Skip to content
Snippets Groups Projects

Suggestion to make comp_simplify rule easier to understand

Closed Lachnitt requested to merge comp_simplify into master
1 file
+ 11
11
Compare changes
  • Side-by-side
  • Inline
+ 11
11
@@ -1494,17 +1494,17 @@ $≈$.
The possible transformations are:
\begin{itemize}
\item $t_1 < t_2\varphi$ where $t_1$ and
$t_2$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is
strictly greater than $t_2$ and $\bot$ otherwise.
\item $t < t ⇒ \bot$
\item $t_1 \leq t_2\varphi$ where $t_1$ and
$t_2$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is
greater than $t_2$ or equal and $\bot$ otherwise.
\item $t \leq t ⇒ \top$
\item $t_1 \geq t_2 ⇒ t_2 \leq t_1$
\item $t_1 < t_2\neg (t_2 \leq t_1)$
\item $t_1 > t_2\neg (t_1 \leq t_2)$
\item $t_i < t_{i+1}\varphi$ where $t_i$ and
$t_{i+1}$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is
strictly greater than $t_{i+1}$ and $\bot$ otherwise.
\item $t_i < t_i\bot$
\item $t_i \leq t_{i+1}\varphi$ where $t_i$ and
$t_{i+1}$ are numerical constants and $\varphi$ is $\top$ if $t_i$ is
greater than $t_{i+1}$ or equal and $\bot$ otherwise.
\item $t_i \leq t_i\top$
\item $t_i \geq t_{i+1} ⇒ t_{i+1} \leq t_i$
\item $t_i < t_{i+1}\neg (t_{i+1} \leq t_i)$
\item $t_i > t_{i+1}\neg (t_i \leq t_{i+1})$
\end{itemize}
\end{RuleDescription}
Loading