Skip to content
Snippets Groups Projects
Commit a1d13dd2 authored by Haniel Barbosa's avatar Haniel Barbosa
Browse files

Positional arguments start at 0.

parent 4fd59f84
No related branches found
No related tags found
1 merge request!15Positional arguments start at 0.
Pipeline #48620 passed
This commit is part of merge request !15. Comments created here will be created in the context of that merge request.
......@@ -586,7 +586,7 @@ with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\
\begin{AletheX}
$i$. & \ctxsep &
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
$(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$
& (\currule) \\
\end{AletheX}
......@@ -811,18 +811,18 @@ done during clausification.
\begin{RuleDescription}{and}
\begin{AletheX}
$i$. & \ctxsep & $\varphi_1 \land \cdots \land \varphi_n$ & ($\dots$) \\
$i$. & \ctxsep & $\varphi_0 \land \cdots \land \varphi_n$ & ($\dots$) \\
$j$. & \ctxsep & $\varphi_k$ & (\currule\;$i$)\, k\\
\end{AletheX}
and $1 \leq k \leq n$.
and $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{not_or}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \lor \cdots \lor \varphi_n)$ & ($\dots$) \\
$i$. & \ctxsep & $\neg (\varphi_0 \lor \cdots \lor \varphi_n)$ & ($\dots$) \\
$j$. & \ctxsep & $\neg \varphi_k$ & (\currule\;$i$)\, k\\
\end{AletheX}
and $1 \leq k \leq n$.
and $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{or}
......@@ -952,10 +952,10 @@ $j$. & \ctxsep & $\neg\varphi_1, \neg\varphi_2$ & (\currule\;$i$) \\
\begin{RuleDescription}{and_pos}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \land \cdots \land \varphi_n) , \varphi_k$ &
$i$. & \ctxsep & $\neg (\varphi_0 \land \cdots \land \varphi_n) , \varphi_k$ &
\currule\, k\\
\end{AletheX}
with $1 \leq k \leq n$.
with $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{and_neg}
......@@ -972,10 +972,10 @@ $i$. & \ctxsep & $\neg (\varphi_1 \lor \cdots \lor \varphi_n) , \varphi_1 , \dot
\begin{RuleDescription}{or_neg}
\begin{AletheX}
$i$. & \ctxsep & $(\varphi_1 \lor \cdots \lor \varphi_n), \neg \varphi_k$ &
$i$. & \ctxsep & $(\varphi_0 \lor \cdots \lor \varphi_n), \neg \varphi_k$ &
\currule\, k\\
\end{AletheX}
with $1 \leq k \leq n$.
with $0 \leq k \leq n$.
\end{RuleDescription}
\begin{RuleDescription}{xor_pos1}
......@@ -1557,8 +1557,8 @@ $k$. & $\Gamma$ & \ctxsep &
\begin{RuleDescription}{bind_let}
This rule corresponds to the \proofRule{bind} rule for \inlineAlethe{let}.
It allows the renaming of the variables bound by the \inlineAlethe{let} step,
the rewriting of the substituted terms, and the rewriting of the body of the
\inlineAlethe{let}, resulting in a new \inlineAlethe{let} term.
the rewriting of the substituted terms, and the rewriting of the body of the
\inlineAlethe{let}, resulting in a new \inlineAlethe{let} term.
It has the form
\begin{AletheXS}
......@@ -1597,7 +1597,7 @@ symmetry of equality.
(let ((p (= 1 0))) (= false p))))
:rule bind_let :premises (t1))
\end{AletheVerb}
\end{RuleExample}
\begin{RuleDescription}{distinct_elim}
......@@ -1760,7 +1760,7 @@ above when $x$ and $y$ are ``$\lsymb{bbT}$'' applications. So given that
y&=&(\lsymb{bbT}\ y_0\ \ldots\ y_i\ \ldots \ y_j\ \ldots\ y_n)\\
\end{array}
\]
then ``$\mathrm{res}$'' can be defined, for $i \geq 0$, as
then ``$\mathrm{res}$'' can be defined, for $i \geq 0$, as
\[
\begin{array}{lcl}
\mathrm{res}_0&=&\neg x_0 \wedge y_0\\
......@@ -1807,7 +1807,7 @@ $i$. & \ctxsep & $(\mathrm{bvadd}\ x\ y) ≈ A_2$ & (\currule) \\
\end{AletheX}
with $A_2 := (\lsymb{bbT}\ (x_0 \,\lsymb{xor}\, y_0)\,\lsymb{xor}\,\mathrm{carry}_0\ \ldots\ (x_{n-1}
\,\lsymb{xor}\, y_{n-1})\,\lsymb{xor}\,\mathrm{carry}_{n-1})$ and
``$\mathrm{carry}$'' being defined, for $i \geq 0$, as
``$\mathrm{carry}$'' being defined, for $i \geq 0$, as
\[
\begin{array}{lcl}
\mathrm{carry}_0&=&\bot\\
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment