The variables $y_1, \dots, y_n$ are neither free in $(\lsymb{let}\,x_1= t_1,\,\dots,\, x_n = t_n\,\lsymb{in}\, u)$ nor, for each $y_i$ different from $x_i$, occur in $\Gamma$.
The variables $y_1, \dots, y_n$ are neither free in
$(\lsymb{let}\,x_1= t_1,\,\dots,\, x_n = t_n\,\lsymb{in}\, u)$ nor, for each
$y_i$ different from $x_i$, occur in $\Gamma$.
The premise $i_1, \dots, i_n$ must be in the same subproof as
the \currule{} step. If for $t_i≈ s_i$ the $t_i$ and $s_i$
...
...
@@ -1586,7 +1588,7 @@ by Carcara's elaborator. It elaborates an implicit application of