Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Alethe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
veriT
Alethe
Commits
3aa3581b
Commit
3aa3581b
authored
9 months ago
by
Hans-Jörg
Browse files
Options
Downloads
Patches
Plain Diff
Remove remaining usages of old forall_inst argument style
parent
cc46e2aa
Branches
adri
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#38139
passed
8 months ago
Changes
2
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
spec/changelog.tex
+2
-0
2 additions, 0 deletions
spec/changelog.tex
spec/doc.tex
+8
-9
8 additions, 9 deletions
spec/doc.tex
with
10 additions
and
9 deletions
spec/changelog.tex
+
2
−
0
View file @
3aa3581b
...
...
@@ -30,6 +30,8 @@ Clarifications and corrected errors:
quantifiers.
\item
Fix mistake in proof grammar. It now uses the
\texttt
{
context
\_
annotation
}
non-terminal in the rule for the
\texttt
{
anchor
}
command.
\item
Simplify the grammar for the arguments of proof steps to always be a list
of terms.
\item
Fix the example of
\proofRule
{
onepoint
}
.
\item
Add the missing context to the conclusion of
\proofRule
{
bind
}
,
\proofRule
{
sko
_
ex
}
,
\proofRule
{
sko
_
forall
}
,
\proofRule
{
onepoint
}
.
...
...
This diff is collapsed.
Click to expand it.
spec/doc.tex
+
8
−
9
View file @
3aa3581b
...
...
@@ -409,7 +409,7 @@ understand the proof step by step.
\begin{Alethe}
1.
&
\ctxsep
&
$
\forall
x.
\,
(
P
\,
x
)
$
&
$
\proofRule
{
assume
}$
\\
2.
&
\ctxsep
&
$
\neg
(
P
\,
a
)
$
&
$
\proofRule
{
assume
}$
\\
3.
&
\ctxsep
&
$
\neg
(
\forall
x.
\,
(
P
\,
x
))
\lor
(
P
\,
a
)
$
&
$
\proofRule
{
forall
_
inst
}
\,
[
(
x, a
)
]
$
\\
3.
&
\ctxsep
&
$
\neg
(
\forall
x.
\,
(
P
\,
x
))
\lor
(
P
\,
a
)
$
&
$
\proofRule
{
forall
_
inst
}
\,
[
a
]
$
\\
4.
&
\ctxsep
&
$
\neg
(
\forall
x.
\,
(
P
\,
x
))
,
(
P
\,
a
)
$
&
$
(
\proofRule
{
or
}
\:
3
)
$
\\
5.
&
\ctxsep
&
$
\bot
$
&
$
(
\proofRule
{
resolution
}
\:
1
,
2
,
4
)
$
\\
\end{Alethe}
...
...
@@ -467,8 +467,7 @@ empty list of arguments $[a_1, \dots, a_m]$. The list of premises
only references earlier steps, such that the proof forms a directed
acyclic graph. If the list of premises is empty, we will drop the
parentheses around the proof rule.
The arguments
$
a
_
i
$
are either terms or tuples
$
(
x
_
i,
t
_
i
)
$
where
$
x
_
i
$
is a variable and
$
t
_
i
$
is a term. The interpretation
The arguments
$
a
_
i
$
are terms. The interpretation
of the arguments is rule specific. The list
$
c
_
1
,
\dots
, c
_
j
$
is
the
\index
{
context
}{
\em
context
}
of the step. Contexts are discussed below.
Every proof ends with a step that has the empty clause as the conclusion
...
...
@@ -676,7 +675,7 @@ An Alethe proof is a list of commands.
:rule th
_
resolution :premises (t11 t12 t13))
(step t15 (cl (or (not (forall ((vr5 U)) (p vr5)))
(p a)))
:rule forall
_
inst :args (
(:= vr5 a)
))
:rule forall
_
inst :args (
a
))
(step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a))
:rule or :premises (t15))
(step t17 (cl) :rule resolution :premises (t16 h1 t14))
...
...
@@ -706,8 +705,7 @@ An Alethe proof is a list of commands.
&
&
\textAlethe
{
(
choice
(
}
\,
\grNT
{
sorted
\_
var
}
\,\textAlethe
{
)
}
\;
\grNT
{
proof
\_
term
}
\,\textAlethe
{
)
}
\\
\grNT
{
premises
\_
annotation
}
&
\grRule
&
\textAlethe
{
:premises
(
}
\;
\grNT
{
symbol
}^{
+
}
\textAlethe
{
)
}
\\
\grNT
{
args
\_
annotation
}
&
\grRule
&
\textAlethe
{
:args
}
\,\textAlethe
{
(
}
\,\grNT
{
step
\_
arg
}^{
+
}
\,\textAlethe
{
)
}
\\
\grNT
{
step
\_
arg
}
&
\grRule
&
\grNT
{
symbol
}
\;\grOr\;
\textAlethe
{
(
}
\;
\grNT
{
symbol
}
\;
\grNT
{
proof
\_
term
}
\,\textAlethe
{
)
}
\\
\grNT
{
step
\_
arg
}
&
\grRule
&
\grNT
{
proof
\_
term
}
\\
\grNT
{
context
\_
annotation
}
&
\grRule
&
\textAlethe
{
:args
}
\,\textAlethe
{
(
}
\,\grNT
{
context
\_
assignment
}^{
+
}
\,\textAlethe
{
)
}
\\
\grNT
{
context
\_
assignment
}
&
\grRule
&
\grNT
{
sorted
\_
var
}
\\
&
\grOr
&
\textAlethe
{
(
:
=
}
\,
\grNT
{
sorted
\_
var
}
\;\grNT
{
proof
\_
term
}
\,\textAlethe
{
)
}
\\
...
...
@@ -1458,6 +1456,7 @@ subproofs with contexts. This is slightly complicated by the
is the calculated context of the steps in the subproof after
$
C
_{
\mathit
{
start
}}$
.
\newpage
The step
$
C
_{
\mathit
{
end
}}$
is a step
\begin{AletheS}
...
...
@@ -1611,9 +1610,9 @@ ground term $t_i$ is a new term with the same sort as $x_i$.\footnote{
For historical reasons,
\proofRule
{
forall
_
inst
}
has a unit clause with a disjunction
as its conclusion and not the clause
$
(
\neg
\forall
\bar
x
_
n.
\,\varphi
)
,
\varphi
[
\bar
t
_
n
]
$
.
}
The arguments of a
\proofRule
{
forall
_
inst
}
step are the list
$
(
x
_
1
,
t
_
1
)
,
\dots
,
(
x
_
n,
t
_
n
)
$
. While this information can be recovered from the term,
%
The arguments of a
\proofRule
{
forall
_
inst
}
step are the list
$
t
_
1
,
\dots
, t
_
n
$
. While this information can be recovered from the term,
providing it explicitly helps reconstruction because the implicit reordering of
equalities obscures which terms have been used as instances.
Existential quantifiers are handled by skolemization.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment