Skip to content
Snippets Groups Projects
Commit df8503ac authored by Hans-Jörg's avatar Hans-Jörg
Browse files

Add index to and_pos, or_neg, and, not_or

parent f359b2bc
Branches devel/rules-index-arg
No related tags found
1 merge request!9Add index to four rules
Pipeline #38219 passed
......@@ -22,7 +22,11 @@ Breaking changes:
be \texttt{(x S) (:= (y S) x)}.
\item The arguments for \proofRule{forall_inst} have been changed to
no longer take the shape of bindings using \texttt{(:= x c)}.
Instead, the list of instatiation terms must follow the variable order and cover all the respective bound variables.
Instead, the list of instatiation terms must follow the variable
order and cover all the respective bound variables.
\item The rules \proofRule{and_pos}, \proofRule{or_neg}, \proofRule{and},
\proofRule{not_or} now have one argument that indicates which subterm
they use.
\end{itemize}
\noindent
......
......@@ -810,7 +810,7 @@ done during clausification.
\begin{RuleDescription}{and}
\begin{AletheX}
$i$. & \ctxsep & $\varphi_1 \land \cdots \land \varphi_n$ & ($\dots$) \\
$j$. & \ctxsep & $\varphi_k$ & (\currule\;$i$) \\
$j$. & \ctxsep & $\varphi_k$ & (\currule\;$i$)\, k\\
\end{AletheX}
and $1 \leq k \leq n$.
\end{RuleDescription}
......@@ -818,7 +818,7 @@ and $1 \leq k \leq n$.
\begin{RuleDescription}{not_or}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \lor \cdots \lor \varphi_n)$ & ($\dots$) \\
$j$. & \ctxsep & $\neg \varphi_k$ & (\currule\;$i$) \\
$j$. & \ctxsep & $\neg \varphi_k$ & (\currule\;$i$)\, k\\
\end{AletheX}
and $1 \leq k \leq n$.
\end{RuleDescription}
......@@ -931,7 +931,8 @@ $j$. & \ctxsep & $\neg\varphi_1, \neg\varphi_2$ & (\currule\;$i$) \\
\begin{RuleDescription}{and_pos}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \land \cdots \land \varphi_n) , \varphi_k$ & \currule \\
$i$. & \ctxsep & $\neg (\varphi_1 \land \cdots \land \varphi_n) , \varphi_k$ &
\currule\, k\\
\end{AletheX}
with $1 \leq k \leq n$.
\end{RuleDescription}
......@@ -950,7 +951,8 @@ $i$. & \ctxsep & $\neg (\varphi_1 \lor \cdots \lor \varphi_n) , \varphi_1 , \dot
\begin{RuleDescription}{or_neg}
\begin{AletheX}
$i$. & \ctxsep & $(\varphi_1 \lor \cdots \lor \varphi_n), \neg \varphi_k$ & \currule \\
$i$. & \ctxsep & $(\varphi_1 \lor \cdots \lor \varphi_n), \neg \varphi_k$ &
\currule\, k\\
\end{AletheX}
with $1 \leq k \leq n$.
\end{RuleDescription}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment