diff --git a/spec/doc.tex b/spec/doc.tex index 648d9b742e5eb4cbc169370fe7668a1abb169cd0..5c93ec45dd51538b9b6e66e02de3b1e29d789d56 100644 --- a/spec/doc.tex +++ b/spec/doc.tex @@ -442,24 +442,9 @@ terms of sort $\mathbf{Bool}$. % We use $=$ to denote syntactic equality and $\simeq$ to denote the sorted equality predicate. -% -We also use the notion of complementary literals -very liberally: $\varphi = \bar{\psi}$ holds if the terms obtained -after removing all leading negations from $\varphi$ and $\bar{\psi}$ -are syntactically equal and the number of leading negations is even -for $\varphi$ and odd for $\psi$, or vice versa. To simplify the +To simplify the notation we will omit the sort of terms when possible. -\begin{comment}{Haniel Barbosa} - This notation is clashing with the notation of sequences of symbols, like in - $\bar x$ for $x_1, \dots, x_n$. - - Maybe we could use an alternative notation for ``normalization under double - negation elimination''? Like $\llfloor \varphi \rrfloor_{\neg\neg}$? I find - the use of ``complementary literal'' to refer this a bit confusing - anyway. There are very few uses in the rules (only tautology, and/or simps), - so we could even not introduce a notation and just refer to ``normalized under - double negation elimination''. -\end{comment} + \begin{example} The following example shows a simple Alethe proof. It uses quantifier instantiation and resolution to show a contradiction. The sections below step-by-step describe the concepts necessary to diff --git a/spec/rule_list.tex b/spec/rule_list.tex index 5f0decf14c5e25263eca434b3222b4c39923b2de..ed23cb8da3da255d69607580cac8eb84f47feac8 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -87,7 +87,12 @@ serves only informational purpose. \proofsep& j.& \top &(\currule; i)\\ \end{plList} \end{plContainer} - and $\varphi_i = \bar\varphi_j$. + and $\varphi_i$, $\varphi_j$ are such that + \begin{align*} + \varphi_i &= \underbrace{\neg \dots \neg}_n \psi \\ + \varphi_j &= \underbrace{\neg \dots \neg}_m \psi + \end{align*} + and one of $n, m$ is odd and the other even. Either can be $0$. \end{proof-rule} \begin{proof-rule}{contraction}{veriT} @@ -986,8 +991,13 @@ The possible transformations are: \land \dots \land \varphi_{n'} $ where the right hand side has all repeated literals removed. \item $\varphi_1 \land\dots\land \bot\land\dots \land \varphi_n \leftrightarrow \bot$ - \item $\varphi_1 \land\dots\land \varphi_i\land \dots \land \varphi_j\land\dots \land \varphi_n \leftrightarrow \bot$ if - $\varphi_i = \bar{\varphi_j}$ + \item $\varphi_1 \land\dots\land \varphi_i\land \dots \land \varphi_j\land\dots \land \varphi_n \leftrightarrow \bot$ + and $\varphi_i$, $\varphi_j$ are such that + \begin{align*} + \varphi_i &= \underbrace{\neg \dots \neg}_n \psi \\ + \varphi_j &= \underbrace{\neg \dots \neg}_m \psi + \end{align*} + and one of $n, m$ is odd and the other even. Either can be $0$. \end{itemize} \end{proof-rule} @@ -1014,8 +1024,13 @@ The possible transformations are: \lor \dots \lor \varphi_{n'} $ where the right hand side has all repeated literals removed. \item $\varphi_1 \lor\dots\lor \top\lor\dots \lor \varphi_n \leftrightarrow \top$ - \item $\varphi_1 \lor\dots\lor \varphi_i\lor \dots \lor \varphi_j\lor\dots \lor \varphi_n \leftrightarrow \top$ if - $\varphi_i = \bar{\varphi_j}$ + \item $\varphi_1 \lor\dots\lor \varphi_i\lor \dots \lor \varphi_j\lor\dots \lor \varphi_n \leftrightarrow \top$ + and $\varphi_i$, $\varphi_j$ are such that + \begin{align*} + \varphi_i &= \underbrace{\neg \dots \neg}_n \psi \\ + \varphi_j &= \underbrace{\neg \dots \neg}_m \psi + \end{align*} + and one of $n, m$ is odd and the other even. Either can be $0$. \end{itemize} \end{proof-rule}