Skip to content
Snippets Groups Projects
Commit 3aa3581b authored by Hans-Jörg's avatar Hans-Jörg
Browse files

Remove remaining usages of old forall_inst argument style

parent cc46e2aa
Branches adri
No related tags found
No related merge requests found
Pipeline #38139 passed
......@@ -30,6 +30,8 @@ Clarifications and corrected errors:
quantifiers.
\item Fix mistake in proof grammar. It now uses the \texttt{context\_annotation}
non-terminal in the rule for the \texttt{anchor} command.
\item Simplify the grammar for the arguments of proof steps to always be a list
of terms.
\item Fix the example of \proofRule{onepoint}.
\item Add the missing context to the conclusion of \proofRule{bind},
\proofRule{sko_ex}, \proofRule{sko_forall}, \proofRule{onepoint}.
......
......@@ -409,7 +409,7 @@ understand the proof step by step.
\begin{Alethe}
1.& \ctxsep & $\forall x.\, (P\,x)$ & $ \proofRule{assume}$ \\
2.& \ctxsep & $\neg (P\,a) $ & $ \proofRule{assume}$ \\
3.& \ctxsep & $\neg (\forall x.\, (P\,x)) \lor (P\,a)$ & $\proofRule{forall_inst}\,[(x, a)]$ \\
3.& \ctxsep & $\neg (\forall x.\, (P\,x)) \lor (P\,a)$ & $\proofRule{forall_inst}\,[a]$ \\
4.& \ctxsep & $\neg (\forall x.\, (P\,x)), (P\,a)$ & $ (\proofRule{or}\:3)$ \\
5.& \ctxsep & $\bot $ & $ (\proofRule{resolution}\: 1, 2, 4)$ \\
\end{Alethe}
......@@ -467,8 +467,7 @@ empty list of arguments $[a_1, \dots, a_m]$. The list of premises
only references earlier steps, such that the proof forms a directed
acyclic graph. If the list of premises is empty, we will drop the
parentheses around the proof rule.
The arguments $a_i$ are either terms or tuples $(x_i,
t_i)$ where $x_i$ is a variable and $t_i$ is a term. The interpretation
The arguments $a_i$ are terms. The interpretation
of the arguments is rule specific. The list $c_1, \dots, c_j$ is
the \index{context}{\em context} of the step. Contexts are discussed below.
Every proof ends with a step that has the empty clause as the conclusion
......@@ -676,7 +675,7 @@ An Alethe proof is a list of commands.
:rule th_resolution :premises (t11 t12 t13))
(step t15 (cl (or (not (forall ((vr5 U)) (p vr5)))
(p a)))
:rule forall_inst :args ((:= vr5 a)))
:rule forall_inst :args (a))
(step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a))
:rule or :premises (t15))
(step t17 (cl) :rule resolution :premises (t16 h1 t14))
......@@ -706,8 +705,7 @@ An Alethe proof is a list of commands.
& & \textAlethe{(choice (}\, \grNT{sorted\_var}\,\textAlethe{)}\; \grNT{proof\_term}\,\textAlethe{)} \\
\grNT{premises\_annotation} &\grRule & \textAlethe{:premises (}\; \grNT{symbol}^{+}\textAlethe{)} \\
\grNT{args\_annotation} &\grRule & \textAlethe{:args}\,\textAlethe{(}\,\grNT{step\_arg}^{+}\,\textAlethe{)} \\
\grNT{step\_arg} &\grRule & \grNT{symbol}\;\grOr\;
\textAlethe{(}\; \grNT{symbol}\; \grNT{proof\_term}\,\textAlethe{)} \\
\grNT{step\_arg} &\grRule & \grNT{proof\_term} \\
\grNT{context\_annotation} &\grRule & \textAlethe{:args}\,\textAlethe{(}\,\grNT{context\_assignment}^{+}\,\textAlethe{)} \\
\grNT{context\_assignment} &\grRule & \grNT{sorted\_var} \\
& \grOr & \textAlethe{(:=}\, \grNT{sorted\_var}\;\grNT{proof\_term}\,\textAlethe{)} \\
......@@ -1458,6 +1456,7 @@ subproofs with contexts. This is slightly complicated by the
is the calculated context of the steps in the subproof after
$C_{\mathit{start}}$.
\newpage
The step $C_{\mathit{end}}$ is a step
\begin{AletheS}
......@@ -1611,9 +1610,9 @@ ground term $t_i$ is a new term with the same sort as $x_i$.\footnote{
For historical reasons, \proofRule{forall_inst} has a unit clause with a disjunction
as its conclusion and not the clause $(\neg \forall \bar x_n.\,\varphi), \varphi[\bar t_n]$.
}
The arguments of a \proofRule{forall_inst} step are the list $(x_1 , t_1),
\dots, (x_n, t_n)$. While this information can be recovered from the term,
%
The arguments of a \proofRule{forall_inst} step are the list $t_1,
\dots, t_n$. While this information can be recovered from the term,
providing it explicitly helps reconstruction because the implicit reordering of
equalities obscures which terms have been used as instances.
Existential quantifiers are handled by skolemization.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment