From f081142f871f0a05f62b5c28c9d8daef09d42a2c Mon Sep 17 00:00:00 2001 From: Hans-Joerg Schurr <commits@schurr.at> Date: Mon, 18 Mar 2024 19:47:17 -0500 Subject: [PATCH] Bitblasting: adapt notation --- spec/rule_list.tex | 92 +++++++++++++++++++++++++--------------------- 1 file changed, 50 insertions(+), 42 deletions(-) diff --git a/spec/rule_list.tex b/spec/rule_list.tex index d91a206..868f23f 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -1532,58 +1532,58 @@ form and the reordering of equalities. \begin{RuleDescription}{bitblast_extract} \begin{AletheX} -$i$. & \ctxsep & $((\_\ \mathrm{extract}\ j\ i)\ x) \simeq (\mathrm{bbterm}\ x[i]\ \ldots\ x[j])$ & (\currule) \\ +$i$. & \ctxsep & $((\lsymb{extract}\ j\ i)\ x) ≈ (\lsymb{bbT}\ \varphi_i\ \ldots\ \varphi_j)$ & (\currule) \\ \end{AletheX} -Each term $x[i]$ corresponds to whether the $i$-th bit of $x$ is true or not, which -will be represented via an application of the operator ``bit\_of'', i.e., -$((\_\ bit\_of\ i)\ x)$, which has a Boolean return type. -% -The ``bbterm'' operator takes $n$ Booleans and yields a bit-vector of size $n$ -where the least significant bit is 1 if the first argument 1 is true, 0 -otherwise, and so on. -% +\noindent +where the formulas $\varphi_k$ are $(\lsymb{bitOf}_k\ x)$ for $i \leq k \leq j$. + Alternatively, the rule may also be phrased as a ``short-circuiting'' of the -above when $x$ is a ``bbterm'' application: +above when $x$ is a $\lsymb{bbT}$ application: \medskip \begin{AletheX} -$i$. & \ctxsep & $((\_\ \mathrm{extract}\ j\ i)\ (\mathrm{bbterm}\ x_0\ \ldots\ -x_i\ \ldots \ x_j\ \ldots\ x_n)) \simeq (\mathrm{bbterm}\ x_i\ \ldots\ x_j)$ & (\currule) \\ +$i$. & \ctxsep & $((\lsymb{extract}\ j\ i)\ (\lsymb{bbT}\ x_0\ \ldots\ +x_i\ \ldots \ x_j\ \ldots\ x_n)) ≈ (\lsymb{bbT}\ x_i\ \ldots\ x_j)$ & (\currule) \\ \end{AletheX} +\noindent This alternative is based on the validity of the equality -$$(\mathrm{bbterm}\ x_0\ \ldots\ x_i\ \ldots \ x_j\ \ldots\ x_n)[i]\simeq x_i$$ -for any bit-vector $x$ of size $n+1$, where $0\leq i\leq n$. +\[ +\lsymb{bitOf}_k\ (\lsymb{bbT}\ x_0\ \ldots\ x_i\ \ldots \ x_j\ \ldots\ x_n) ≈ x_k +\] +for any bit-vector $x$ of size $n+1$, where $0\leq k\leq n$. \end{RuleDescription} \begin{RuleDescription}{bitblast_ult} \begin{AletheX} -$i$. & \ctxsep & $(\mathrm{bvult}\ x\ y) \simeq res_{n-1}$ & (\currule) \\ +$i$. & \ctxsep & $(\lsymb{bvult}\ x\ y) ≈ \mathrm{res}_{n-1}$ & (\currule) \\ \end{AletheX} -in which both $x$ and $y$ must have the same type $(\_\ \mathrm{BitVec}\ n)$ and, for -$i\geq 0$: +in which both $x$ and $y$ must have the same type $(\lsymb{BitVec}\ n)$ and, for +$i\geq 0$ \[ \begin{array}{lcl} - \mathrm{res}_0&=&\neg x[0] \wedge y[0]\\ - \mathrm{res}_{i+1}&=&((x[i+1]\simeq y[i+1])\wedge - \mathrm{res}_i)\vee (\neg x[i+1]\wedge y[i+1]) + \mathrm{res}_0&=&\neg (\lsymb{bitOf}_0\ x) \wedge (\lsymb{bitOf}_0\ y)\\ + \mathrm{res}_{i+1}&=&(((\lsymb{bitOf}_{i+1}\ x) ≈ (\lsymb{bitOf}_{i+1}\ y))\wedge \mathrm{res}_i)\vee + (\neg (\lsymb{bitOf}_{i+1}\ x) \wedge (\lsymb{bitOf}_{i+1}\ y)) \end{array} \] + +\noindent Alternatively, the rule may also be phrased as a ``short-circuiting'' of the -above when $x$ and $y$ are ``bbterm'' applications. So given that +above when $x$ and $y$ are ``$\lsymb{bbT}$'' applications. So given that \[ \begin{array}{lcl} - x&=&(\mathrm{bbterm}\ x_0\ \ldots\ x_i\ \ldots \ x_j\ \ldots\ x_n)\\ - y&=&(\mathrm{bbterm}\ y_0\ \ldots\ y_i\ \ldots \ y_j\ \ldots\ y_n)\\ + x&=&(\lsymb{bbT}\ x_0\ \ldots\ x_i\ \ldots \ x_j\ \ldots\ x_n)\\ + y&=&(\lsymb{bbT}\ y_0\ \ldots\ y_i\ \ldots \ y_j\ \ldots\ y_n)\\ \end{array} \] -then ``res'' can be defined, for $i \geq 0$, as +then ``$\mathrm{res}$'' can be defined, for $i \geq 0$, as \[ \begin{array}{lcl} \mathrm{res}_0&=&\neg x_0 \wedge y_0\\ - \mathrm{res}_{i+1}&=&((x_{i+1}\simeq y_{i+1})\wedge + \mathrm{res}_{i+1}&=&((x_{i+1} ≈ y_{i+1})\wedge \mathrm{res}_i)\vee (\neg x_{i+1}\wedge y_{i+1}) \end{array} \] @@ -1592,37 +1592,45 @@ then ``res'' can be defined, for $i \geq 0$, as \begin{RuleDescription}{bitblast_add} \begin{AletheX} -$i$. & \ctxsep & $(\mathrm{bvadd}\ x\ y) \simeq (\mathrm{bbterm}\ (x[0] \oplus y[0])\oplus\mathrm{carry}_0\ \ldots\ (x[n-1] - \oplus y[n-1])\oplus\mathrm{carry}_{n-1})$ & (\currule) \\ +$i$. & \ctxsep & $(\lsymb{bvadd}\ x\ y) ≈ A_1$ & (\currule) \\ \end{AletheX} -in which both $x$ and $y$ must have the same type $(\_\ \mathrm{BitVec}\ n)$ and, for -$i\geq 0$: - \[ - \begin{array}{lcl} - \mathrm{carry}_0&=&\bot\\ - \mathrm{carry}_{i+1}&=&(x[i]\wedge y[i])\vee((x[i]\oplus y[i])\wedge \mathrm{carry}_i) - \end{array} - \] +in which both $x$ and $y$ must have the same type $(\lsymb{BitVec}\ n)$. +The term ``$A_1$'' is +\begin{align*} +(\lsymb{bbT}\;& (((\lsymb{bitOf}_{0}\ x) \,\lsymb{xor}\,(\lsymb{bitOf}_{0}\ y))\,\lsymb{xor}\,\mathrm{carry}_0) \\ + & (((\lsymb{bitOf}_{1}\ x) \,\lsymb{xor}\,(\lsymb{bitOf}_{1}\ y))\,\lsymb{xor}\,\mathrm{carry}_1) \\ + & \ldots \\ + & (((\lsymb{bitOf}_{n-1}\ x) \,\lsymb{xor}\, (\lsymb{bitOf}_{n-1}\ y))\,\lsymb{xor}\,\mathrm{carry}_{n-1})) +\end{align*} +and for $i\geq 0$ +\[ + \begin{array}{lcl} + \mathrm{carry}_0&=&\bot\\ + \mathrm{carry}_{i+1}&=&((\lsymb{bitOf}_{i}\ x) \wedge (\lsymb{bitOf}_{i}\ y))\vee(((\lsymb{bitOf}_{i}\ x)\,\lsymb{xor}\, (\lsymb{bitOf}_{i}\ y))\wedge \mathrm{carry}_i) + \end{array} +\] +\noindent Alternatively, the rule may also be phrased as a ``short-circuiting'' of the -above when $x$ and $y$ are ``bbterm'' applications. So given that +above when $x$ and $y$ are ``$\lsymb{bbT}$'' applications. So given that \[ \begin{array}{lcl} - x&=&(\mathrm{bbterm}\ x_0\ \ldots\ x_i\ \ldots \ x_j\ \ldots\ x_n)\\ - y&=&(\mathrm{bbterm}\ y_0\ \ldots\ y_i\ \ldots \ y_j\ \ldots\ y_n)\\ + x&=&(\lsymb{bbT}\ x_0\ \ldots\ x_i\ \ldots \ x_j\ \ldots\ x_n)\\ + y&=&(\lsymb{bbT}\ y_0\ \ldots\ y_i\ \ldots \ y_j\ \ldots\ y_n)\\ \end{array} \] then the rule can be alternatively phrased as \begin{AletheX} -$i$. & \ctxsep & $(\mathrm{bvadd}\ x\ y) \simeq (\mathrm{bbterm}\ (x_0 \oplus y_0)\oplus\mathrm{carry}_0\ \ldots\ (x_{n-1} - \oplus y_{n-1})\oplus\mathrm{carry}_{n-1})$ & (\currule) \\ +$i$. & \ctxsep & $(\mathrm{bvadd}\ x\ y) ≈ A_2$ & (\currule) \\ \end{AletheX} -with ``carry'' being defined, for $i \geq 0$, as +with $A_2 := (\lsymb{bbT}\ (x_0 \,\lsymb{xor}\, y_0)\,\lsymb{xor}\,\mathrm{carry}_0\ \ldots\ (x_{n-1} + \,\lsymb{xor}\, y_{n-1})\,\lsymb{xor}\,\mathrm{carry}_{n-1})$ and +``$\mathrm{carry}$'' being defined, for $i \geq 0$, as \[ \begin{array}{lcl} \mathrm{carry}_0&=&\bot\\ - \mathrm{carry}_{i+1}&=&(x_i\wedge y_i)\vee((x_i\oplus y_i)\wedge \mathrm{carry}_i) + \mathrm{carry}_{i+1}&=&(x_i\wedge y_i)\vee((x_i\,\lsymb{xor}\, y_i)\wedge \mathrm{carry}_i) \end{array} \] -- GitLab