Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
resite_ip
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
smart_grids
public
resite_ip
Commits
bbc50c03
Commit
bbc50c03
authored
4 years ago
by
David Radu
Browse files
Options
Downloads
Patches
Plain Diff
initial commit; to be tested
parent
cce30960
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/main.py
+59
-26
59 additions, 26 deletions
src/main.py
with
59 additions
and
26 deletions
src/main.py
+
59
−
26
View file @
bbc50c03
import
pickle
import
yaml
from
os.path
import
join
from
numpy
import
array
from
os.path
import
join
,
isfile
from
numpy
import
array
,
argsort
from
pyomo.opt
import
SolverFactory
import
time
...
...
@@ -12,8 +12,6 @@ from models import build_ip_model
if
__name__
==
'
__main__
'
:
custom_log
(
'
Starting data pre-processing
'
)
model_parameters
=
read_inputs
(
'
../config_model.yml
'
)
siting_parameters
=
model_parameters
[
'
siting_params
'
]
tech_parameters
=
read_inputs
(
'
../config_techs.yml
'
)
...
...
@@ -21,21 +19,37 @@ if __name__ == '__main__':
data_path
=
model_parameters
[
'
data_path
'
]
spatial_resolution
=
model_parameters
[
'
spatial_resolution
'
]
time_horizon
=
model_parameters
[
'
time_slice
'
]
deployment_dict
=
get_deployment_vector
(
model_parameters
[
'
regions
'
],
model_parameters
[
'
technologies
'
],
model_parameters
[
'
deployments
'
])
database
=
read_database
(
data_path
,
spatial_resolution
)
site_coordinates
=
return_filtered_coordinates
(
database
,
model_parameters
,
tech_parameters
)
if
isfile
(
join
(
data_path
,
'
input_data/criticality_matrix.p
'
)):
custom_log
(
'
WARNING! Instance data read from files. Make sure the files are the ones that you need.
'
)
criticality_data
=
pickle
.
load
(
open
(
join
(
data_path
,
'
input_data/criticality_matrix.p
'
,
'
rb
'
)))
site_coordinates
=
pickle
.
load
(
open
(
join
(
data_path
,
'
input_data/site_coordinates.p
'
,
'
rb
'
)))
capacity_factors_data
=
pickle
.
load
(
open
(
join
(
data_path
,
'
input_data/capacity_factors_data.p
'
,
'
rb
'
)))
site_positions
=
pickle
.
load
(
open
(
join
(
data_path
,
'
input_data/site_positions.p
'
,
'
rb
'
)))
else
:
custom_log
(
'
Files not available. Starting data pre-processing.
'
)
truncated_data
=
selected_data
(
database
,
site_coordinates
,
time_horizon
)
capacity_factors_data
=
return_output
(
truncated_data
,
data_path
)
time_windows_data
=
resource_quality_mapping
(
capacity_factors_data
,
siting_parameters
)
database
=
read_database
(
data_path
,
spatial_resolution
)
site_coordinates
=
return_filtered_coordinates
(
database
,
model_parameters
,
tech_parameters
)
truncated_data
=
selected_data
(
database
,
site_coordinates
,
time_horizon
)
capacity_factors_data
=
return_output
(
truncated_data
,
data_path
)
time_windows_data
=
resource_quality_mapping
(
capacity_factors_data
,
siting_parameters
)
criticality_data
=
xarray_to_ndarray
(
critical_window_mapping
(
time_windows_data
,
model_parameters
))
site_positions
=
sites_position_mapping
(
time_windows_data
)
criticality_data
=
xarray_to_ndarray
(
critical_window_mapping
(
time_windows_data
,
model_parameters
))
site_positions
=
sites_position_mapping
(
time_windows_data
)
pickle
.
dump
(
criticality_data
,
open
(
join
(
data_path
,
'
input_data/criticality_matrix.p
'
,
'
wb
'
)),
protocol
=
4
)
pickle
.
dump
(
site_coordinates
,
open
(
join
(
data_path
,
'
input_data/site_coordinates.p
'
,
'
wb
'
)),
protocol
=
4
)
pickle
.
dump
(
capacity_factors_data
,
open
(
join
(
data_path
,
'
input_data/capacity_factors_data.p
'
,
'
wb
'
)),
protocol
=
4
)
pickle
.
dump
(
site_positions
,
open
(
join
(
data_path
,
'
input_data/site_positions.p
'
,
'
wb
'
)),
protocol
=
4
)
custom_log
(
'
Data read. Building model.
'
)
custom_log
(
'
Data read. Building model.
'
)
if
siting_parameters
[
'
solution_method
'
][
'
BB
'
][
'
set
'
]:
...
...
@@ -93,24 +107,25 @@ if __name__ == '__main__':
params
[
'
initial_temp
'
],
params
[
'
no_runs
'
],
params
[
'
algorithm
'
])
seed
=
1
# for folder naming purposes only
for
i
in
range
(
jl_selected
.
shape
[
0
]):
output_folder
=
init_folder
(
model_parameters
,
suffix
=
'
_c
'
+
str
(
c
)
+
'
_MIRSA
'
)
output_folder
=
init_folder
(
model_parameters
,
c
,
suffix
=
'
_MIRSA_seed
'
+
str
(
seed
))
seed
+=
1
with
open
(
join
(
output_folder
,
'
config_model.yaml
'
),
'
w
'
)
as
outfile
:
yaml
.
dump
(
model_parameters
,
outfile
,
default_flow_style
=
False
,
sort_keys
=
False
)
with
open
(
join
(
output_folder
,
'
config_techs.yaml
'
),
'
w
'
)
as
outfile
:
yaml
.
dump
(
tech_parameters
,
outfile
,
default_flow_style
=
False
,
sort_keys
=
False
)
with
open
(
join
(
output_folder
,
'
config_model.yaml
'
),
'
w
'
)
as
outfile
:
yaml
.
dump
(
model_parameters
,
outfile
,
default_flow_style
=
False
,
sort_keys
=
False
)
with
open
(
join
(
output_folder
,
'
config_techs.yaml
'
),
'
w
'
)
as
outfile
:
yaml
.
dump
(
tech_parameters
,
outfile
,
default_flow_style
=
False
,
sort_keys
=
False
)
pickle
.
dump
(
jl_selected
,
open
(
join
(
output_folder
,
'
solution_matrix.p
'
),
'
wb
'
))
pickle
.
dump
(
jl_objective
,
open
(
join
(
output_folder
,
'
objective_vector.p
'
),
'
wb
'
))
pickle
.
dump
(
jl_traj
,
open
(
join
(
output_folder
,
'
trajectory_matrix.p
'
),
'
wb
'
))
jl_selected_seed
=
jl_selected
[
i
,
:]
jl_objective_seed
=
jl_objective
[
i
]
med_run
=
argsort
(
jl_objective
)[
c
//
2
]
jl_selected_seed
=
jl_selected
[
med_run
,
:]
jl_objective_seed
=
jl_objective
[
med_run
]
jl_locations
=
retrieve_location_dict
(
jl_selected_seed
,
model_parameters
,
site_positions
)
retrieve_site_data
(
model_parameters
,
deployment_dict
,
site_coordinates
,
capacity_factors_data
,
criticality_data
,
site_positions
,
c
,
jl_locations
,
jl_objective_seed
,
output_folder
,
benchmarks
=
True
)
jl_locations
=
retrieve_location_dict
(
jl_selected_seed
,
model_parameters
,
site_positions
)
retrieve_site_data
(
model_parameters
,
deployment_dict
,
site_coordinates
,
capacity_factors_data
,
criticality_data
,
site_positions
,
c
,
jl_locations
,
jl_objective_seed
,
output_folder
,
benchmarks
=
True
)
elif
siting_parameters
[
'
solution_method
'
][
'
RAND
'
][
'
set
'
]:
...
...
@@ -140,6 +155,15 @@ if __name__ == '__main__':
pickle
.
dump
(
jl_selected
,
open
(
join
(
output_folder
,
'
solution_matrix.p
'
),
'
wb
'
))
pickle
.
dump
(
jl_objective
,
open
(
join
(
output_folder
,
'
objective_vector.p
'
),
'
wb
'
))
med_run
=
argsort
(
jl_objective
)[
c
//
2
]
jl_selected_seed
=
jl_selected
[
med_run
,
:]
jl_objective_seed
=
jl_objective
[
med_run
]
jl_locations
=
retrieve_location_dict
(
jl_selected_seed
,
model_parameters
,
site_positions
)
retrieve_site_data
(
model_parameters
,
deployment_dict
,
site_coordinates
,
capacity_factors_data
,
criticality_data
,
site_positions
,
c
,
jl_locations
,
jl_objective_seed
,
output_folder
,
benchmarks
=
True
)
elif
siting_parameters
[
'
solution_method
'
][
'
GRED
'
][
'
set
'
]:
custom_log
(
'
GRED chosen to solve the IP. Opening a Julia instance. Resulting coordinates are not obtained!
'
)
...
...
@@ -165,5 +189,14 @@ if __name__ == '__main__':
pickle
.
dump
(
jl_selected
,
open
(
join
(
output_folder
,
'
solution_matrix.p
'
),
'
wb
'
))
pickle
.
dump
(
jl_objective
,
open
(
join
(
output_folder
,
'
objective_vector.p
'
),
'
wb
'
))
med_run
=
argsort
(
jl_objective
)[
c
//
2
]
jl_selected_seed
=
jl_selected
[
med_run
,
:]
jl_objective_seed
=
jl_objective
[
med_run
]
jl_locations
=
retrieve_location_dict
(
jl_selected_seed
,
model_parameters
,
site_positions
)
retrieve_site_data
(
model_parameters
,
deployment_dict
,
site_coordinates
,
capacity_factors_data
,
criticality_data
,
site_positions
,
c
,
jl_locations
,
jl_objective_seed
,
output_folder
,
benchmarks
=
True
)
else
:
raise
ValueError
(
'
This solution method is not available.
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment