Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Modelling physical and biological systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Mipi
Lectures
Modelling physical and biological systems
Commits
fd8cb9f5
Commit
fd8cb9f5
authored
2 years ago
by
Delvigne Frank
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
87dd0c52
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Ex_4_3.py
+75
-0
75 additions, 0 deletions
Ex_4_3.py
with
75 additions
and
0 deletions
Ex_4_3.py
0 → 100644
+
75
−
0
View file @
fd8cb9f5
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 10 07:57:07 2023
@author: delvigne
"""
'''
Exercice 4.3 Extended version of ex 4.2
'''
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
math
from
math
import
pi
## Basic data
d
=
0.1
#m
D
=
3
*
d
#m -> standard geometry
N
=
1200
/
60
#s-1
rho
=
1000
#Kg/m3
mu
=
0.001
#Pa.s dynamic viscosity
sigma
=
mu
/
rho
#m^2/s kinematic viscosity
N_p
=
5.4
#Power number
N_qc
=
1.5
#Circulation number
## Biological data
E_coli
=
1
#micron
S_cer
=
7
Pen
=
75
Sf9
=
20
CHO
=
30
Bio_lenght
=
[
E_coli
,
S_cer
,
Pen
,
Sf9
,
CHO
];
## Reynolds
Re
=
rho
*
N
*
((
D
/
3
)
**
2
)
/
mu
# if > 10^4 -> turbulent regime
## Power dissipated
V
=
pi
*
(
D
**
3
)
/
4
# Effective volume m3
P
=
N_p
*
rho
*
(
N
**
3
)
*
((
D
/
3
)
**
5
)
# One impeller
P_V
=
P
/
V
# Volumetric power (W/m3)
P_rhoV
=
P
/
(
rho
*
V
)
#Specific power (W/kg)
## Kolmogoroff scale
Kol_lambda
=
(
P_rhoV
/
(
sigma
**
3
))
**
(
-
1
/
4
)
#in m -> *10^6 for microns
Bio_lenght
=
[
E_coli
,
S_cer
,
Pen
,
Sf9
,
CHO
,
Kol_lambda
*
1e6
];
## Comparative analysis -> bar graph
plt
.
figure
(
1
)
plt
.
bar
([
1
,
2
,
3
,
4
,
5
,
6
],
Bio_lenght
,
width
=
0.8
,
bottom
=
None
)
## Increased dissipated power close to the impeller
P_2
=
30
*
N_p
*
rho
*
(
N
**
3
)
*
((
D
/
3
)
**
5
)
# One impeller
P_V_2
=
P_2
/
V
# Volumetric power (W/m3)
P_rhoV_2
=
P_2
/
(
rho
*
V
)
#Specific power (W/kg)
Kol_lambda_2
=
(
P_rhoV_2
/
(
sigma
**
3
))
**
(
-
1
/
4
)
#in m -> *10^6 for microns
## Comparative analysis -> bar graph
Bio_lenght_2
=
[
E_coli
,
S_cer
,
Pen
,
Sf9
,
CHO
,
Kol_lambda_2
*
1e6
];
plt
.
figure
(
2
)
plt
.
bar
([
1
,
2
,
3
,
4
,
5
,
6
],
Bio_lenght_2
,
width
=
0.8
,
bottom
=
None
)
## Circulation flow rate and time
Q_c
=
N_qc
*
N
*
((
D
/
3
)
**
3
)
#Circulation flow rate m3/s
t_c
=
V
/
Q_c
#circulation time s
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment