Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Alethe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
veriT
Alethe
Commits
1f367fc9
Commit
1f367fc9
authored
10 months ago
by
Hans-Jörg
Browse files
Options
Downloads
Patches
Plain Diff
Add symm and not_symm rules.
parent
f8dcee14
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#24177
passed
10 months ago
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
spec/changelog.tex
+1
-0
1 addition, 0 deletions
spec/changelog.tex
spec/rule_list.tex
+40
-0
40 additions, 0 deletions
spec/rule_list.tex
with
41 additions
and
0 deletions
spec/changelog.tex
+
1
−
0
View file @
1f367fc9
...
...
@@ -6,6 +6,7 @@ Proof rules:
\item
Bitblasting rules:
\proofRule
{
bitblast
_
extract
}
,
\proofRule
{
bitblast
_
add
}
,
\proofRule
{
bitblast
_
ult
}
.
\item
Addition of rules
\proofRule
{
la
_
mult
_
pos
}
and
\proofRule
{
la
_
mult
_
neg
}
to describe multiplication with a positive or negative factor.
\item
Addition of rules
\proofRule
{
symm
}
and
\proofRule
{
not
_
symm
}
to express symmetry of equality explicitly.
\end{itemize}
\noindent
...
...
This diff is collapsed.
Click to expand it.
spec/rule_list.tex
+
40
−
0
View file @
1f367fc9
...
...
@@ -253,6 +253,8 @@ simplifications.}
\ruleref
{
bitblast
_
add
}
&
Bitblasting of
$
\lsymb
{
add
}$
.
\\
\ruleref
{
la
_
mult
_
pos
}
&
Multiplication with a positive factor.
\\
\ruleref
{
la
_
mult
_
neg
}
&
Multiplication with a negative factor.
\\
\ruleref
{
symm
}
&
Symmetry of equality.
\\
\ruleref
{
not
_
symm
}
&
Symmetry of not-equal.
\\
\end{xltabular}
\subsection
{
Rule List
}
\label
{
sec:alethe:rules-list
}
...
...
@@ -1727,6 +1729,44 @@ with $A_2 := (\lsymb{bbT}\ (x_0 \,\lsymb{xor}\, y_0)\,\lsymb{xor}\,\mathrm{carry
\end{RuleDescription}
\begin{RuleDescription}
{
symm
}
\begin{AletheX}
$
i
$
.
&
\ctxsep
&
$
\varphi
≈
\psi
$
&
(
$
\dots
$
)
\\
$
j
$
.
&
\ctxsep
&
$
\psi
≈
\varphi
$
&
(
\currule\;
$
i
$
)
\\
\end{AletheX}
\noindent
If
$
\varphi
\neq
\psi
$
then the conclusion
\emph
{
must not
}
be
$
\varphi
≈
\psi
$
.
Note that since Alethe allows the implicit reordering of equalities, this
rule is technically superfluous. However, the rule is useful to indicate
an explicit usage of the symmetry of equality to aid proof reconstruction.
\begin{RuleExample}
The side condition ensures that the following example is not a valid application
of the rule. Without this condition, this derivation could be obtained by
applying symmetry of equality implicitly to the conclusion.
\begin{AletheX}
$
10
$
.
&
\ctxsep
&
$
P
(
a
)
≈ Q
(
b
)
$
&
(
$
\dots
$
)
\\
$
11
$
.
&
\ctxsep
&
$
P
(
a
)
≈ Q
(
b
)
$
&
(
\currule\;
$
10
$
)
\\
\end{AletheX}
\end{RuleExample}
\end{RuleDescription}
\begin{RuleDescription}
{
not
_
symm
}
\begin{AletheX}
$
i
$
.
&
\ctxsep
&
$
\neg
(
\varphi
≈
\psi
)
$
&
(
$
\dots
$
)
\\
$
j
$
.
&
\ctxsep
&
$
\neg
(
\psi
≈
\varphi
)
$
&
(
\currule\;
$
i
$
)
\\
\end{AletheX}
\noindent
If
$
\varphi
\neq
\psi
$
then the conclusion
\emph
{
must not
}
be
$
\neg
(
\varphi
≈
\psi
)
$
.
See
\ruleref
{
symm
}
for an explanation of this rule.
\end{RuleDescription}
\clearpage
\subsection
{
Index of Rules
}
\label
{
sec:alethe:rules-index
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment