Skip to content
Snippets Groups Projects
Commit eef3b61a authored by Lachnitt's avatar Lachnitt
Browse files

Fix typos

parent 628646ec
No related branches found
No related tags found
1 merge request!16Fix typos
Pipeline #50297 passed
......@@ -1385,7 +1385,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x
\end{AletheXS}
where $m \leq n$ and $Q\in\{\forall, \exists\}$. Furthermore, $k_1, \dots, k_m$ is
a monotonic map to $1, \dots, n$ and if $x\in \{x_j\; |\; j \in \{1, \dots,
n\} \land j\in\not \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$.
n\} \land j\notin \{k_1, \dots, k_m\}\}$ then $x$ is not free in $P$.
\end{RuleDescription}
\begin{RuleDescription}{eq_simplify}
......@@ -1410,7 +1410,7 @@ This rule simplifies a division by applying equivalence-preserving
transformations. The general form is
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\, t_2) t_3$ & \currule \\
$i$. & \ctxsep & $\Gamma$ & $(t_1\, /\, t_2) t_3$ & \currule \\
\end{AletheXS}
The possible transformations are:
\begin{itemize}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment