Skip to content
Snippets Groups Projects
Commit b7c1ff6b authored by Lachnitt's avatar Lachnitt
Browse files

Add draft for la mult rules

parent 17f0b594
No related branches found
No related tags found
1 merge request!6Add la_mult_pos and la_mult_neg rules
Pipeline #24014 passed
......@@ -51,6 +51,8 @@ to quickly find the definition of rules.
\ruleref{la_disequality} & $t_1 ≈ t_2 \lor \neg (t_1 \leq t_2) \lor \neg (t_2 \leq t_1)$ \\
\ruleref{la_totality} & $t_1 \leq t_2 \lor t_2 \leq t_1$ \\
\ruleref{la_tautology} & A trivial linear tautology. \\
\ruleref{la_mult_pos} & Multiplication with a positive factor. \\
\ruleref{la_mult_neg} & Multiplication with a negative factor.\\
\ruleref{forall_inst} & Quantifier instantiation. \\
\ruleref{refl} & Reflexivity after applying the context. \\
\ruleref{eq_reflexive} & $t ≈ t$ without context. \\
......@@ -111,6 +113,8 @@ to quickly find the definition of rules.
\ruleref{la_disequality} & $t_1 ≈ t_2 \lor \neg (t_1 \leq t_2) \lor \neg (t_2 \leq t_1)$ \\
\ruleref{la_totality} & $t_1 \leq t_2 \lor t_2 \leq t_1$ \\
\ruleref{la_tautology} & A trivial linear tautology. \\
\ruleref{la_mult_pos} & Multiplication with a positive factor. \\
\ruleref{la_mult_neg} & Multiplication with a negative factor.\\
\ruleref{la_rw_eq} & $(t ≈ u)(t \leq u \land u \leq t)$ \\
\ruleref{div_simplify} & Simplification of division. \\
\ruleref{prod_simplify} & Simplification of products. \\
......@@ -542,6 +546,71 @@ The inequalities $s_1 \bowtie d$ are the result of applying normalization
as for the rule \proofRule{la_generic}.
\end{RuleDescription}
\begin{RuleDescription}{la_mult_pos}
Either of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\
\noindent Or of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \wedge \neg (t_2 ≈ t_3)) \to \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
\end{RuleDescription}
\begin{RuleDescription}{la_mult_neg}
Either of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie_{inv} t_1 * t_3$
& (\currule) \\
\end{AletheX}
with $\bowtie \in \{<,>, \le,\ge, ≈\}$ and $\bowtie_{inv}$ being defined according to the following table.
\begin{center}
\begin{tabular}{|c | c|}
\hline
$\bowtie$ & $\bowtie_{inv}$ is defined as: \\
\hline
$ < $ & $ > $ \\
$ \le $ & $ \ge $ \\
$$ & $$ \\
$ > $ & $ < $ \\
$ \ge $ & $ \le $ \\
\hline
\end{tabular}
\end{center}
\noindent Or of the form:
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 < 0 \wedge \neg (t_2 ≈ t_3)) \to \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
.
\end{RuleDescription}
\begin{RuleDescription}{la_totality}
\begin{AletheX}
$i$. & \ctxsep & $t_1 \leq t_2 \lor t_2 \leq t_1$ & (\currule) \\
\end{AletheX}
\end{RuleDescription}
\begin{RuleDescription}{bind}
The \currule{} rule is used to rename bound variables.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment