diff --git a/spec/changelog.tex b/spec/changelog.tex
index 49acb415d70a1b0df2eb271aacfad50820e6e085..59f2eb5ed42d014d0d5a2fd01de6069e6b7c6d8d 100644
--- a/spec/changelog.tex
+++ b/spec/changelog.tex
@@ -11,16 +11,16 @@ Beyond many smaller clarifications and typographic improvments, the
 following changes were implemented in this release.
 \begin{itemize}
 	\item An abstract proof checking procedure to clarify
-	the semantic of the proof format was added.
-	\item A description of the semantic of contexts based on λ-terms
+	the semantics of the proof format was added.
+	\item A description of the semantics of contexts based on λ-terms
 	was added.
   \item The document now lists all transformations that are
   implicit in Alethe proofs.
   \item The notation used for terms from first-order style
    (e.g., $f(x,g(y))$) was changed to higher-order style (e.g.,
-   $(f\;x\;(g\;y))$).  This only a change in notation -- the used logic
+   $(f\;x\;(g\;y))$).  This is only a change in notation -- the used logic
    remains many-sorted first-order logic.
-  \item The is no longer a distinction between if-and-only-if and
+  \item There is no longer a distinction between if-and-only-if and
    equaltiy.  Instead equality (the symbol $≈$) is used with appropiate
    sorts.
   \item An index that lists all proof rules was added.
@@ -30,7 +30,7 @@ Proof rules:
 \begin{itemize}
   \item The rule \proofRule{implies_simplify} is no longer allowed to
   perform the simplification $(\varphi_1\rightarrow \varphi_2)\rightarrow \varphi_2
-  ⇒  \varphi_1\lor \varphi_2$.  This is covered by \proofRule{bool_simplify}.
+  ⇒  \varphi_1\lor \varphi_2$.  This is now covered by \proofRule{bool_simplify}.
 \end{itemize}
 
 \subsection*{0.2 --- \DTMdisplaydate{2022}{12}{19}{-1}}
diff --git a/spec/doc.tex b/spec/doc.tex
index 64769dbe1cf0bcad5cbc0ebac4ada09c7edb2499..738d5e5aeefaa0a0ea46193fb30aee8f9b6f8a4c 100644
--- a/spec/doc.tex
+++ b/spec/doc.tex
@@ -277,7 +277,7 @@ get in touch!
 \section{Introduction}
 This document is a reference of the
 Alethe\footnote{Alethe is a genus of small birds that occur in West Africa~\cite{wp:alethe}.
-The name was chosen, because it
+The name was chosen because it
 resembles the Greek word {αλήθεια} (alítheia) -- truth.} proof format.  Alethe is
 designed to be a flexible format to represent unsatisfiability proofs
 generated by SMT solvers.  Alethe proofs can be consumed by other systems,
@@ -289,9 +289,9 @@ The Alethe proof format consists of two parts: the proof
 language based on {\smtlib} and a collection of proof rules.
 Section~\ref{sec:alethe:language} introduces the language.  First as an
 abstract language, then as a concrete syntax.
-Section~\ref{sec:alethe:semantic} then discusses an abstract procedure
+Section~\ref{sec:alethe:semantics} then discusses an abstract procedure
 to check Alethe proofs.  This abstract checking procedure specifies
-the semantic of Alethe proofs.
+the semantics of Alethe proofs.
 %
 The Alethe proof rules are discussed in two sections.
 First, Section~\ref{sec:alethe:rules-generic} discusses the core
@@ -328,7 +328,7 @@ proof assistant \tool{Coq}~\cite{SMTCoq}.  An effort to update the
 tool to the latest version of Alethe is ongoing.
 %
 Furthermore, \tool{Carcara} is an experimental
-high-performance \index{proof chcker}proof checker written in Rust.\footnote{Available at
+high-performance \index{proof checker}proof checker written in Rust.\footnote{Available at
 \url{https://github.com/ufmg-smite/carcara}.}
 
 In addition to this reference, the proof format has been discussed in past
@@ -348,7 +348,7 @@ used by the SMT-LIB standard.  The Alethe proof format uses precisely
 the SMT-LIB logic.  Since the SMT-LIB language is based on
 S-expressions\index{S-expression}, SMT-LIB formulas are written using
 a λ-calculus style.  That is, instead of $f(1,2)$, we write $(f\,1\,2)$.
-However, connectives that a usually written using infix notation, also
+However, connectives that are usually written using infix notation, also
 use infix notation here.  That is, we write $t_1 \lor t_2$, not
 $(\lor\,t_1\,t_2)$.
 
@@ -430,7 +430,7 @@ with respect to logical equivalence: if for two formulas $\varphi$, $\psi$
 that contain the free variable $x$, it holds that
 $(\forall x.\,\varphi ≈ \psi)$,
 then $(\varepsilon x.\, \varphi)\approx(\varepsilon x.\, \psi)$ must also hold.
-Note that, choice terms can only appear in Alethe proofs, not in {\smtlib} problems.
+Note that choice terms can only appear in Alethe proofs, not in {\smtlib} problems.
 %\end{seppara}
 
 \paragraph{Steps.}
@@ -536,7 +536,7 @@ A specificity of the Alethe proofs
 is the step \index{context}context.
 Alethe contexts are a general mechanism to write
 substitutions and to change them by attaching new elements.
-A context is a possible empty list $c_1,
+A context is a possibly empty list $c_1,
 \dots, c_l$, where each element is either a variable or a variable-term tuple
 denoted $x_i\mapsto t_i$.
 %
@@ -582,7 +582,7 @@ preprocessing.  Tautologies with contexts correspond to judgments
 $\vDash_T \subst(\Gamma)(t) ≈ u$.
 
 Formally, the context can be translated to \index{abstraction!lambda}λ-abstractions and
-applications.  This is discussed in Section~\ref{sec:alethe:semantic}.
+applications.  This is discussed in Section~\ref{sec:alethe:semantics}.
 
 
 \begin{example}\label{ex:ti:ctx-abstract}
@@ -633,7 +633,7 @@ example proof as printed by {\verit} with light edits for readability.
 %
 The format follows the {\smtlib} standard when possible.
 %
-Input problems in the {\smtlib} formats are scripts.  A {\smtlib} script
+Input problems in the {\smtlib} format are scripts.  An {\smtlib} script
 is a list of commands that manipulate the SMT solver.  For example,
 \inlineAlethe{assert} introduces an assertion, \inlineAlethe{check-sat} starts
 solving, and \inlineAlethe{get-proof} instructs the SMT solver to print the
@@ -733,7 +733,7 @@ extended with the additional production for the \inlineAlethe{choice}\index{choi
 Alethe proofs are a list of commands.
 The \inlineAlethe{assume} command introduces a new assumption. While this
 command could also be expressed using the \inlineAlethe{step} command with
-a special rule, the special semantic of an assumption justifies the
+a special rule, the special semantics of an assumption justifies the
 presence of a dedicated command: assumptions are neither tautological nor
 derived from premises.  The \inlineAlethe{step} command, on the other hand,
 introduces a derived or tautological clause.  Both commands \inlineAlethe{assume}
@@ -741,13 +741,12 @@ and \inlineAlethe{step} require an index as the first argument to later
 refer back to it. This index is an arbitrary {\smtlib} symbol.
 It must be unique for each \inlineAlethe{assume} and \inlineAlethe{step} command.
 A special restriction applies to the \inlineAlethe{assume} commands
-not within a subproof,
-those reference assertions in the input {\smtlib} problem.  To simplify
+not within a subproof, which reference assertions in the input {\smtlib} problem.  To simplify
 proof checking, the \inlineAlethe{assume} command must use the name assigned
 to the asserted formula if there is any.  For example, if the input
 problem contains \inlineAlethe{(assert (! (P c) :named foo))}, then
 the proof must refer to this assertion (if it is needed in the proof) as
-\inlineAlethe{(assume foo (P c))}.  Note that a {\smtlib} problem can
+\inlineAlethe{(assume foo (P c))}.  Note that an {\smtlib} problem can
 assign a name to a term at any point, not only at its first occurrence.
 If a term has more than one name, any can be picked.
 
@@ -958,7 +957,7 @@ Alethe proofs contain steps for other aspects that are commonly left implicit, s
 as renaming of bound variables, and the application of substitutions.
 
 \section{Checking Alethe Proofs}
-\label{sec:alethe:semantic}
+\label{sec:alethe:semantics}
 
 In this section we present an abstract procedure to check if an Alethe
 proof is \index{well-formed}well-formed and valid.  An Alethe proof is
@@ -980,7 +979,7 @@ Therefore, the elements of $C_1, \dots, C_n$ that are steps
 are not associated with a context.  
 Instead, the context can be computed
 from the prior anchors.
-The anchors only ever extends the context. 
+The anchors only ever extend the context. 
 
 To check an Alethe proof we can iteratively eliminate the first-innermost
 subproof, i.e., the innermost subproof that does not come after a
@@ -1048,7 +1047,7 @@ The calculated context of the concluding step \texttt{\color{SmtStepId}t5} and t
 
 \noindent
 A first-innermost subproof is valid if all its steps adhere to
-the conditions of their rule and only use premises that occur in front of them
+the conditions of their rule and only use premises that occur before them
 in the subproof.  The conditions of each rule are listed in
 Section~\ref{apx:rules}.
 
@@ -1154,7 +1153,7 @@ of $P_{\mathit{last}}$.
 \subsection{Contexts and Metaterms}
 
 We now direct our attention to subproofs with \index{context}contexts.
-It is useful to give a precise semantic
+It is useful to give precise semantics
 to contexts to have the tools to check that rules that use contexts
 are sound.
 Contexts are local in the sense that they affect only the
@@ -1484,7 +1483,7 @@ Theorem~\ref{thm:sound}.
   the judgment $V \vDash \Gamma \vartriangleright \psi$ must hold.
 
