Skip to content
Snippets Groups Projects
Commit 5d615575 authored by Hans-Jörg's avatar Hans-Jörg
Browse files

Add reordering rule

This addresses
#44
parent 3b9e0708
Branches devel/rules-index-arg
No related tags found
No related merge requests found
Pipeline #44291 passed
......@@ -13,6 +13,8 @@ Proof rules:
and tedious use of \proofRule{subproof} for each direction of the equivalence.
\item Addition of the rule \proofRule{weakening} to express weakening of a
clause.
\item Addition of the \proofRule{reordering} rule to represent reordering of
the literals in a clause.
\end{itemize}
\noindent
......
......@@ -256,6 +256,7 @@ simplifications.}
\ruleref{la_mult_neg} & Multiplication with a negative factor.\\
\ruleref{symm} & Symmetry of equality. \\
\ruleref{not_symm} & Symmetry of not-equal.\\
\ruleref{reordering} & Reording of the literals in a clause.\\
\end{xltabular}
\begin{xltabular}{\linewidth}{l X}
......@@ -854,6 +855,16 @@ $j$. & \ctxsep & $\varphi_1, \cdots, \varphi_n, \psi_1, \dots, \psi_m$ & (\curru
where $m \geq 1$.
\end{RuleDescription}
\begin{RuleDescription}{reordering}
\begin{AletheX}
$i$. & \ctxsep & $\varphi_1, \cdots, \varphi_n$ & ($\dots$) \\
$j$. & \ctxsep & $\psi_1, \cdots, \psi_n$ & (\currule\;$i$) \\
\end{AletheX}
where the multisets $\{\varphi_1, \cdots, \varphi_n\}$ and $\{\psi_1, \cdots, \psi_n\}$
are the same. That is, the conclusion of the rule is a reordering of the
literals in the premise.
\end{RuleDescription}
\begin{RuleDescription}{not_and}
\begin{AletheX}
$i$. & \ctxsep & $\neg (\varphi_1 \land \dots \land \varphi_n)$ & ($\dots$) \\
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment