Skip to content
Snippets Groups Projects
Commit fd8cb9f5 authored by Delvigne Frank's avatar Delvigne Frank
Browse files

Upload New File

parent 87dd0c52
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 10 07:57:07 2023
@author: delvigne
"""
'''
Exercice 4.3 Extended version of ex 4.2
'''
import matplotlib.pyplot as plt
import numpy as np
import math
from math import pi
## Basic data
d = 0.1 #m
D = 3*d #m -> standard geometry
N = 1200/60 #s-1
rho = 1000 #Kg/m3
mu = 0.001 #Pa.s dynamic viscosity
sigma = mu/rho #m^2/s kinematic viscosity
N_p = 5.4 #Power number
N_qc = 1.5 #Circulation number
## Biological data
E_coli = 1 #micron
S_cer = 7
Pen = 75
Sf9 = 20
CHO = 30
Bio_lenght = [E_coli, S_cer, Pen, Sf9, CHO];
## Reynolds
Re = rho*N*((D/3)**2)/mu # if > 10^4 -> turbulent regime
## Power dissipated
V = pi*(D**3)/4 # Effective volume m3
P = N_p*rho*(N**3)*((D/3)**5) # One impeller
P_V = P/V # Volumetric power (W/m3)
P_rhoV = P/(rho*V) #Specific power (W/kg)
## Kolmogoroff scale
Kol_lambda = (P_rhoV/(sigma**3))**(-1/4) #in m -> *10^6 for microns
Bio_lenght = [E_coli, S_cer, Pen, Sf9, CHO, Kol_lambda*1e6];
## Comparative analysis -> bar graph
plt.figure(1)
plt.bar([1,2,3,4,5,6],Bio_lenght, width=0.8, bottom=None)
## Increased dissipated power close to the impeller
P_2 = 30*N_p*rho*(N**3)*((D/3)**5) # One impeller
P_V_2 = P_2/V # Volumetric power (W/m3)
P_rhoV_2 = P_2/(rho*V) #Specific power (W/kg)
Kol_lambda_2 = (P_rhoV_2/(sigma**3))**(-1/4) #in m -> *10^6 for microns
## Comparative analysis -> bar graph
Bio_lenght_2 = [E_coli, S_cer, Pen, Sf9, CHO, Kol_lambda_2*1e6];
plt.figure(2)
plt.bar([1,2,3,4,5,6], Bio_lenght_2, width=0.8, bottom=None)
## Circulation flow rate and time
Q_c = N_qc*N*((D/3)**3) #Circulation flow rate m3/s
t_c = V/Q_c #circulation time s
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment