From f8a1cdc888af88989641385ef78d213c66bdc260 Mon Sep 17 00:00:00 2001 From: Hans-Joerg Schurr <commits@schurr.at> Date: Wed, 8 May 2024 11:03:38 -0500 Subject: [PATCH] Fix context description in subproof closing rules. Addresses https://gitlab.uliege.be/verit/alethe/-/issues/36 --- spec/changelog.tex | 2 ++ spec/rule_list.tex | 8 ++++---- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/spec/changelog.tex b/spec/changelog.tex index 0da3149..5b76a0a 100644 --- a/spec/changelog.tex +++ b/spec/changelog.tex @@ -24,6 +24,8 @@ Clarifications and corrected errors: \item Fix mistake in proof grammar. It now uses the \texttt{context\_annotation} non-terminal in the rule for the \texttt{anchor} command. \item Fix the example of \proofRule{onepoint}. + \item Add the missing context to the conclusion of \proofRule{bind}, + \proofRule{sko_ex}, \proofRule{sko_forall}, \proofRule{onepoint}. \end{itemize} \subsection*{0.3 --- \DTMdisplaydate{2023}{02}{10}{-1}} diff --git a/spec/rule_list.tex b/spec/rule_list.tex index 1266d48..528e776 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -550,7 +550,7 @@ as for the rule \proofRule{la_generic}. $j$. & \spctx{ $\Gamma, y_1,\dots, y_n, x_1 \mapsto y_1, \dots , x_n \mapsto y_n$} & \ctxsep & $\varphi ≈ \varphi'$ & ($\dots$) \\ \spsep -$k$. & & \ctxsep & +$k$. & $\Gamma$ & \ctxsep & $\forall x_1, \dots, x_n.\varphi ≈ \forall y_1, \dots, y_n. \varphi'$ & \currule{} \\ \end{AletheXS} @@ -567,7 +567,7 @@ $j$. & \spctx{$\Gamma, x_1 \mapsto \varepsilon_1, \dots , x_n \mapsto \varepsilon_n$} & \ctxsep & $\varphi ≈ \psi$ & ($\dots$) \\ \spsep -$k$. & & \ctxsep & $\exists x_1, \dots, x_n.\varphi ≈ \psi$ & \currule{} \\ +$k$. & $\Gamma$ & \ctxsep & $\exists x_1, \dots, x_n.\varphi ≈ \psi$ & \currule{} \\ \end{AletheXS} where $\varepsilon_i$ stands for $\varepsilon x_i. (\exists x_{i+1}, \dots, x_n. \varphi)$. @@ -582,7 +582,7 @@ $j$. & \spctx{$\Gamma, x_1 \mapsto (\varepsilon x_1.\neg\varphi), \dots, x_n \mapsto (\varepsilon x_n.\neg\varphi)$} & \ctxsep & $\varphi ≈ \psi$ & ($\dots$) \\ \spsep -$k$. & & \ctxsep & $\forall x_1, \dots, x_n.\varphi ≈ \psi$ & \currule{} \\ +$k$. & $\Gamma$ & \ctxsep & $\forall x_1, \dots, x_n.\varphi ≈ \psi$ & \currule{} \\ \end{AletheXS} \end{RuleDescription} @@ -1206,7 +1206,7 @@ variables that can only have one value. $j$. & \spctx{$\Gamma, x_{k_1},\dots, x_{k_m}, x_{j_1} \mapsto t_{j_1}, \dots , x_{j_o} \mapsto t_{j_o}$} & \ctxsep & $\varphi ≈ \varphi'$ & ($\dots$) \\ \spsep -$k$. & & \ctxsep & $Q x_1, \dots, x_n.\varphi ≈ Q x_{k_1}, \dots, x_{k_m}. \varphi'$ & \currule{} \\ +$k$. & $\Gamma$ & \ctxsep & $Q x_1, \dots, x_n.\varphi ≈ Q x_{k_1}, \dots, x_{k_m}. \varphi'$ & \currule{} \\ \end{AletheXS} where $Q\in\{\forall, \exists\}$, $n = m + o$, $k_1, \dots, k_m$ and $j_1, \dots, j_o$ are monotone -- GitLab