Skip to content
Snippets Groups Projects
Commit c9505bb8 authored by Lachnitt's avatar Lachnitt
Browse files

Merge branch 'add/shuffle' into 'master'

Add shuffle rule

See merge request !17
parents fc20cd40 4b8bf6b6
No related branches found
No related tags found
1 merge request!17Add shuffle rule
Pipeline #50386 passed
......@@ -18,6 +18,8 @@ Proof rules:
\item Addition of the \proofRule{bind_let} rule. This rule can be used to
preprocess \inlineAlethe{let} expressions similar to the \proofRule{bind}
rule used with ordinary quantifiers.
\item Additon of the \proofRule{shuffle} to permute the arguments of a
commutative operator.
\end{itemize}
\noindent
......
......@@ -256,12 +256,13 @@ simplifications.}
\ruleref{la_mult_neg} & Multiplication with a negative factor.\\
\ruleref{symm} & Symmetry of equality. \\
\ruleref{not_symm} & Symmetry of not-equal.\\
\ruleref{reordering} & Reording of the literals in a clause.\\
\ruleref{reordering} & Permutation of the literals in a clause.\\
\ruleref{shuffle} & Permutation of the arguments of a commutative operator.\\
\end{xltabular}
\begin{xltabular}{\linewidth}{l X}
\caption{Rules used by the Carcara elaborator.}
\label{rule-tab:cvc5}\\
\label{rule-tab:carcara}\\
Rule & Description \\
\hline
\ruleref{weakening} & Weakening of a clause. \\
......@@ -486,7 +487,7 @@ A simple \proofRule{la_generic} step in the logic \textsf{LRA} might look like t
:rule la_generic :args (1.0 -1.0))
\end{AletheVerb}
To verify this we have to check the insatisfiability of $(f\,a) > (f\,b) \land
To verify this we have to check the unsatisfiability of $(f\,a) > (f\,b) \land
(f\,a)(f\,b)$ (step 2). After step~3 we get $(f\,a) - (f\,b) > 0 \land
(f\,a) - (f\,b)0$. Since we don't have an integer sort in this logic step~4 does
not apply. Finally, after step~5 the conjunction is $(f\,a) - (f\,b) > 0 \land
......@@ -865,6 +866,26 @@ are the same. That is, the conclusion of the rule is a reordering of the
literals in the premise.
\end{RuleDescription}
\begin{RuleDescription}{shuffle}
\begin{AletheXS}
$i$. & \ctxsep & $\Gamma$ &
$\circ\ t_1 \dots t_n ≈ \circ\ u_1 \dots u_n $ & \currule \\
\end{AletheXS}
where $\circ$ is a commutative operator, and
the multisets $\{t_1, \cdots, t_n\}$ and $\{u_1, \cdots, u_n\}$
are the same.
In the logics currently supported
by Alethe $\circ \in\{+, *, \land, \lor\}$.
\ruleparagraph{Remark.} To permute the literals in a clause the
\proofRule{reordering} rule can be used.
\end{RuleDescription}
\begin{RuleDescription}{not_and}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \land \dots \land \varphi_n)$ & ($\dots$) \\
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment