Transfinite Curve {7} = 2*nx+1 Using Progression 1;
Transfinite Curve {2, 4, 5} = ny+1 Using Progression 1;
Transfinite Surface {1};
Transfinite Curve {6} = 3*ny+1 Using Progression 1;
Transfinite Curve {8} = 5*ny+1 Using Progression 1;
//Transfinite Surface {2};
Recombine Surface {1}; // quads instead of triangles
//Recombine Surface {2};
Mesh.ElementOrder = 1;
Physical Curve("left_edge", 5) = {4};
Physical Surface("domain", 6) = {1};
Physical Curve("top_edge", 7) = {3};
Physical Curve("right_edge", 8) = {2};
Physical Point("fixed_node", 9) = {1};
Physical Surface("BEM_domain", 10) = {2};
// additional parameters given to the solver
SetNumber("Boundary Conditions/left_edge/ux", 0.); // HERE YOU DO NOT HAVE TO IMPOSE BOTH ux and uy simultaneously ! (permet aussi de simuler appuis à roulettes)