify}
This rule simplifies a formula with the head symbol $\,: \lsymb{Bool}\,\lsymb{Bool}\,\lsymb{Bool}$
by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $(\varphi_1\varphi_2)\psi$ & \currule \\
@@ -1235,7 +1235,7 @@ The possible transformations are:
\begin{RuleDescription}{bool_simplify}
This rule simplifies a boolean term by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $\varphi\psi$ & \currule \\
@@ -1379,7 +1379,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x
\begin{RuleDescription}{eq_simplify}
This rule simplifies an $$ term by applying equivalence-preserving
transformations as long as possible. Hence, the general form is
transformations until a fixed point is reached. Hence, the general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $(t_1≈ t_2)\varphi$ & \currule \\
@@ -1413,7 +1413,7 @@ The possible transformations are:
\begin{RuleDescription}{prod_simplify}
This rule simplifies a product by applying equivalence-preserving
transformations as long as possible. The general form is
transformations until a fixed point is reached. The general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $t_1\times\cdots\times t_n ≈ u$ & \currule \\
@@ -1470,7 +1470,7 @@ The possible transformations are:
\begin{RuleDescription}{sum_simplify}
This rule simplifies a sum by applying equivalence-preserving
transformations as long as possible. The general form is
transformations until a fixed point is reached. The general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $t_1+\cdots+t_n ≈ u$ & \currule \\
@@ -1494,27 +1494,30 @@ The possible transformations are:
\begin{RuleDescription}{comp_simplify}
This rule simplifies a comparison by applying equivalence-preserving
transformations as long as possible. The general form is
transformations until a fixed point is reached. The general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $t_1 \bowtie t_n\psi$ & \currule \\
$i$. & \ctxsep & $\Gamma$ & $t_1 \bowtie t_2\psi$ & \currule \\
\end{AletheXS}
where $\bowtie$ is as for the proof rule \proofRule{la_generic}, but never
$$.
where $\bowtie \in \{<, >, \leq, \geq\}$.
The possible transformations are:
The following transformation rules are used to simplify $t_1 \bowtie t_2$:
\begin{itemize}
\item $t_1 < t_2\varphi$ where $t_1$ and
$t_2$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is
strictly greater than $t_2$ and $\bot$ otherwise.
\item $t < t ⇒ \bot$
\item $t_1 \leq t_2\varphi$ where $t_1$ and
$t_2$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is
greater than $t_2$ or equal and $\bot$ otherwise.
\item $t \leq t ⇒ \top$
\item $t_1 \geq t_2 ⇒ t_2 \leq t_1$
\item $t_1 < t_2\neg (t_2 \leq t_1)$
\item $t_1 > t_2\neg (t_1 \leq t_2)$
\item $s_1 < s_2\top$ if $s_1, s_2$ are numerical constants and
$s_1$ is strictly less than $s_2$
\item $s_1 < s_2\bot$ if $s_1, s_2$ are numerical constants and
$s_1$ is greater or equal than $s_2$
\item $s_1 \leq s_2\top$ if $s_1, s_2$ are numerical constants and
$s_1$ is less or equal than $s_2$
\item $s_1 \leq s_2\bot$ if $s_1, s_2$ are numerical constants and
$s_1$ is strictly greater than $s_2$
\item $s < s ⇒ \bot$
\item $s \leq s ⇒ \top$
\item $s_1 \geq s_2 ⇒ s_2 \leq s_1$
\item $s_1 < s_2\neg (s_2 \leq s_1)$
\item $s_1 > s_2\neg (s_1 \leq s_2)$
\end{itemize}
\end{RuleDescription}
Loading