From bcb74d0080c9d7e6e58d9740eae47fbd7475f444 Mon Sep 17 00:00:00 2001
From: bernborgess <bernborgess@outlook.com>
Date: Tue, 1 Apr 2025 14:38:34 -0300
Subject: [PATCH] Fixing back the AletheVerb indentation

---
 spec/doc.tex       | 87 +++++++++++++++++++++++-----------------------
 spec/rule_list.tex | 62 ++++++++++++++++-----------------
 2 files changed, 75 insertions(+), 74 deletions(-)

diff --git a/spec/doc.tex b/spec/doc.tex
index 1ba20c3..d535d14 100644
--- a/spec/doc.tex
+++ b/spec/doc.tex
@@ -670,25 +670,25 @@ An Alethe proof is a list of commands.
 
 \begin{figure}[t]
     \begin{AletheVerb}
-        (assume h1 (not (p a)))
-        (assume h2 (forall ((z1 U)) (forall ((z2 U)) (p z2))))
-        ...
-        (anchor :step t9 :args ((vr4 U) (:= (z2 U) vr4)))
-        (step t9.t1 (cl (= z2 vr4)) :rule refl)
-        (step t9.t2 (cl (= (p z2) (p vr4)))
-        :rule cong :premises (t9.t1))
-        (step t9 (cl (= (forall ((z2 U)) (p z2))
-        (forall ((vr4 U)) (p vr4))))
-        :rule bind)
-        ...
-        (step t14 (cl (forall ((vr5 U)) (p vr5)))
-        :rule th_resolution :premises (t11 t12 t13))
-        (step t15 (cl (or (not (forall ((vr5 U)) (p vr5)))
-        (p a)))
-        :rule forall_inst :args ((:= vr5 a)))
-        (step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a))
-        :rule or :premises (t15))
-        (step t17 (cl) :rule resolution :premises (t16 h1 t14))
+(assume h1 (not (p a)))
+(assume h2 (forall ((z1 U)) (forall ((z2 U)) (p z2))))
+...
+(anchor :step t9 :args ((vr4 U) (:= (z2 U) vr4)))
+(step t9.t1 (cl (= z2 vr4)) :rule refl)
+(step t9.t2 (cl (= (p z2) (p vr4)))
+         :rule cong :premises (t9.t1))
+(step t9 (cl (= (forall ((z2 U)) (p z2))
+                (forall ((vr4 U)) (p vr4))))
+         :rule bind)
+...
+(step t14 (cl (forall ((vr5 U)) (p vr5)))
+          :rule th_resolution :premises (t11 t12 t13))
+(step t15 (cl (or (not (forall ((vr5 U)) (p vr5)))
+                  (p a)))
+          :rule forall_inst :args ((:= vr5 a)))
+(step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a))
+          :rule or :premises (t15))
+(step t17 (cl) :rule resolution :premises (t16 h1 t14))
     \end{AletheVerb}
     \caption{Example proof output. Assumptions are
         introduced;   a subproof renames bound variables; the proof finishes with
@@ -921,17 +921,18 @@ remove the steps of the subproof from memory after checking it.
     expressed as a concrete proof.
 
     \begin{AletheVerb}
-        (assume h1 (forall ((x S)) (P x)))
-        (assume h2 (not (forall ((y S)) (P y))))
-        (anchor :step t5 :args ((y S) (:= (x S) y)))
-        (step t3 (cl (= x y)) :rule refl)
-        (step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))
-        (step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
-        :rule bind)
-        (step t6 (cl (not (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
-        (not (forall ((x S)) (P x)))
-        (forall ((y S)) (P y))) :rule equiv_pos2)
-        (step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))
+(assume h1 (forall ((x S)) (P x)))
+(assume h2 (not (forall ((y S)) (P y))))
+(anchor :step t5 :args ((y S) (:= (x S) y)))
+(step t3 (cl (= x y)) :rule refl)
+(step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))
+(step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
+                              :rule bind)
+(step t6 (cl (not (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
+             (not (forall ((x S)) (P x)))
+             (forall ((y S)) (P y))) :rule equiv_pos2)
+(step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))
+
     \end{AletheVerb}
 \end{example}
 
@@ -1099,11 +1100,11 @@ the calculation of the context of the steps in the subproof.
     The proof in Example~\ref{ex:ti:ctx-concrete} has only one subproof
     and this subproof is also a first-innermost subproof.  It is the subproof
     \begin{AletheVerb}
-        (anchor :step t5 :args ((y S) (:= (x S) y)))
-        (step t3 (cl (= x y)) :rule refl)
-        (step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))
-        (step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
-        :rule bind)
+(anchor :step t5 :args ((y S) (:= (x S) y)))
+(step t3 (cl (= x y)) :rule refl)
+(step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))
+(step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
+                              :rule bind)
     \end{AletheVerb}
 \end{example}
 
@@ -1195,14 +1196,14 @@ $P_1 = E(P)$, $P_2 = E(E(P))$ and $P_{\mathit{last}} = E(P_{\mathit{last}})$.
     Example~\ref{ex:ti:ctx-concrete} gives us the proof
 
     \begin{AletheVerb}
-        (assume h1 (forall ((x S)) (P x)))
-        (assume h2 (not (forall ((y S)) (P y))))
-        (step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
-        :rule hole)
-        (step t6 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y)))
-        (not (forall ((x S)) (P x)))
-        (forall ((y S)) (P y)))) :rule equiv_pos2)
-        (step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))
+(assume h1 (forall ((x S)) (P x)))
+(assume h2 (not (forall ((y S)) (P y))))
+(step t5 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y))))
+                                      :rule hole)
+(step t6 (cl (= (forall ((x S)) (P x)) (forall ((y S)) (P y)))
+             (not (forall ((x S)) (P x)))
+             (forall ((y S)) (P y)))) :rule equiv_pos2)
+(step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))
     \end{AletheVerb}
 
     Since this proof contains no subproof, it is also $P_{\mathit{last}}$.
diff --git a/spec/rule_list.tex b/spec/rule_list.tex
index b2aebdf..e13972e 100644
--- a/spec/rule_list.tex
+++ b/spec/rule_list.tex
@@ -483,8 +483,8 @@ to quickly find the definition of rules.
     A simple \proofRule{la_generic} step in the logic \textsf{LRA} might look like this:
 
     \begin{AletheVerb}
-        (step t10 (cl (not (> (f a) (f b))) (not (= (f a) (f b))))
-        :rule la_generic :args (1.0 -1.0))
+(step t10 (cl (not (> (f a) (f b))) (not (= (f a) (f b))))
+    :rule la_generic :args (1.0 -1.0))
     \end{AletheVerb}
 
     To verify this we have to check the unsatisfiability of $(f\,a) > (f\,b) \land
@@ -497,8 +497,8 @@ to quickly find the definition of rules.
 \begin{RuleExample}
     The following \proofRule{la_generic} step is from a \textsf{QF\_UFLIA} problem:
     \begin{AletheVerb}
-        (step t11 (cl (not (<= f3 0)) (<= (+ 1 (* 4 f3)) 1))
-        :rule la_generic :args (1.0 1/4))
+(step t11 (cl (not (<= f3 0)) (<= (+ 1 (* 4 f3)) 1))
+    :rule la_generic :args (1.0 1/4))
     \end{AletheVerb}
     After normalization we get $-f_3 \geq 0 \land 4\times f_3 > 0$.
     This time step~4 applies and we can strengthen this to
@@ -692,9 +692,9 @@ to quickly find the definition of rules.
 \begin{RuleExample}
     An application of the \proofRule{forall_inst} rule.
     \begin{AletheVerb}
-        (step t16 (cl (or (not (forall ((x S) (y T)) (P y x    )))
-        (P b (f a))
-        :rule forall_inst :args ((f a) b)
+(step t16 (cl (or (not (forall ((x S) (y T)) (P y x    )))
+                                             (P b (f a))
+      :rule forall_inst :args ((f a) b)
     \end{AletheVerb}
 \end{RuleExample}
 
@@ -840,10 +840,10 @@ to quickly find the definition of rules.
 \begin{RuleExample}
     An application of the \proofRule{or} rule.
     \begin{AletheVerb}
-        (step t15 (cl (or (= a b) (not (<= a b)) (not (<= b a))))
-        :rule la_disequality)
-        (step t16 (cl     (= a b) (not (<= a b)) (not (<= b a)))
-        :rule or :premises (t15))
+(step t15 (cl (or (= a b) (not (<= a b)) (not (<= b a))))
+    :rule la_disequality)
+(step t16 (cl     (= a b) (not (<= a b)) (not (<= b a)))
+     :rule or :premises (t15))
     \end{AletheVerb}
 \end{RuleExample}
 
@@ -1370,22 +1370,22 @@ to quickly find the definition of rules.
         \rightarrow (f\,x)\land (f\,y))$ look like this:
 
     \begin{AletheVerb}
-        (anchor :step t3 :args ((x S) (:= (y S) x)))
-        (step t3.t1 (cl (= x y)) :rule refl)
-        (step t3.t2 (cl (= (= x y) (= x x)))
-        :rule cong :premises (t3.t1))
-        (step t3.t3 (cl (= x y)) :rule refl)
-        (step t3.t4 (cl (= (f y) (f x)))
-        :rule cong :premises (t3.t3))
-        (step t3.t5 (cl (= (and (f x) (f y)) (and (f x) (f x))))
-        :rule cong :premises (t3.t4))
-        (step t3.t6 (cl (= (=> (= x y) (and (f x) (f y)))
-                (=> (= x x) (and (f x) (f x)))))
-        :rule cong :premises (t3.t2 t3.t5))
-        (step t3 (cl (=
+(anchor :step t3 :args ((x S) (:= (y S) x)))
+(step t3.t1 (cl (= x y)) :rule refl)
+(step t3.t2 (cl (= (= x y) (= x x)))
+    :rule cong :premises (t3.t1))
+(step t3.t3 (cl (= x y)) :rule refl)
+(step t3.t4 (cl (= (f y) (f x)))
+    :rule cong :premises (t3.t3))
+(step t3.t5 (cl (= (and (f x) (f y)) (and (f x) (f x))))
+    :rule cong :premises (t3.t4))
+(step t3.t6 (cl (= (=> (= x y) (and (f x) (f y)))
+                   (=> (= x x) (and (f x) (f x)))))
+    :rule cong :premises (t3.t2 t3.t5))
+(step t3 (cl (=
         (forall ((x S) (y S)) (=> (= x y) (and (f x) (f y))))
         (forall ((x S))       (=> (= x x) (and (f x) (f x))))))
-        :rule onepoint)
+    :rule onepoint)
     \end{AletheVerb}
 \end{RuleExample}
 
@@ -1713,12 +1713,12 @@ to quickly find the definition of rules.
     by Carcara's elaborator.  It elaborates an implicit application of
     symmetry of equality.
     \begin{AletheVerb}
-        (step t1 (cl (= (= 0 1) (= 1 0))) :rule eq_symmetric)
-        (anchor :step t2 :args ((p Bool) (:= (p Bool) p)))
-        (step t2.t1 (cl (= (= p false) (= false p))) :rule eq_symmetric)
-        (step t2 (cl (= (let ((p (= 0 1))) (= p false))
-        (let ((p (= 1 0))) (= false p))))
-        :rule bind_let :premises (t1))
+(step t1 (cl (= (= 0 1) (= 1 0))) :rule eq_symmetric)
+(anchor :step t2 :args ((p Bool) (:= (p Bool) p)))
+(step t2.t1 (cl (= (= p false) (= false p))) :rule eq_symmetric)
+(step t2 (cl (= (let ((p (= 0 1))) (= p false))
+                (let ((p (= 1 0))) (= false p))))
+         :rule bind_let :premises (t1))
     \end{AletheVerb}
 
 \end{RuleExample}
-- 
GitLab