   Since $P$\, is a valid proof there is a sequence
-  $[P_0, \dots, P_{\mathit{last}}]$ as discussed in Section~\ref{sec:alethe:semantic}.
+  $[P_0, \dots, P_{\mathit{last}}]$ as discussed in Section~\ref{sec:alethe:semantics}.
   For $i < \mathit{last}$, $E(P_i) = P_{i+1}$ replaces the
   first-innermost subproof in $P_i$ by a hole with the conclusion
   $\psi$.  Furthermore, the context of the introduced hole
@@ -1579,7 +1578,7 @@ ground term $t_i$ is a new term with the same sort as $x_i$.\footnote{
   as its conclusion and not the clause $(\neg \forall \bar x_n.\,\varphi), \varphi[\bar t_n]$.
 }
 
-The arguments of a \proofRule{forall_inst} step is the list $(x_1 , t_1),
+The arguments of a \proofRule{forall_inst} step are the list $(x_1 , t_1),
 \dots, (x_n, t_n)$. While this information can be recovered from the term,
 providing it explicitly helps reconstruction because the implicit reordering of
 equalities obscures which terms have been used as instances.
@@ -1629,7 +1628,7 @@ variable is replaced by the appropriate Skolem term.
 To provide a proof for the replacement, the \proofRule{sko_ex} step
 uses one premise. 
 The premise
-has a context that maps the existentially quantified variables 
+has a context that maps the existentially quantified variable
 to the appropriate Skolem term.
 
 \begin{AletheS}
diff --git a/spec/rule_list.tex b/spec/rule_list.tex
index 83130c4b1aa4cd215f344b1ac3efef999a457461..84c984e0fc0966e60261e4ee4af446afc76bb7cc 100644
--- a/spec/rule_list.tex
+++ b/spec/rule_list.tex
@@ -9,9 +9,9 @@ Table~\ref{rule-tab:special} lists rules that serve a special purpose.
 Table~\ref{rule-tab:tautologies} lists all rules that introduce
 tautologies.  That is, regular rules that do not use premises.
 
-The subsequent section, starting at ref{sec:alethe:rules-list}, defines
+The subsequent section, starting at \ref{sec:alethe:rules-list}, defines
 all rules and provides example proofs for complicated rules.
-The index of proof rules at ref{sec:alethe:rules-index} can be used
+The index of proof rules at \ref{sec:alethe:rules-index} can be used
 to quickly find the definition of rules.
 
 \subsection{Classifications of the Rules}
@@ -22,7 +22,7 @@ to quickly find the definition of rules.
 \label{rule-tab:special}\\
   Rule & Description \\
   \hline
-  \ruleref{assume}   & Repetition of an input assumption. \\
+  \ruleref{assume}   & Introduction of an assumption. \\
   \ruleref{hole}     & Placeholder for rules not defined here. \\
   \ruleref{subproof} & Concludes a subproof and discharges local assumptions. \\
 \end{xltabular}
@@ -61,7 +61,7 @@ to quickly find the definition of rules.
 \ruleref{and_pos} & $\neg (\varphi_1 \land \dots \land \varphi_n) , \varphi_k $ \\
 \ruleref{and_neg} & $ (\varphi_1 \land \dots \land \varphi_n), \neg\varphi_1  , \dots , \neg\varphi_n $ \\
 \ruleref{or_pos} & $ \neg (\varphi_1 \lor \dots \lor \varphi_n) , \varphi_1 , \dots , \varphi_n $ \\
-\ruleref{or_neg} & $ (\varphi_1 \lor \dots \lor \varphi_n) , \neg \varphi_k $ \\
+\ruleref{or_neg} & $ (\varphi_1 \lor \dots \lor \varphi_n) , \neg \varphi_k $; with $1\leq k \leq n$ \\
 \ruleref{xor_pos1} & $ \neg (\varphi_1 \,\lsymb{xor}\, \varphi_2) , \varphi_1 , \varphi_2 $ \\
 \ruleref{xor_pos2} & $ \neg (\varphi_1 \,\lsymb{xor}\, \varphi_2), \neg \varphi_1, \neg \varphi_2 $ \\
 \ruleref{xor_neg1} & $ \varphi_1 \,\lsymb{xor}\, \varphi_2, \varphi_1 , \neg \varphi_2 $ \\
@@ -73,18 +73,18 @@ to quickly find the definition of rules.
 \ruleref{equiv_pos2} & $\neg (\varphi_1 ≈ \varphi_2) , \neg \varphi_1 , \varphi_2$ \\
 \ruleref{equiv_neg1} & $\varphi_1 ≈ \varphi_2 , \neg \varphi_1 , \neg \varphi_2$ \\
 \ruleref{equiv_neg2} & $\varphi_1 ≈ \varphi_2 , \varphi_1 , \varphi_2$ \\
-\ruleref{ite_pos1} & $\neg (\lsymb{ite} \varphi_1\;\varphi_2\;\varphi_3) , \varphi_1 , \varphi_3$ \\
-\ruleref{ite_pos2} & $\neg (\lsymb{ite} \varphi_1\;\varphi_2\;\varphi_3) , \neg \varphi_1 , \varphi_2$ \\
-\ruleref{ite_neg1} & $\lsymb{ite} \varphi_1\;\varphi_2\;\varphi_3 , \varphi_1 , \neg \varphi_3$ \\
-\ruleref{ite_neg2} & $\lsymb{ite} \varphi_1\;\varphi_2\;\varphi_3 , \neg \varphi_1 , \neg \varphi_2$ \\
-\ruleref{connective_def} & Definition of the Boolean connectives. \\
+\ruleref{ite_pos1} & $\neg (\lsymb{ite}\ \varphi_1\;\varphi_2\;\varphi_3) , \varphi_1 , \varphi_3$ \\
+\ruleref{ite_pos2} & $\neg (\lsymb{ite}\ \varphi_1\;\varphi_2\;\varphi_3) , \neg \varphi_1 , \varphi_2$ \\
+\ruleref{ite_neg1} & $(\lsymb{ite}\ \varphi_1\;\varphi_2\;\varphi_3) , \varphi_1 , \neg \varphi_3$ \\
+\ruleref{ite_neg2} & $(\lsymb{ite}\ \varphi_1\;\varphi_2\;\varphi_3) , \neg \varphi_1 , \neg \varphi_2$ \\
+\ruleref{connective_def} & Definition of some connectives. \\
 \ruleref{and_simplify} & Simplification of a conjunction. \\
 \ruleref{or_simplify} & Simplification of a disjunction. \\
 \ruleref{not_simplify} & Simplification of a Boolean negation. \\
 \ruleref{implies_simplify} & Simplification of an implication. \\
 \ruleref{equiv_simplify} & Simplification of an equivalence. \\
 \ruleref{bool_simplify} & Simplification of combined Boolean connectives. \\
-\ruleref{ac_simp} & Flattening of nested $\lor$ or $\land$. \\
+\ruleref{ac_simp} & Flattening and removal of duplicates for $\lor$ or $\land$. \\
 \ruleref{ite_simplify} & Simplification of if-then-else. \\
 \ruleref{qnt_simplify} & Simplification of constant quantified formulas. \\
 \ruleref{qnt_join} & Joining of consecutive quantifiers. \\
@@ -96,9 +96,9 @@ to quickly find the definition of rules.
 \ruleref{minus_simplify} & Simplification of subtractions. \\
 \ruleref{sum_simplify} & Simplification of sums. \\
 \ruleref{comp_simplify} & Simplification of arithmetic comparisons. \\
-\ruleref{distinct_elim} & Elimination of the distinction predicate. \\
+\ruleref{distinct_elim} & Elimination of the $\lsymb{distinct}$ operator. \\
 \ruleref{la_rw_eq} & $(t ≈ u) ≈ (t \leq u \land u \leq t)$ \\
-\ruleref{nary_elim} & Replace $n$-ary operators with binary application. \\
+\ruleref{nary_elim} & Eliminate $n$-ary application of operators via binary applications. \\
 \end{xltabular}
 
 \begin{xltabular}{\linewidth}{l X}
@@ -125,10 +125,10 @@ to quickly find the definition of rules.
 \label{rule-tab:quants}\\
   Rule & Description \\
   \hline
-\ruleref{forall_inst} & Instantiation of a universal variable. \\
+\ruleref{forall_inst} & Instantiation of a universal quantifier. \\
 \ruleref{bind} & Renaming of bound variables. \\
-\ruleref{sko_ex} & Skolemization of existential variables. \\
-\ruleref{sko_forall} & Skolemization of universal variables. \\
+\ruleref{sko_ex} & Skolemization of an existential quantifier. \\
+\ruleref{sko_forall} & Skolemization of an universal quantifier. \\
 \ruleref{qnt_cnf} & Clausification of quantified formulas. \\
 \ruleref{qnt_simplify} & Simplification of constant quantified formulas. \\
 \ruleref{onepoint} & The one-point rule. \\
@@ -155,10 +155,10 @@ clausification.}
 \ruleref{not_or} & Elimination of a negated disjunction. \\
 \ruleref{or} & Disjunction to clause. \\
 \ruleref{not_and} & Distribution of negation over a conjunction. \\
-\ruleref{xor1} & From $\,\lsymb{xor}\, \varphi_1 \varphi_2$ to $\varphi_1, \varphi_2$. \\
-\ruleref{xor2} & From $\,\lsymb{xor}\, \varphi_1 \varphi_2$ to $\neg\varphi_1, \neg\varphi_2$. \\
-\ruleref{not_xor1} & From $\neg(\,\lsymb{xor}\, \varphi_1 \varphi_2)$ to $\varphi_1, \neg\varphi_2$. \\
-\ruleref{not_xor2} & From $\neg(\,\lsymb{xor}\, \varphi_1 \varphi_2)$ to $\neg\varphi_1, \varphi_2$. \\
+\ruleref{xor1} & From $\,(\lsymb{xor}\, \varphi_1\, \varphi_2)$ to $\varphi_1, \varphi_2$. \\
+\ruleref{xor2} & From $\,(\lsymb{xor}\, \varphi_1\, \varphi_2)$ to $\neg\varphi_1, \neg\varphi_2$. \\
+\ruleref{not_xor1} & From $\neg(\,\lsymb{xor}\, \varphi_1\, \varphi_2)$ to $\varphi_1, \neg\varphi_2$. \\
+\ruleref{not_xor2} & From $\neg(\,\lsymb{xor}\, \varphi_1\, \varphi_2)$ to $\neg\varphi_1, \varphi_2$. \\
 \ruleref{implies} & From $ \varphi_1\rightarrow\varphi_2 $ to $\neg\varphi_1 , \varphi_2 $. \\
 \ruleref{not_implies1} & From $\neg (\varphi_1\rightarrow\varphi_2)$ to $\varphi_1$. \\
 \ruleref{not_implies2} & From $\neg (\varphi_1\rightarrow\varphi_2)$ to $\neg\varphi_2$. \\
@@ -213,7 +213,7 @@ simplifications.}
 \ruleref{implies_simplify} & Simplification of an implication. \\
 \ruleref{equiv_simplify} & Simplification of an equivalence. \\
 \ruleref{bool_simplify} & Simplification of combined Boolean connectives. \\
-\ruleref{ac_simp} & Simplification of nested disjunctions and conjunctions. \\
+\ruleref{ac_simp} & Flattening and removal of duplicates for $\lor$ or $\land$. \\
 \ruleref{ite_simplify} & Simplification of if-then-else. \\
 \ruleref{qnt_simplify} & Simplification of constant quantified formulas. \\
 \ruleref{onepoint} & The one-point rule. \\
@@ -237,7 +237,8 @@ simplifications.}
 $i$. & \ctxsep & $\varphi$ & \currule \\
 \end{AletheX}
   where $\varphi$ corresponds up to the orientation of equalities
-  to a formula asserted in the input problem.
+  to a formula asserted in the input problem, or $\varphi$ is a local assumption
+  in a subproof.
   \ruleparagraph{Remark.}
   This rule can not be used by the
   \inlineAlethe{(step }\dots\inlineAlethe{)} command. Instead it corresponds to the dedicated
@@ -308,7 +309,7 @@ See the equivalent \proofRule{resolution} rule for the rule emitted by the
 SAT solver.
 
 \ruleparagraph{Remark.} The definition given here is very general.  The motivation
-for this to ensure the definition covers all possible resolution steps generated
+for this is to ensure the definition covers all possible resolution steps generated
 by the existing proof generation code in veriT.  It will be restricted after
 a full review of the code.  As a consequence of this checking this rule is
 theoretically NP-complete.  In practice, however, the \currule-steps
@@ -543,7 +544,7 @@ $k$. & & \ctxsep &
     $\forall x_1, \dots, x_n.\varphi ≈ \forall y_1, \dots, y_n. \varphi'$
      & \currule{} \\
 \end{AletheXS}
-  where the variables $y_1, \dots, y_n$ is not free in $\forall x_1,
+  where the variables $y_1, \dots, y_n$ are not free in $\forall x_1,
   \dots, x_n.\varphi$.
 \end{RuleDescription}
 
@@ -559,7 +560,7 @@ $j$. &
 $k$. & & \ctxsep & $\exists x_1, \dots, x_n.\varphi ≈ \psi$ & \currule{} \\
 \end{AletheXS}
 where $\varepsilon_i$ stands for $\varepsilon x_i. (\exists x_{i+1}, \dots,
-x_n. \varphi[x_1\mapsto \varepsilon_1,\dots,x_{i-1}\mapsto\varepsilon_{i-1}])$.
+x_n. \varphi)$.
 \end{RuleDescription}
 
 \begin{RuleDescription}{sko_forall}
@@ -618,7 +619,7 @@ $i_2$. & \ctxsep  & $\Gamma$  & $t_2 ≈ u_2 $ & ($\dots$) \\
 $i_n$. & \ctxsep  & $\Gamma$  & $t_n ≈ u_n $ & ($\dots$) \\
 $j$. & \ctxsep  & $\Gamma$  & $(f\,t_1\,\cdots\,t_n) ≈ (f\,u_1\,\cdots\,u_n)$  & (\currule\; $i_1$, $\dots$, $i_n$) \\
 \end{AletheXS}
-where $f$ is any $n$-ary function symbol of appropriate sort.
+where $f$ is any function symbol of appropriate sort.
 \end{RuleDescription}
 
 \begin{RuleDescription}{eq_reflexive}
@@ -729,7 +730,7 @@ An application of the \proofRule{or} rule.
 (step t15 (cl (or (= a b) (not (<= a b)) (not (<= b a))))
     :rule la_disequality)
 (step t16 (cl     (= a b) (not (<= a b)) (not (<= b a)))
-    :rule or :premises (t15))
+     :rule or :premises (t15))
 \end{AletheVerb}
 \end{RuleExample}
 
@@ -742,7 +743,7 @@ $j$. & \ctxsep & $\neg\varphi_1 , \dots , \neg\varphi_n$ & (\currule\;$i$) \\
 
 \begin{RuleDescription}{xor1}
 \begin{AletheX}
-$i$. & \ctxsep & $\lsymb{xor}\,\varphi_1\,\varphi_2$
+$i$. & \ctxsep & ($\lsymb{xor}\,\varphi_1\,\varphi_2$)
  & ($\dots$) \\
 $j$. & \ctxsep & $\varphi_1, \varphi_2$ & (\currule\;$i$) \\
 \end{AletheX}
@@ -750,7 +751,7 @@ $j$. & \ctxsep & $\varphi_1, \varphi_2$ & (\currule\;$i$) \\
 
 \begin{RuleDescription}{xor2}
 \begin{AletheX}
-$i$. & \ctxsep & $\lsymb{xor}\,\varphi_1\,\varphi_2$ & ($\dots$) \\
+$i$. & \ctxsep & ($\lsymb{xor}\,\varphi_1\,\varphi_2$) & ($\dots$) \\
 $j$. & \ctxsep & $\neg\varphi_1 , \neg\varphi_2$ & (\currule\;$i$) \\
 \end{AletheX}
 \end{RuleDescription}
@@ -846,25 +847,25 @@ with $1 \leq k \leq n$.
 
 \begin{RuleDescription}{xor_pos1}
 \begin{AletheX}
-$i$. & \ctxsep & $\neg (\varphi_1\,\lsymb{xor}\,\varphi_2) , \varphi_1 , \varphi_2$ & \currule \\
+$i$. & \ctxsep & $\neg (\lsymb{xor}\,\varphi_1\,\varphi_2) , \varphi_1 , \varphi_2$ & \currule \\
 \end{AletheX}
 \end{RuleDescription}
 
 \begin{RuleDescription}{xor_pos2}
 \begin{AletheX}
-$i$. & \ctxsep & $\neg (\varphi_1\,\lsymb{xor}\,\varphi_2), \neg \varphi_1, \neg \varphi_2$ & \currule \\
+$i$. & \ctxsep & $\neg (\lsymb{xor}\,\varphi_1\,\varphi_2), \neg \varphi_1, \neg \varphi_2$ & \currule \\
 \end{AletheX}
 \end{RuleDescription}
 
 \begin{RuleDescription}{xor_neg1}
 \begin{AletheX}
-$i$. & \ctxsep & $\varphi_1 \,\lsymb{xor}\, \varphi_2, \varphi_1 , \neg \varphi_2$ & \currule \\
+$i$. & \ctxsep & $(\lsymb{xor}\,\varphi_1\,\varphi_2), \varphi_1 , \neg \varphi_2$ & \currule \\
 \end{AletheX}
 \end{RuleDescription}
 
 \begin{RuleDescription}{xor_neg2}
 \begin{AletheX}
-$i$. & \ctxsep & $\varphi_1\,\lsymb{xor}\,\varphi_2, \neg \varphi_1, \varphi_2$ & \currule \\
+$i$. & \ctxsep & $(\lsymb{xor}\,\varphi_1\,\varphi_2), \neg \varphi_1, \varphi_2$ & \currule \\
 \end{AletheX}
 \end{RuleDescription}
 
@@ -912,14 +913,14 @@ $i$. & \ctxsep & $\varphi_1 ≈ \varphi_2, \varphi_1, \varphi_2$ & \currule \\
 
 \begin{RuleDescription}{ite1}
 \begin{AletheX}
-$i$. & \ctxsep & $\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3$ & ($\dots$) \\
+$i$. & \ctxsep & $(\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3)$ & ($\dots$) \\
 $j$. & \ctxsep & $\varphi_1 , \varphi_3$ & (\currule\;$i$) \\
 \end{AletheX}
 \end{RuleDescription}
 
 \begin{RuleDescription}{ite2}
 \begin{AletheX}
-$i$. & \ctxsep & $\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3$ & ($\dots$) \\
+$i$. & \ctxsep & $(\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3)$ & ($\dots$) \\
 $j$. & \ctxsep & $\neg\varphi_1, \varphi_2$ & (\currule\;$i$) \\
 \end{AletheX}
 \end{RuleDescription}
@@ -938,13 +939,13 @@ $i$. & \ctxsep & $\neg (\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3), \neg \var
 
 \begin{RuleDescription}{ite_neg1}
 \begin{AletheX}
-$i$. & \ctxsep & $\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3, \varphi_1, \neg \varphi_3$ & (\currule) \\
+$i$. & \ctxsep & $(\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3, \varphi_1, \neg \varphi_3)$ & (\currule) \\
 \end{AletheX}
 \end{RuleDescription}
 
 \begin{RuleDescription}{ite_neg2}
 \begin{AletheX}
-$i$. & \ctxsep & $\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3, \neg \varphi_1, \neg \varphi_2$ & (\currule) \\
+$i$. & \ctxsep & $(\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3, \neg \varphi_1, \neg \varphi_2)$ & (\currule) \\
 \end{AletheX}
 \end{RuleDescription}
 
@@ -967,31 +968,31 @@ $j$. & \ctxsep & $\neg\varphi_1 , \neg\varphi_2$ & (\currule\;$i$) \\
   of the following:
 \begin{AletheXS}
 $i$. & \ctxsep  & $\Gamma$  & 
-    $\varphi_1\,\lsymb{xor}\,\varphi_2 ≈
-    (\neg\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \neg\varphi_2)$ & \currule \\
+    $(\lsymb{xor}\,\varphi_1\,\varphi_2) ≈
+    ((\neg\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \neg\varphi_2))$ & \currule \\
 \end{AletheXS}
 
 \begin{AletheXS}
 $i$. & \ctxsep  & $\Gamma$  & 
-      $\varphi_1≈\varphi_2 ≈
-      (\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1)$ & \currule \\
+      $(\varphi_1 ≈ \varphi_2) ≈
+      ((\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1))$ & \currule \\
 \end{AletheXS}
 
 \begin{AletheXS}
 $i$. & \ctxsep  & $\Gamma$  & 
-      $\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3 ≈
-      (\varphi_1 \rightarrow \varphi_2) \land (\neg\varphi_1 \rightarrow \varphi_3)$ & \currule \\
+      $(\lsymb{ite}\,\varphi_1\,\varphi_2\,\varphi_3) ≈
+      ((\varphi_1 \rightarrow \varphi_2) \land (\neg\varphi_1 \rightarrow \varphi_3))$ & \currule \\
 \end{AletheXS}
 
 \begin{AletheXS}
 $i$. & \ctxsep  & $\Gamma$  & 
-      $\forall x_1, \dots, x_n.\,\varphi ≈ \neg(\exists x_1, \dots, x_n.\,
+      $(\forall x_1, \dots, x_n.\,\varphi) ≈ \neg(\exists x_1, \dots, x_n.\,
       \neg\varphi)$ & \currule \\
 \end{AletheXS}
 \end{RuleDescription}
 
 \begin{RuleDescription}{and_simplify}
-This rule simplifies an $\land$ term by applying equivalent
+This rule simplifies an $\land$ term by applying equivalence-preserving
 transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1020,7 +1021,7 @@ The possible transformations are:
 \end{RuleDescription}
 
 \begin{RuleDescription}{or_simplify}
-This rule simplifies an $\lor$ term by applying equivalent
+This rule simplifies an $\lor$ term by applying equivalence-preserving
 transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1049,7 +1050,7 @@ The possible transformations are:
 \end{RuleDescription}
 
 \begin{RuleDescription}{not_simplify}
-This rule simplifies an $\neg$ term by applying equivalent
+This rule simplifies an $\neg$ term by applying equivalence-preserving
 transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1066,7 +1067,7 @@ The possible transformations are:
 \end{RuleDescription}
 
 \begin{RuleDescription}{implies_simplify}
-This rule simplifies an $\rightarrow$ term by applying equivalent
+This rule simplifies an $\rightarrow$ term by applying equivalence-preserving
 transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1089,7 +1090,7 @@ The possible transformations are:
 
 \begin{RuleDescription}{equiv_simplify}
 This rule simplifies a formula with the head symbol $≈\,: \lsymb{Bool}\,\lsymb{Bool}\,\lsymb{Bool}$
-by applying equivalent
+by applying equivalence-preserving
 transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1111,7 +1112,7 @@ The possible transformations are:
 \end{RuleDescription}
 
 \begin{RuleDescription}{bool_simplify}
-This rule simplifies a boolean term by applying equivalent
+This rule simplifies a boolean term by applying equivalence-preserving
 transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1143,7 +1144,7 @@ $i$. & \ctxsep & $\Gamma$ & $\psi ≈ \varphi_1 \circ\cdots\circ\varphi_n$ & \cu
 \end{RuleDescription}
 
 \begin{RuleDescription}{ite_simplify}
-  This rule simplifies an if-then-else term by applying equivalent
+  This rule simplifies an if-then-else term by applying equivalence-preserving
   transformations until fixed point\footnote{Note however that the order of the
     application is important, since the set of rules is not confluent. For
     example, the term $(\lsymb{ite} \top \; t_1 \; t_2 ≈
@@ -1153,26 +1154,26 @@ $i$. & \ctxsep & $\Gamma$ & $\psi ≈ \varphi_1 \circ\cdots\circ\varphi_n$ & \cu
 It has the form
 
 \begin{AletheXS}
-$i$. & \ctxsep & $\Gamma$ & $\lsymb{ite}\,\varphi\,t_1\,t_2 ≈ u$ & \currule \\
+$i$. & \ctxsep & $\Gamma$ & $(\lsymb{ite}\,\varphi\,t_1\,t_2) ≈ u$ & \currule \\
 \end{AletheXS}
 where $u$ is the transformed term.
 
 The possible transformations are:
 \begin{itemize}
-    \item $\lsymb{ite}\, \top      \, t_1 \, t_2 ⇒ t_1$
-    \item $\lsymb{ite}\, \bot      \, t_1 \, t_2 ⇒ t_2$
-    \item $\lsymb{ite}\, \psi      \, t \, t ⇒ t$
-    \item $\lsymb{ite}\, \neg \varphi \, t_1 \, t_2 ⇒ \lsymb{ite}\, \varphi \, t_2 \, t_1$
-    \item $\lsymb{ite}\, \psi \, (\lsymb{ite}\, \psi\,t_1\,t_2)\, t_3 ⇒
-      \lsymb{ite}\, \psi\, t_1\, t_3$
-    \item $\lsymb{ite}\, \psi \, t_1\, (\lsymb{ite}\, \psi\,t_2\,t_3) ⇒
-      \lsymb{ite}\, \psi\, t_1\, t_3$
-    \item $\lsymb{ite}\, \psi \, \top\, \bot ⇒ \psi$
-    \item $\lsymb{ite}\, \psi \, \bot\, \top ⇒ \neg\psi$
-    \item $\lsymb{ite}\, \psi \, \top \, \varphi ⇒ \psi\lor\varphi$
-    \item $\lsymb{ite}\, \psi \, \varphi\,\bot ⇒ \psi\land\varphi$
-    \item $\lsymb{ite}\, \psi \, \bot\, \varphi ⇒ \neg\psi\land\varphi$
-    \item $\lsymb{ite}\, \psi \, \varphi\,\top ⇒ \neg\psi\lor\varphi$
+    \item $(\lsymb{ite}\, \top      \, t_1 \, t_2) ⇒ t_1$
+    \item $(\lsymb{ite}\, \bot      \, t_1 \, t_2) ⇒ t_2$
+    \item $(\lsymb{ite}\, \psi      \, t \, t) ⇒ t$
+    \item $(\lsymb{ite}\, \neg \varphi \, t_1 \, t_2) ⇒ (\lsymb{ite}\, \varphi \, t_2 \, t_1)$
+    \item $(\lsymb{ite}\, \psi \, (\lsymb{ite}\, \psi\,t_1\,t_2)\, t_3) ⇒
+      (\lsymb{ite}\, \psi\, t_1\, t_3)$
+    \item $(\lsymb{ite}\, \psi \, t_1\, (\lsymb{ite}\, \psi\,t_2\,t_3) ⇒
+      (\lsymb{ite}\, \psi\, t_1\, t_3)$
+    \item $(\lsymb{ite}\, \psi \, \top\, \bot) ⇒ \psi$
+    \item $(\lsymb{ite}\, \psi \, \bot\, \top) ⇒ \neg\psi$
+    \item $(\lsymb{ite}\, \psi \, \top \, \varphi) ⇒ \psi\lor\varphi$
+    \item $(\lsymb{ite}\, \psi \, \varphi\,\bot) ⇒ \psi\land\varphi$
+    \item $(\lsymb{ite}\, \psi \, \bot\, \varphi) ⇒ \neg\psi\land\varphi$
+    \item $(\lsymb{ite}\, \psi \, \varphi\,\top) ⇒ \neg\psi\lor\varphi$
 \end{itemize}
 \end{RuleDescription}
 
@@ -1180,7 +1181,7 @@ The possible transformations are:
   This rule simplifies a $\forall$-formula with a constant predicate.
 
 \begin{AletheXS}
-$i$. & \ctxsep & $\Gamma$ & $\forall x_1, \dots, x_n. \varphi ≈ \varphi$ & \currule \\
+$i$. & \ctxsep & $\Gamma$ & $(\forall x_1, \dots, x_n. \varphi) ≈ \varphi$ & \currule \\
 \end{AletheXS}
   where $\varphi$ is either $\top$ or $\bot$.
 \end{RuleDescription}
@@ -1255,7 +1256,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x
 \end{RuleDescription}
 
 \begin{RuleDescription}{eq_simplify}
-  This rule simplifies an $≈$ term by applying equivalent
+  This rule simplifies an $≈$ term by applying equivalence-preserving
   transformations as long as possible. Hence, the general form is
 
 \begin{AletheXS}
@@ -1272,7 +1273,7 @@ $i$. & \ctxsep & $\Gamma$ & $(t_1≈ t_2) ≈ \varphi$ & \currule \\
 \end{RuleDescription}
 
 \begin{RuleDescription}{div_simplify}
-This rule simplifies a division by applying equivalent
+This rule simplifies a division by applying equivalence-preserving
 transformations. The general form is
 
 \begin{AletheXS}
@@ -1284,12 +1285,12 @@ The possible transformations are:
   \item $t\, /\, 1 ⇒ t$
   \item $t_1\,  /\,  t_2 ⇒ t_3$
     if $t_1$ and $t_2$ are constants and $t_3$ is $t_1$
-    divided by $t_2$ according to the semantic of the current theory.
+    divided by $t_2$ according to the semantics of the current theory.
 \end{itemize}
 \end{RuleDescription}
 
 \begin{RuleDescription}{prod_simplify}
-This rule simplifies a product by applying equivalent
+This rule simplifies a product by applying equivalence-preserving
 transformations as long as possible. The general form is
 
 \begin{AletheXS}
@@ -1328,7 +1329,7 @@ where $u$ is the negated numerical constant $t$.
 \end{RuleDescription}
 
 \begin{RuleDescription}{minus_simplify}
-This rule simplifies a subtraction by applying equivalent
+This rule simplifies a subtraction by applying equivalence-preserving
 transformations. The general form is
 
 \begin{AletheXS}
@@ -1346,7 +1347,7 @@ The possible transformations are:
 \end{RuleDescription}
 
 \begin{RuleDescription}{sum_simplify}
-This rule simplifies a sum by applying equivalent
+This rule simplifies a sum by applying equivalence-preserving
 transformations as long as possible. The general form is
 
 \begin{AletheXS}
@@ -1370,7 +1371,7 @@ The possible transformations are:
 \end{RuleDescription}
 
 \begin{RuleDescription}{comp_simplify}
-This rule simplifies a comparison by applying equivalent
+This rule simplifies a comparison by applying equivalence-preserving
 transformations as long as possible. The general form is
 
 \begin{AletheXS}