Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Alethe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
veriT
Alethe
Commits
daa39428
Commit
daa39428
authored
3 years ago
by
Hans-Jörg
Browse files
Options
Downloads
Patches
Plain Diff
Expend definition of substitution
parent
71d96b89
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#3690
passed
3 years ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
spec/doc.tex
+19
-2
19 additions, 2 deletions
spec/doc.tex
with
19 additions
and
2 deletions
spec/doc.tex
+
19
−
2
View file @
daa39428
...
...
@@ -576,8 +576,25 @@ lemma \(((2 + 2) \simeq 5) \Rightarrow 4 \simeq 5\).
A specialty of the veriT proof
format is the step context. The context is a possible empty list
$
[
c
_
1
,
\dots
, c
_
l
]
$
, where
$
c
_
i
$
is either a variable or a variable-term tuple
denoted
$
x
_
i
\mapsto
t
_
i
$
. Throughout this document
$
\Gamma
$
denotes
an arbitrary context. The context denotes a substitution.
\todo
{
Extend
}
denoted
$
x
_
i
\mapsto
t
_
i
$
. In the first case, we say that
$
c
_
i
$
\emph
{
fixes
}
its
variable. Throughout this document
$
\Gamma
$
denotes
an arbitrary context. Alethe contexts are a general mechanism to write
substitutions and to change them by attaching new elements to the list.
Hence, every context
$
\Gamma
$
induces a substitution
\(
\operatorname
{
subst
}
(
\Gamma
)
\)
. If
$
\Gamma
$
is the empty list,
\(
\operatorname
{
subst
}
(
\Gamma
)
\)
is the empty substitution, i.e, the
identity function. When
$
\Gamma
$
ends in a mapping, the substitution is extended
with this mapping:
\(
\operatorname
{
subst
}
([
c
_
1
,
\dots
, c
_{
n
-
1
}
, x
_
n
\mapsto
t
_
n
])
=
\operatorname
{
subst
}
([
c
_
1
,
\dots
, c
_{
n
-
1
}
])
\circ
[
t
_
n
/
x
_
n
]
\)
.
Finally,
\(
\operatorname
{
subst
}
([
c
_
1
,
\dots
, c
_{
n
-
1
}
, x
_
n
])
\)
is
\(
\operatorname
{
subst
}
([
c
_
1
,
\dots
, c
_{
n
-
1
}
])
\)
, but
$
x
_
n
$
maps to
$
x
_
n
$
.
The last case fixes
$
x
_
n
$
and allows the context to shadow a previously defined
substitution for
$
x
_
n
$
. The following example illustrates this idea:
\begin{align*}
\operatorname
{
subst
}
([x
\mapsto
7, x
\mapsto
g(x)])
&
= [g(7)/x]
\\
\operatorname
{
subst
}
([x
\mapsto
7, x, x
\mapsto
g(x)])
&
= [g(x)/x]
\\
\end{align*}
\paragraph
{
Skolemization and Other Preprocessing Steps.
}
One typical example for a rule with context is the
\proofRule
{
sko
\_
ex
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment