Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
gboml
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
smart_grids
public
gboml
Commits
125e84b8
Commit
125e84b8
authored
1 year ago
by
Victor Dachet
Browse files
Options
Downloads
Patches
Plain Diff
Guidelines
parent
678fa208
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/towards_co2_valorization/README.md
+40
-0
40 additions, 0 deletions
examples/towards_co2_valorization/README.md
examples/towards_co2_valorization/environment.yml
+151
-0
151 additions, 0 deletions
examples/towards_co2_valorization/environment.yml
with
191 additions
and
0 deletions
examples/towards_co2_valorization/README.md
0 → 100644
+
40
−
0
View file @
125e84b8
# Towards CO2 Valorization in a multi remote renewable energy hub framework
Repository for our scientific paper results: https://arxiv.org/abs/2303.09454 .
# Installation
First you need to setup your conda environment.
```
conda env create -f environment.yml```
You can also use any management of environment you want the installed libraries are standard:
matplotlib, numpy, pandas.
The only special library is gboml. You can find the documentation and installation guide here:
https://gboml.readthedocs.io/en/latest/
# How to use the code
In order to reproduce the results obtained in the article run:
```
python3 main.py -sc num_scenario -y 2
```
There are 5 scenarios from 1 to 5.
# Cite
Please, if you use this code in your work consider citing https://arxiv.org/abs/2303.09454 :
@misc{dachet2023co2,
title={Towards CO2 valorization in a multi remote renewable energy hub framework},
author={Victor Dachet and Amina Benzerga and Raphaël Fonteneau and Damien Ernst},
year={2023},
eprint={2303.09454},
archivePrefix={arXiv},
primaryClass={math.OC}
}
This diff is collapsed.
Click to expand it.
examples/towards_co2_valorization/environment.yml
0 → 100644
+
151
−
0
View file @
125e84b8
name
:
investment
channels
:
-
anaconda
-
conda-forge
-
defaults
dependencies
:
-
blas=2.116=openblas
-
blas-devel=3.9.0=16_osxarm64_openblas
-
bottleneck=1.3.4=py310h96f19d2_0
-
brotli=1.0.9=h1a8c8d9_8
-
brotli-bin=1.0.9=h1a8c8d9_8
-
bzip2=1.0.8=h620ffc9_4
-
ca-certificates=2022.12.7=h4653dfc_0
-
certifi=2022.12.7=pyhd8ed1ab_0
-
cycler=0.11.0=pyhd8ed1ab_0
-
fftw=3.3.10=nompi_h3046061_106
-
fonttools=4.25.0=pyhd3eb1b0_0
-
freetype=2.12.1=h1192e45_0
-
giflib=5.2.1=h27ca646_2
-
jpeg=9e=he4db4b2_2
-
kiwisolver=1.4.2=py310hc377ac9_0
-
lcms2=2.14=h8193b64_0
-
lerc=3.0=hbdafb3b_0
-
libblas=3.9.0=16_osxarm64_openblas
-
libbrotlicommon=1.0.9=h1a8c8d9_8
-
libbrotlidec=1.0.9=h1a8c8d9_8
-
libbrotlienc=1.0.9=h1a8c8d9_8
-
libcblas=3.9.0=16_osxarm64_openblas
-
libcxx=14.0.6=h2692d47_0
-
libdeflate=1.8=h1a28f6b_5
-
libffi=3.4.2=hca03da5_5
-
libgfortran=5.0.0=11_3_0_hd922786_26
-
libgfortran5=11.3.0=hdaf2cc0_26
-
liblapack=3.9.0=16_osxarm64_openblas
-
liblapacke=3.9.0=16_osxarm64_openblas
-
libopenblas=0.3.21=openmp_hc731615_3
-
libpng=1.6.37=hb8d0fd4_0
-
libtiff=4.4.0=h2fd578a_2
-
libwebp=1.2.4=h328b37c_0
-
libwebp-base=1.2.4=h57fd34a_0
-
llvm-openmp=15.0.5=h7cfbb63_0
-
lz4-c=1.9.3=hbdafb3b_1
-
matplotlib=3.5.3=py310hca03da5_0
-
matplotlib-base=3.5.3=py310hc377ac9_0
-
munkres=1.1.4=pyh9f0ad1d_0
-
ncurses=6.3=h1a28f6b_3
-
numexpr=2.8.1=py310h5a06f4b_2
-
numpy-base=1.23.4=py310haf87e8b_0
-
openblas=0.3.21=openmp_hf78f355_3
-
openssl=1.1.1t=h03a7124_0
-
packaging=21.3=pyhd8ed1ab_0
-
pandas=1.4.2=py310hc377ac9_0
-
patsy=0.5.3=pyhd8ed1ab_0
-
pillow=9.2.0=py310h4d1bdd5_1
-
pip=22.2.2=py310hca03da5_0
-
pyparsing=3.0.9=pyhd8ed1ab_0
-
python=3.10.8=hbdb9e5c_0
-
python-dateutil=2.8.2=pyhd8ed1ab_0
-
readline=8.2=h1a28f6b_0
-
seaborn=0.12.2=hd8ed1ab_0
-
seaborn-base=0.12.2=pyhd8ed1ab_0
-
setuptools=65.5.0=py310hca03da5_0
-
six=1.16.0=pyh6c4a22f_0
-
sqlite=3.39.3=h1058600_0
-
statsmodels=0.13.5=py310hbda83bc_1
-
tk=8.6.12=hb8d0fd4_0
-
tornado=6.2=py310h1a28f6b_0
-
typing_extensions=4.4.0=pyha770c72_0
-
tzdata=2022f=h04d1e81_0
-
wheel=0.37.1=pyhd3eb1b0_0
-
xz=5.2.6=h1a28f6b_0
-
zlib=1.2.13=h5a0b063_0
-
zstd=1.5.2=h8574219_0
-
pip
:
-
anyio==3.6.2
-
appnope==0.1.3
-
argon2-cffi==21.3.0
-
argon2-cffi-bindings==21.2.0
-
asttokens==2.1.0
-
attrs==22.1.0
-
babel==2.11.0
-
backcall==0.2.0
-
beautifulsoup4==4.11.1
-
bleach==5.0.1
-
cffi==1.15.1
-
charset-normalizer==2.1.1
-
debugpy==1.6.3
-
decorator==5.1.1
-
defusedxml==0.7.1
-
entrypoints==0.4
-
executing==1.2.0
-
fastjsonschema==2.16.2
-
gboml==0.1.3
-
gurobipy==9.5.2
-
idna==3.4
-
ipykernel==6.17.1
-
ipython==8.6.0
-
ipython-genutils==0.2.0
-
jedi==0.18.2
-
jinja2==3.1.2
-
json5==0.9.10
-
jsonschema==4.17.0
-
jupyter-client==7.4.7
-
jupyter-core==5.0.0
-
jupyter-server==1.23.3
-
jupyterlab==3.5.0
-
jupyterlab-pygments==0.2.2
-
jupyterlab-server==2.16.3
-
markupsafe==2.1.1
-
matplotlib-inline==0.1.6
-
mistune==2.0.4
-
nbclassic==0.4.8
-
nbclient==0.7.0
-
nbconvert==7.2.5
-
nbformat==5.7.0
-
nest-asyncio==1.5.6
-
notebook==6.5.2
-
notebook-shim==0.2.2
-
numpy==1.23.3
-
pandocfilters==1.5.0
-
parso==0.8.3
-
pexpect==4.8.0
-
pickleshare==0.7.5
-
platformdirs==2.5.4
-
ply==3.11
-
prometheus-client==0.15.0
-
prompt-toolkit==3.0.33
-
psutil==5.9.4
-
ptyprocess==0.7.0
-
pure-eval==0.2.2
-
pycparser==2.21
-
pygments==2.13.0
-
pyhcl==0.4.4
-
pyrsistent==0.19.2
-
pytz==2022.6
-
pyzmq==24.0.1
-
requests==2.28.1
-
scipy==1.9.1
-
send2trash==1.8.0
-
sniffio==1.3.0
-
soupsieve==2.3.2.post1
-
stack-data==0.6.1
-
terminado==0.17.0
-
tinycss2==1.2.1
-
tomli==2.0.1
-
traitlets==5.5.0
-
urllib3==1.26.12
-
wcwidth==0.2.5
-
webencodings==0.5.1
-
websocket-client==1.4.2
prefix
:
/Users/victordachet/opt/miniconda3/envs/investment
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment