Skip to content
Snippets Groups Projects
Commit f40bdc48 authored by Noels Ludovic's avatar Noels Ludovic
Browse files

Update README.md

parent 675df952
No related branches found
No related tags found
No related merge requests found
......@@ -19,7 +19,7 @@ This repository contains:
## Dependencies and Prerequisites
[![python - >=3.11](https://img.shields.io/badge/python->=3.11-2ea44f?logo=python)](https://www.python.org/downloads/) [![pandas - >=1.5.3](https://img.shields.io/badge/pandas->=1.5.3-2ea44f?logo=pandas)](https://github.com/pandas-dev/pandas) [![matplotlib - >-3.5.2](https://img.shields.io/badge/matplotlib->--3.5.2-2ea44f)](https://matplotlib.org/)
[![python - >=3.11](https://img.shields.io/badge/python->=3.11-2ea44f?logo=python)](https://www.python.org/downloads/) [![pandas - >=1.5.3](https://img.shields.io/badge/pandas->=1.5.3-2ea44f?logo=pandas)](https://github.com/pandas-dev/pandas) [![PyTorch - >=2.10](https://img.shields.io/badge/PyTorch->=2.10-2ea44f?logo=pytorch)](https://pytorch.org/get-started/locally/#linux-pip) [![matplotlib - >-3.5.2](https://img.shields.io/badge/matplotlib->--3.5.2-2ea44f)](https://matplotlib.org/)
* Python, pandas, matplotlib, texttabble and latextable are pre requisites for visualizing and navigating the data.
......@@ -42,6 +42,11 @@ Instructions for Debian/Ubuntu based workstations are as follows.
``` bash
pip3 install matplotlib texttable latextable
```
### Pytorch (only for run with cm3Libraries)
``` bash
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
```
## Structure of Repository
......@@ -71,12 +76,27 @@ Instructions for Debian/Ubuntu based workstations are as follows.
* [plotRF.py](./generateRF/plotRF.py): file used to vizualize the distribution of the random variables.
* Reads the ```N``` random fields of type ```'RandField_X.csv'``` found in ```mechDir+'/randomFields/'```, where ```mechDir``` is the working directory. Examples of generated 2-dimension RFs can be found in [rnnRF/randomFields/](./rnnRF/randomFields/).
* Plot the distribution of the random variables.
* [vizualizeRF.py](./generateRF/vizualizeRF.py): file used to generate a gmsh compatible file to vizualize the random fields
* [vizualizeRF.py](./generateRF/vizualizeRF.py): file used to generate a gmsh (www.gmsh.info) compatible file to vizualize the random fields
* Reads the ```N``` random fields of type ```'RandField_And_GP_X.csv'``` found in ```mechDir+'/randomFields/'```, where ```mechDir``` is the working directory. Examples of generated 2-dimension RFs can be found in [rnnRF/randomFields/](./rnnRF/randomFields/).
* Uses the mesh structure of the considered application. The script tries to read stress file in ```mechDir+'/GPData'```, where ```mechDir``` is the working directory, describing the elements structure. One example of stress file can be found in [rnnRF/GPData/stress_step1.msh](./rnnRF/GPData/stress_step1.msh).
* The random field number ```X``` is saved in format compatible with Gmhs in the file ```mechDir+'/randomFields/RandField_X.msh'```, where ```mechDir``` is the working directory. One example of generated 2-dimension RF can be found in [rnnRF/randomFields/RandField_0.msh](./rnnRF/randomFields/RandField_0.msh).
* [utilRF.py](./generateRF/plotRF.py): set of functions used by the RF generator and vizualization files.
### rnnRF
* [rubics.geo](./rnnRF/rubics.geo): geometry file of a cube to be read by gmsh (www.gmsh.info).
* [rubics.msh](./rnnRF/rubics.msh): mesh file of a cube generated by gmsh (www.gmsh.info).
* [macro_cpp.py](./rnnRF/macro_cpp.py): multiscale lattice compression script to be run with cm3Libraries (http://www.ltas-cm3.ulg.ac.be/openSource.htm) and using a [MOAMMM stochastic neural network](https://gitlab.uliege.be/moammm/moammmPublic/syntheticdata/sveresponses) as surrogate of the cell response.
* [Bounds.dat](./rnnRF/Bounds.dat): Bounds of the neural network model.
* [model.dat](./rnnRF/model.pt): torch neural network model.
* [generateGPInfo.py](./rnnRF/generateGPInfo.py): generate the Gauss points coordinates and mesh structure to be used by the random field generator. It requires cm3Libraries (http://www.ltas-cm3.ulg.ac.be/openSource.htm).
* The script write the Gauss points coordinates in the directory ```'rnnRF/GPData'```. One example of points coordinates can be found in [rnnRF/GPData/coordinate_P_ZZ_OnPhysical_11.csv](./rnnRF/GPData/coordinate_P_ZZ_OnPhysical_11.csv) stored following 3 coordinates, point number and point volume (for a FE simulation).
* The script write the mesh structure in the directory ```'rnnRF/GPData'```. One example of stress file can be found in [rnnRF/GPData/stress_step1.msh](./rnnRF/GPData/stress_step1.msh).
* [runMCTest.py](./rnnRF/runMCTest.py): Monte Carlo simulations on a multiscale lattice compression using a [MOAMMM stochastic neural network](https://gitlab.uliege.be/moammm/moammmPublic/syntheticdata/sveresponses) as surrogate of the cell response. It requires cm3Libraries (http://www.ltas-cm3.ulg.ac.be/openSource.htm).
* The script uses the ```N``` random fields of type ```'RandField_And_GP_X.csv'``` found in ```rnnRF/randomFields/'```. Examples of 2-dimension RFs can be found in [rnnRF/randomFields/](./rnnRF/randomFields/).
* The script saves the simulations results in ```'rnnRF/results/RandField_And_GP_X.csv/'```
* [plotMC.py](./rnnRF/plotMC.py): vizualize the different force displacement curves of the MC simulations.
* The script reads the simulations results saved in ```'rnnRF/results/RandField_And_GP_X.csv/'```
### cellRF
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment