diff --git a/spec/rule_list.tex b/spec/rule_list.tex index 44c309949e9638b1f5b7abae28816b04f69cf486..10e4aae3d09976102b49b35985cc52f263f1d0df 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -427,9 +427,9 @@ $i$. & \ctxsep & $\varphi_1$, \dots , $\varphi_o$ & \currule\, [$a_1$, \dots, $ where $\varphi_i$ is either $\neg l_i$ or $l_i$, but never $s_1 ≈ s_2$. -If the current theory does not have rational numbers, then the $a_i$ are -printed using integer division. They should, nevertheless, be interpreted -as rational numbers. If $d_1$ or $d_2$ are $0$, they might not be printed. +The constants $a_i$ are of sort \inlineAlethe{Real} and must be printed +using one of the productions $\grNT{rational}$ +$\grNT{decimal}$, $\grNT{neg\_decimal}$. To check the unsatisfiability of the negation of $\varphi_1\lor \dots \lor \varphi_o$ one performs the following steps for each literal. For @@ -481,7 +481,7 @@ A simple \proofRule{la_generic} step in the logic \textsf{LRA} might look like t \begin{AletheVerb} (step t10 (cl (not (> (f a) (f b))) (not (= (f a) (f b)))) - :rule la_generic :args (1.0 (- 1.0))) + :rule la_generic :args (1.0 -1.0)) \end{AletheVerb} To verify this we have to check the insatisfiability of $(f\,a) > (f\,b) \land @@ -495,7 +495,7 @@ not apply. Finally, after step~5 the conjunction is $(f\,a) - (f\,b) > 0 \land The following \proofRule{la_generic} step is from a \textsf{QF\_UFLIA} problem: \begin{AletheVerb} (step t11 (cl (not (<= f3 0)) (<= (+ 1 (* 4 f3)) 1)) - :rule la_generic :args (1 (div 1 4))) + :rule la_generic :args (1.0 1/4)) \end{AletheVerb} After normalization we get $-f_3 \geq 0 \land 4\times f_3 > 0$. This time step~4 applies and we can strengthen this to