Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Alethe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
veriT
Alethe
Commits
c9505bb8
Commit
c9505bb8
authored
3 months ago
by
Lachnitt
Browse files
Options
Downloads
Plain Diff
Merge branch 'add/shuffle' into 'master'
Add shuffle rule See merge request
!17
parents
fc20cd40
4b8bf6b6
No related branches found
Branches containing commit
No related tags found
1 merge request
!17
Add shuffle rule
Pipeline
#50386
passed
3 months ago
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
spec/changelog.tex
+2
-0
2 additions, 0 deletions
spec/changelog.tex
spec/rule_list.tex
+24
-3
24 additions, 3 deletions
spec/rule_list.tex
with
26 additions
and
3 deletions
spec/changelog.tex
+
2
−
0
View file @
c9505bb8
...
...
@@ -18,6 +18,8 @@ Proof rules:
\item
Addition of the
\proofRule
{
bind
_
let
}
rule. This rule can be used to
preprocess
\inlineAlethe
{
let
}
expressions similar to the
\proofRule
{
bind
}
rule used with ordinary quantifiers.
\item
Additon of the
\proofRule
{
shuffle
}
to permute the arguments of a
commutative operator.
\end{itemize}
\noindent
...
...
This diff is collapsed.
Click to expand it.
spec/rule_list.tex
+
24
−
3
View file @
c9505bb8
...
...
@@ -256,12 +256,13 @@ simplifications.}
\ruleref
{
la
_
mult
_
neg
}
&
Multiplication with a negative factor.
\\
\ruleref
{
symm
}
&
Symmetry of equality.
\\
\ruleref
{
not
_
symm
}
&
Symmetry of not-equal.
\\
\ruleref
{
reordering
}
&
Reording of the literals in a clause.
\\
\ruleref
{
reordering
}
&
Permutation of the literals in a clause.
\\
\ruleref
{
shuffle
}
&
Permutation of the arguments of a commutative operator.
\\
\end{xltabular}
\begin{xltabular}
{
\linewidth
}{
l X
}
\caption
{
Rules used by the Carcara elaborator.
}
\label
{
rule-tab:c
vc5
}
\\
\label
{
rule-tab:c
arcara
}
\\
Rule
&
Description
\\
\hline
\ruleref
{
weakening
}
&
Weakening of a clause.
\\
...
...
@@ -486,7 +487,7 @@ A simple \proofRule{la_generic} step in the logic \textsf{LRA} might look like t
:rule la
_
generic :args (1.0 -1.0))
\end{AletheVerb}
To verify this we have to check the
i
nsatisfiability of
$
(
f
\,
a
)
>
(
f
\,
b
)
\land
To verify this we have to check the
u
nsatisfiability of
$
(
f
\,
a
)
>
(
f
\,
b
)
\land
(
f
\,
a
)
≈
(
f
\,
b
)
$
(step 2). After step~3 we get
$
(
f
\,
a
)
-
(
f
\,
b
)
>
0
\land
(
f
\,
a
)
-
(
f
\,
b
)
≈
0
$
. Since we don't have an integer sort in this logic step~4 does
not apply. Finally, after step~5 the conjunction is
$
(
f
\,
a
)
-
(
f
\,
b
)
>
0
\land
...
...
@@ -865,6 +866,26 @@ are the same. That is, the conclusion of the rule is a reordering of the
literals in the premise.
\end{RuleDescription}
\begin{RuleDescription}
{
shuffle
}
\begin{AletheXS}
$
i
$
.
&
\ctxsep
&
$
\Gamma
$
&
$
\circ\
t
_
1
\dots
t
_
n ≈
\circ\
u
_
1
\dots
u
_
n
$
&
\currule
\\
\end{AletheXS}
where
$
\circ
$
is a commutative operator, and
the multisets
$
\{
t
_
1
,
\cdots
, t
_
n
\}
$
and
$
\{
u
_
1
,
\cdots
, u
_
n
\}
$
are the same.
In the logics currently supported
by Alethe
$
\circ
\in\{
+
,
*
,
\land
,
\lor\}
$
.
\ruleparagraph
{
Remark.
}
To permute the literals in a clause the
\proofRule
{
reordering
}
rule can be used.
\end{RuleDescription}
\begin{RuleDescription}
{
not
_
and
}
\begin{AletheX}
$
i
$
.
&
\ctxsep
&
$
\neg
(
\varphi
_
1
\land
\dots
\land
\varphi
_
n
)
$
&
(
$
\dots
$
)
\\
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment