From 744c711b0616e91f37327df94c549589914c8439 Mon Sep 17 00:00:00 2001 From: Hans-Joerg Schurr <commits@schurr.at> Date: Sun, 19 Jun 2022 23:17:14 +0200 Subject: [PATCH] Change syntax of rules to differentiate premises and arguments --- spec/doc.tex | 56 ++++++------ spec/rule_list.tex | 218 ++++++++++++++++++++++----------------------- 2 files changed, 137 insertions(+), 137 deletions(-) diff --git a/spec/doc.tex b/spec/doc.tex index 5c93ec4..8dcd85a 100644 --- a/spec/doc.tex +++ b/spec/doc.tex @@ -452,11 +452,11 @@ understand the proof intuitively. \begin{plContainer} \begin{plList} - \proofsep& 1.& \forall x.\, P(x) &(\proofRule{assume})\\ - \proofsep& 2.& \neg P(a) &(\proofRule{assume})\\ - \proofsep& 3.& \neg (\forall x.\, P(x)) \lor P(a) &(\proofRule{forall_inst};;(x, a))\\ - \proofsep& 4.& \neg (\forall x.\, P(x)), P(a) &(\proofRule{or}; 3)\\ - \proofsep& 5.& \bot &(\proofRule{resolution}; 1, 2, 4)\\ + \proofsep& 1.& \forall x.\, P(x) &\proofRule{assume}\\ + \proofsep& 2.& \neg P(a) &\proofRule{assume}\\ + \proofsep& 3.& \neg (\forall x.\, P(x)) \lor P(a) &\proofRule{forall_inst}\,[(x, a)]\\ + \proofsep& 4.& \neg (\forall x.\, P(x)), P(a) &(\proofRule{or}\:3)\\ + \proofsep& 5.& \bot &(\proofRule{resolution}\: 1, 2, 4)\\ \end{plList} \end{plContainer} @@ -467,7 +467,7 @@ A proof in the Alethe language is an indexed list of steps. To mimic the concrete syntax we write a step in the form \begin{plListEq} c_1,\,\dots,\, c_k &\proofsep i. & \varphi_1,\dots ,\varphi_l & - (\proofRule{rule};\: p_1,\,\dots,\, p_n;\: a_1,\,\dots,\,a_m) + (\proofRule{rule}\: p_1,\,\dots,\, p_n)\,[a_1,\,\dots,\,a_m] \end{plListEq} \noindent Each step has a unique index \(i \in \mathbb{I}\), where \(\mathbb{I}\) is a countable @@ -542,18 +542,18 @@ lemma \(((2 + 2) \simeq 5) \Rightarrow 4 \simeq 5\). \begin{plContainer} \begin{plList} -\proofsep& 1.& (2 + 2) \simeq 5 &(\proofRule{assume})\\ +\proofsep& 1.& (2 + 2) \simeq 5 &\proofRule{assume}\\ \end{plList} \begin{plSubList} -\proofsep& 2.& (2 + 2) \simeq 5 &(\proofRule{assume})\\ -\proofsep& 3.& (2 + 2) \simeq 4 &(\proofRule{plus\_simplify})\\ -\proofsep& 4.& 4 \simeq 5 &(\proofRule{trans}; 1, 2)\\ +\proofsep& 2.& (2 + 2) \simeq 5 &\proofRule{assume}\\ +\proofsep& 3.& (2 + 2) \simeq 4 &\proofRule{plus\_simplify}\\ +\proofsep& 4.& 4 \simeq 5 &(\proofRule{trans}\;1, 2)\\ \end{plSubList} \begin{plList} -\proofsep& 5.& \neg((2 + 2) \simeq 5), 4 \simeq 5 &(\proofRule{subproof})\\ -\proofsep& 6.& (4 \simeq 5)\leftrightarrow \bot &(\proofRule{eq\_simplify})\\ -\proofsep& 7.& \neg((4 \simeq 5)\leftrightarrow \bot), \neg(4\simeq 5), \bot &(\proofRule{equiv\_pos2})\\ -\proofsep& 8.& \bot &(\proofRule{resolution}; 1, 5, 7, 8)\\ +\proofsep& 5.& \neg((2 + 2) \simeq 5), 4 \simeq 5 &\proofRule{subproof}\\ +\proofsep& 6.& (4 \simeq 5)\leftrightarrow \bot &\proofRule{eq\_simplify}\\ +\proofsep& 7.& \neg((4 \simeq 5)\leftrightarrow \bot), \neg(4\simeq 5), \bot &\proofRule{equiv\_pos2}\\ +\proofsep& 8.& \bot &(\proofRule{resolution}\; 1, 5, 7, 8)\\ \end{plList} \end{plContainer} @@ -1156,16 +1156,16 @@ the coefficients is a trivial inequality between constants. The following example is the proof for the unsatisfiability of $(x+y<1) \lor (3<x)$, $x\simeq 2$, and $0\simeq y$. \begin{plListEq} -\proofsep& 1.& (3 < x) \lor (x + y < 1) &(\proofRule{assume})\\ -\proofsep& 2.& x\simeq 2 &(\proofRule{assume})\\ -\proofsep& 3.& 0\simeq y &(\proofRule{assume})\\ -\proofsep& 4.& (3 < x), (x + y < 1) &(\proofRule{or};1)\\ -\proofsep& 5.& \neg (3<x), \neg (x\simeq 2) &(\proofRule{la\_generic};\: ;1.0, 1.0)\\ -\proofsep& 6.& \neg (3<x) &(\proofRule{resolution}; 2, 5)\\ -\proofsep& 7.& x + y < 1 &(\proofRule{resolution}; 4, 6)\\ +\proofsep& 1.& (3 < x) \lor (x + y < 1) &\proofRule{assume}\\ +\proofsep& 2.& x\simeq 2 &\proofRule{assume}\\ +\proofsep& 3.& 0\simeq y &\proofRule{assume}\\ +\proofsep& 4.& (3 < x), (x + y < 1) &(\proofRule{or}\;1)\\ +\proofsep& 5.& \neg (3<x), \neg (x\simeq 2) &\proofRule{la\_generic}\; [1.0, 1.0]\\ +\proofsep& 6.& \neg (3<x) &(\proofRule{resolution}\; 2, 5)\\ +\proofsep& 7.& x + y < 1 &(\proofRule{resolution}\; 4, 6)\\ \proofsep& 8.& \neg (x + y < 1), \neg (x\simeq 2) \lor \neg (0 \simeq y) -&(\proofRule{la\_generic};\: ;1.0, -1.0, 1.0)\\ -\proofsep& 9.& \bot &(\proofRule{resolution};\:\; 8, 7, 2, 3) +&\proofRule{la\_generic}\;[1.0, -1.0, 1.0]\\ +\proofsep& 9.& \bot &(\proofRule{resolution}\; 8, 7, 2, 3) \end{plListEq} \end{example} @@ -1178,7 +1178,7 @@ a step $m$ ($m > n$) where the variable is quantified. \begin{plListEq} \Gamma, x\mapsto (\varepsilon x.\varphi) &\proofsep n.&\varphi \simeq \psi &(\proofRule{\dots})\\ - \Gamma &\proofsep m.& (\exists x.\varphi) \simeq \psi &(\proofRule{sko\_ex};\: n) + \Gamma &\proofsep m.& (\exists x.\varphi) \simeq \psi &(\proofRule{sko\_ex}\; n) \end{plListEq} \begin{example} @@ -1189,10 +1189,10 @@ a simple tautology on the equality (reflexivity in this case), \proofRule{cong} is functional congruence, and \proofRule{sko\_forall} works like \proofRule{sko\_ex}, except that the choice term is $\varepsilon x.\neg\varphi$. \begin{plListEqAlgn} - x\mapsto (\varepsilon x.\neg p(x)) \proofsep& 1.& x &\simeq \varepsilon x.\neg p(x) &(\proofRule{refl})\\ - x\mapsto (\varepsilon x.\neg p(x)) \proofsep& 2.& p(x) &\simeq p(\varepsilon x.\neg p(x)) &(\proofRule{cong};\: 1)\\ - \proofsep& 3.&( \forall x.p(x))&\simeq p(\varepsilon x.\neg p(x)) &(\proofRule{sko\_forall};\: 2)\\ - \proofsep& 4.&(\neg\forall x.p(x))&\simeq \neg p(\varepsilon x.\neg p(x)) &(\proofRule{cong};\: 3) + x\mapsto (\varepsilon x.\neg p(x)) \proofsep& 1.& x &\simeq \varepsilon x.\neg p(x) &\proofRule{refl}\\ + x\mapsto (\varepsilon x.\neg p(x)) \proofsep& 2.& p(x) &\simeq p(\varepsilon x.\neg p(x)) &(\proofRule{cong}\; 1)\\ + \proofsep& 3.&( \forall x.p(x))&\simeq p(\varepsilon x.\neg p(x)) &(\proofRule{sko\_forall}\; 2)\\ + \proofsep& 4.&(\neg\forall x.p(x))&\simeq \neg p(\varepsilon x.\neg p(x)) &(\proofRule{cong}\; 3) \end{plListEqAlgn} \end{example} diff --git a/spec/rule_list.tex b/spec/rule_list.tex index ed23cb8..ca37681 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -3,7 +3,7 @@ \begin{proof-rule}{assume}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& \phi &(\currule)\\ +\proofsep& i.& \phi &\currule\\ \end{plList} \end{plContainer} where $\varphi$ corresponds to a formula asserted in the input problem up @@ -18,7 +18,7 @@ $\grT{(assume }\dots\grT{)}$ command. \begin{proof-rule}{true}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& \top &(\currule)\\ +\proofsep& i.& \top &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -26,7 +26,7 @@ $\grT{(assume }\dots\grT{)}$ command. \begin{proof-rule}{false}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& \neg \bot &(\currule)\\ +\proofsep& i.& \neg \bot &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -34,7 +34,7 @@ $\grT{(assume }\dots\grT{)}$ command. \begin{proof-rule}{not_not}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& \neg (\neg \neg \varphi) , \varphi &(\currule)\\ +\proofsep& i.& \neg (\neg \neg \varphi) , \varphi &\currule\\ \end{plList} \end{plContainer} @@ -53,7 +53,7 @@ This rule is the resolution of two or more clauses. \proofsep& i_n.& \varphi^{n}_{1} , \dots , \varphi^{n}_{k^n} &(\dots)\\ \proofsep& j.& \varphi^{r_1}_{s_1} , \dots , \varphi^{r_m}_{s_m} -&(\currule; i_1, \dots, i_n)\\ +&(\currule\; i_1, \dots, i_n)\\ \end{plList} \end{plContainer} where $\varphi^{r_1}_{s_1} , \dots , \varphi^{r_m}_{s_m}$ are from $\varphi^{i}_{j}$ and @@ -84,7 +84,7 @@ serves only informational purpose. \proofsep& i.& \varphi_1 , \dots , \varphi_i , \dots , \varphi_j ,\dots , \varphi_n &(\dots)\\ - \proofsep& j.& \top &(\currule; i)\\ + \proofsep& j.& \top &(\currule\; i)\\ \end{plList} \end{plContainer} and $\varphi_i$, $\varphi_j$ are such that @@ -101,7 +101,7 @@ serves only informational purpose. \proofsep& i.& \varphi_1 , \dots , \varphi_n &(\dots)\\ \plLine\\ \proofsep& j.& \varphi_{k_1} , \dots , \varphi_{k_m} - &(\currule; i)\\ + &(\currule\; i)\\ \end{plList} \end{plContainer} where $m \leq n$ and $k_1 \dots k_m$ is a monotonic map to $1 \dots n$ @@ -117,14 +117,14 @@ last step of the subproof is the conclusion. \begin{plContainer} \begin{plSubList} -\proofsep& i_1.& \psi_1 &(\proofRule{input})\\ +\proofsep& i_1.& \psi_1 &\proofRule{assume}\\ \plLine\\ -\proofsep& i_n.& \psi_n &(\proofRule{input})\\ +\proofsep& i_n.& \psi_n &\proofRule{assume}\\ \plLine\\ \proofsep& j.& \varphi &(\dots)\\ \end{plSubList} \begin{plList} -\proofsep& k.& \neg\psi_1 , \dots , \neg \psi_n ,\varphi &(\currule)\\ +\proofsep& k.& \neg\psi_1 , \dots , \neg \psi_n ,\varphi &\currule\\ \end{plList} \end{plContainer} @@ -150,7 +150,7 @@ rational numbers, then a $\currule$ step has the form \begin{plListEq} \proofsep& i.& \varphi_1, \dots , \varphi_o -&(\currule; ; a_1, \dots, a_o)\\ +&\currule\;[a_1, \dots, a_o]\\ \end{plListEq} where $\varphi_i$ is either $\neg l_i$ or $l_i$, but never $s_1 @@ -241,7 +241,7 @@ same form as \texttt{la\_generic}, without the additional arguments. \begin{plList} \proofsep& i.& \varphi_1, \dots , \varphi_n -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} with $\varphi_i$ being linear inequalities. The disjunction @@ -259,7 +259,7 @@ can be NP-hard. Hence, this rule should be avoided when possible. \begin{plList} \proofsep& i.& t_1 \simeq t_2 \lor \neg (t_1 \leq t_2) \lor \neg (t_2 \leq t_1) -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -269,7 +269,7 @@ t_1 \simeq t_2 \lor \neg (t_1 \leq t_2) \lor \neg (t_2 \leq t_1) \begin{plList} \proofsep& i.& t_1 \leq t_2 \lor t_2 \leq t_1 -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -282,7 +282,7 @@ sophisticated reasoning. It has either the form \begin{plList} \proofsep& i.& \varphi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\varphi$ is either a linear inequality $s_1 \bowtie s_2$ @@ -294,7 +294,7 @@ The second form handles bounds on linear combinations. It is binary clause: \begin{plList} \proofsep& i.& \varphi_1 \lor \varphi_2 % Checked: this is a proper disjunction not a cl -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} @@ -324,7 +324,7 @@ as for the rule \proofRule{la\_generic}. \end{plSubList} \begin{plList} \Gamma \proofsep& k.& - \forall x_1, \dots, x_n.\varphi \leftrightarrow \forall y_1, \dots, y_n. \varphi' &(\currule)\\ + \forall x_1, \dots, x_n.\varphi \leftrightarrow \forall y_1, \dots, y_n. \varphi' &\currule\\ \end{plList} \end{plContainer} where the variables $y_1, \dots, y_n$ is not free in $\forall x_1, @@ -342,7 +342,7 @@ The \currule{} rule skolemizes existential quantifiers. \end{plSubList} \begin{plList} \Gamma \proofsep& k.& -\exists x_1, \dots, x_n.\varphi \leftrightarrow \psi &(\currule)\\ +\exists x_1, \dots, x_n.\varphi \leftrightarrow \psi &\currule\\ \end{plList} \end{plContainer} where $\varepsilon_i$ stands for $\varepsilon x_i. (\exists x_{i+1}, \dots, @@ -364,7 +364,7 @@ The \currule{} rule skolemizes universal quantifiers. \end{plSubList} \begin{plList} \Gamma \proofsep& k.& -\forall x_1, \dots, x_n.\varphi \leftrightarrow \psi &(\currule)\\ +\forall x_1, \dots, x_n.\varphi \leftrightarrow \psi &\currule\\ \end{plList}} \end{center} \end{plContainer} @@ -374,8 +374,8 @@ The \currule{} rule skolemizes universal quantifiers. \begin{plContainer} \begin{plList} \proofsep& i.& -\neg (\forall x_1, \dots, x_n. P) \lor P[t_1/x_1]\dots[t_n/x_n] -&(\currule; ; (x_{k_1}, t_{k_1}), \dots, (x_{k_n}, t_{k_n}))\\ +\neg (\forall x_1, \dots, x_n. P) \lor P[x_1\mapsto t_1]\dots[x_n\mapsto t_n] +&\currule\; [(x_{k_1}, t_{k_1}), \dots, (x_{k_n}, t_{k_n})]\\ \end{plList} \end{plContainer} where $k_1, \dots, k_n$ is a permutation of $1, \dots, n$ and $x_i$ and @@ -393,13 +393,13 @@ as currently done by \proofRule{qnt_cnf}. Either \begin{plContainer} \begin{plList} -\Gamma\proofsep& j.& t_1 \simeq t_2 &(\currule)\\ +\Gamma\proofsep& j.& t_1 \simeq t_2 &\currule\\ \end{plList} \end{plContainer} or \begin{plContainer} \begin{plList} -\Gamma\proofsep& j.& \varphi_1 \leftrightarrow \varphi_2 &(\currule)\\ +\Gamma\proofsep& j.& \varphi_1 \leftrightarrow \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -418,7 +418,7 @@ Either \Gamma\proofsep& i_1.& t_1 \simeq t_2 &(\dots)\\ \Gamma\proofsep& i_2.& t_2 \simeq t_3 &(\dots)\\ \Gamma\proofsep& i_n.& t_n \simeq t_{n+1} &(\dots)\\ -\Gamma\proofsep& j.& t_1 \simeq t_{n+1} &(\currule; i_1, \dots, i_n, j)\\ +\Gamma\proofsep& j.& t_1 \simeq t_{n+1} &(\currule\; i_1, \dots, i_n, j)\\ \end{plList} \end{plContainer} or @@ -427,7 +427,7 @@ or \Gamma\proofsep& i_1.& \varphi_1 \leftrightarrow \varphi_2 &(\dots)\\ \Gamma\proofsep& i_2.& \varphi_2 \leftrightarrow \varphi_3 &(\dots)\\ \Gamma\proofsep& i_n.& \varphi_n \leftrightarrow \varphi_{n+1} &(\dots)\\ -\Gamma\proofsep& j.& \varphi_1 \leftrightarrow \varphi_{n+1} &(\currule; i_1,\dots, i_n, j)\\ +\Gamma\proofsep& j.& \varphi_1 \leftrightarrow \varphi_{n+1} &(\currule\; i_1,\dots, i_n, j)\\ \end{plList} \end{plContainer} @@ -451,7 +451,7 @@ Either \Gamma\proofsep& i_1.& t_1 \simeq u_1 &(\dots)\\ \Gamma\proofsep& i_n.& t_n \simeq u_n &(\dots)\\ \Gamma\proofsep& j.& \operatorname{f}(t_1, \dots, t_n) \simeq -\operatorname{f}(u_1, \dots, u_n) &(\currule;i_1, \dots, i_n)\\ +\operatorname{f}(u_1, \dots, u_n) &(\currule\;i_1, \dots, i_n)\\ \end{plList} \end{plContainer} where $\operatorname{f}$ is an $n$-ary function symbol, @@ -461,7 +461,7 @@ or \Gamma\proofsep& i_1.& \varphi_1 \simeq \psi_1 &(\dots)\\ \Gamma\proofsep& i_n.& \varphi_n \simeq \psi_n &(\dots)\\ \Gamma\proofsep& j.& \operatorname{P}(\varphi_1, \dots, \varphi_n) \leftrightarrow -\operatorname{P}(\psi_1, \dots, \psi_n) &(\currule;i_1, \dots, i_n)\\ +\operatorname{P}(\psi_1, \dots, \psi_n) &(\currule\;i_1, \dots, i_n)\\ \end{plList} \end{plContainer} where $\operatorname{P}$ is an $n$-ary predicate symbol. @@ -473,7 +473,7 @@ where $\operatorname{P}$ is an $n$-ary predicate symbol. \begin{plList} \proofsep& i.& t \simeq t -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -484,7 +484,7 @@ t \simeq t \proofsep& i.& \neg (t_1 \simeq t_2) , \dots , \neg (t_{n-1} \simeq t_n) , t_1 \simeq t_n -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -495,7 +495,7 @@ t_1 \simeq t_n \proofsep& i.& \neg (t_1 \simeq u_1) , \dots , \neg (t_n \simeq u_n) , f(t_1, \dots, t_n) \simeq f(u_1, \dots, u_n) -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -508,7 +508,7 @@ f(t_1, \dots, t_n) \simeq f(u_1, \dots, u_n) \proofsep& i.& \neg (t_1 \simeq u_1) , \dots , \neg (t_n \simeq u_n) , \neg (P(t_1, \dots, t_n) \simeq P(u_1, \dots, u_n)) -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} %\endgroup @@ -521,7 +521,7 @@ f(t_1, \dots, t_n) \simeq f(u_1, \dots, u_n) \begin{plList} \proofsep& i.& \neg(\forall x_1, \dots, x_n. \varphi) \lor \forall x_{k_1}, \dots, x_{k_m}.\varphi' -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} This rule expresses clausification of a term under a universal @@ -566,7 +566,7 @@ done during clausification. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1 \land \dots \land \varphi_n&(\dots)\\ - \proofsep& j.& \varphi_i &(\currule; i)\\ + \proofsep& j.& \varphi_i &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -576,7 +576,7 @@ done during clausification. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1 \lor \dots \lor \varphi_n) &(\dots)\\ -\proofsep& j.& \neg \varphi_i &(\currule; i)\\ +\proofsep& j.& \neg \varphi_i &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -585,7 +585,7 @@ done during clausification. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1 \lor \dots \lor \varphi_n &(\dots)\\ -\proofsep& j.& \varphi_1 , \dots , \varphi_n &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \dots , \varphi_n &(\currule\; i)\\ \end{plList} \end{plContainer} @@ -608,7 +608,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1 \land \dots \land \varphi_n) &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \dots , \neg\varphi_n &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \dots , \neg\varphi_n &(\currule\; i)\\ \end{plList} \end{plContainer} @@ -618,7 +618,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \operatorname{xor} \varphi_1\;\varphi_2 &(\dots)\\ -\proofsep& j.& \varphi_1 , \varphi_2 &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -627,7 +627,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \operatorname{xor} \varphi_1\;\varphi_2 &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \neg\varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \neg\varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -636,7 +636,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg(\operatorname{xor} \varphi_1\;\varphi_2) &(\dots)\\ -\proofsep& j.& \varphi_1 , \neg\varphi_2 &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \neg\varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -645,7 +645,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg(\operatorname{xor} \varphi_1\;\varphi_2) &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -654,7 +654,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1\rightarrow\varphi_2 &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -663,7 +663,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1\rightarrow\varphi_2) &(\dots)\\ -\proofsep& j.& \varphi_1 &(\currule; i)\\ +\proofsep& j.& \varphi_1 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -672,7 +672,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1\rightarrow\varphi_2) &(\dots)\\ -\proofsep& j.& \neg\varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -681,7 +681,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1\leftrightarrow\varphi_2 &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -690,7 +690,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1\leftrightarrow\varphi_2 &(\dots)\\ -\proofsep& j.& \varphi_1 , \neg\varphi_2 &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \neg\varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -699,7 +699,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg(\varphi_1\leftrightarrow\varphi_2) &(\dots)\\ -\proofsep& j.& \varphi_1 , \varphi_2 &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -708,7 +708,7 @@ An application of the \currule{} rule. \begin{plContainer} \begin{plList} \proofsep& i.& \neg(\varphi_1\leftrightarrow\varphi_2) &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \neg\varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \neg\varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -716,7 +716,7 @@ An application of the \currule{} rule. \begin{proof-rule}{and_pos}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& \neg (\varphi_1 \land \dots \land \varphi_n) , \varphi_k &(\currule)\\ +\proofsep& i.& \neg (\varphi_1 \land \dots \land \varphi_n) , \varphi_k &\currule\\ \end{plList} \end{plContainer} with $1 \leq k \leq n$. @@ -726,7 +726,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& (\varphi_1 \land \dots \land \varphi_n), \neg\varphi_1 - , \dots , \neg\varphi_n &(\currule)\\ + , \dots , \neg\varphi_n &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -735,7 +735,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1 \lor \dots \lor \varphi_n) , \varphi_1 , \dots - , \varphi_n &(\currule)\\ + , \varphi_n &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -743,7 +743,7 @@ with $1 \leq k \leq n$. \begin{proof-rule}{or_neg}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& (\varphi_1 \lor \dots \lor \varphi_n) , \neg \varphi_k &(\currule)\\ +\proofsep& i.& (\varphi_1 \lor \dots \lor \varphi_n) , \neg \varphi_k &\currule\\ \end{plList} \end{plContainer} with $1 \leq k \leq n$. @@ -752,7 +752,7 @@ with $1 \leq k \leq n$. \begin{proof-rule}{xor_pos1}{veriT} \begin{plContainer} \begin{plList} -\proofsep& i.& \neg (\varphi_1 \operatorname{xor} \varphi_2) , \varphi_1 , \varphi_2 &(\currule)\\ +\proofsep& i.& \neg (\varphi_1 \operatorname{xor} \varphi_2) , \varphi_1 , \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -761,7 +761,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1 \operatorname{xor} \varphi_2) -, \neg \varphi_1, \neg \varphi_2 &(\currule)\\ +, \neg \varphi_1, \neg \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -770,7 +770,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1 \operatorname{xor} \varphi_2 -, \varphi_1 , \neg \varphi_2 &(\currule)\\ +, \varphi_1 , \neg \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -779,7 +779,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1 \operatorname{xor} \varphi_2 -, \neg \varphi_1 , \varphi_2 &(\currule)\\ +, \neg \varphi_1 , \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -788,7 +788,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \neg (\varphi_1 \rightarrow \varphi_2) -, \neg \varphi_1 , \varphi_2 &(\currule)\\ +, \neg \varphi_1 , \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -797,7 +797,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1 \rightarrow \varphi_2 -, \varphi_1 &(\currule)\\ +, \varphi_1 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -806,7 +806,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \varphi_1 \rightarrow \varphi_2 -, \neg \varphi_2 &(\currule)\\ +, \neg \varphi_2 &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -816,7 +816,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \neg (\varphi_1 \leftrightarrow \varphi_2) , \varphi_1 , \neg \varphi_2 -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -826,7 +826,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \neg (\varphi_1 \leftrightarrow \varphi_2) , \neg \varphi_1 , \varphi_2 -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -836,7 +836,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \varphi_1 \leftrightarrow \varphi_2 , \neg \varphi_1 , \neg \varphi_2 -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -846,7 +846,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \varphi_1 \leftrightarrow \varphi_2 , \varphi_1 , \varphi_2 -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -855,7 +855,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \operatorname{ite}\varphi_1\;\varphi_2\;\varphi_3 &(\dots)\\ -\proofsep& j.& \varphi_1 , \varphi_3 &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \varphi_3 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -864,7 +864,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \operatorname{ite}\varphi_1\;\varphi_2\;\varphi_3 &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -874,7 +874,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \neg (\operatorname{ite} \varphi_1\;\varphi_2\;\varphi_3) , \varphi_1 , \varphi_3 - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -884,7 +884,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \neg (\operatorname{ite} \varphi_1\;\varphi_2\;\varphi_3) , \neg \varphi_1 , \varphi_2 - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -894,7 +894,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \operatorname{ite} \varphi_1\;\varphi_2\;\varphi_3 , \varphi_1 , \neg \varphi_3 - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -904,7 +904,7 @@ with $1 \leq k \leq n$. \begin{plList} \proofsep& i.& \operatorname{ite} \varphi_1\;\varphi_2\;\varphi_3 , \neg \varphi_1 , \neg \varphi_2 - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -913,7 +913,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \neg(\operatorname{ite}\varphi_1\;\varphi_2\;\varphi_3) &(\dots)\\ -\proofsep& j.& \varphi_1 , \neg\varphi_3 &(\currule; i)\\ +\proofsep& j.& \varphi_1 , \neg\varphi_3 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -922,7 +922,7 @@ with $1 \leq k \leq n$. \begin{plContainer} \begin{plList} \proofsep& i.& \neg(\operatorname{ite}\varphi_1\;\varphi_2\;\varphi_3) &(\dots)\\ -\proofsep& j.& \neg\varphi_1 , \neg\varphi_2 &(\currule; i)\\ +\proofsep& j.& \neg\varphi_1 , \neg\varphi_2 &(\currule\; i)\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -936,7 +936,7 @@ with $1 \leq k \leq n$. \Gamma\proofsep& i.& \varphi_1\operatorname{xor}\varphi_2 \leftrightarrow (\neg\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \neg\varphi_2) - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} @@ -945,7 +945,7 @@ with $1 \leq k \leq n$. \Gamma\proofsep& i.& \varphi_1\leftrightarrow\varphi_2 \leftrightarrow (\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1) - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} @@ -954,7 +954,7 @@ with $1 \leq k \leq n$. \Gamma\proofsep& i.& \operatorname{ite} \varphi_1\;\varphi_2\;\varphi_3 \leftrightarrow (\varphi_1 \rightarrow \varphi_2) \land (\neg\varphi_1 \rightarrow \varphi_3) - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} @@ -962,7 +962,7 @@ with $1 \leq k \leq n$. \begin{plList} \Gamma\proofsep& i.& \operatorname{\forall x_1, \dots, x_n.} \varphi \leftrightarrow \operatorname{\neg\exists x_1, \dots, x_n.} \neg\varphi - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} @@ -976,7 +976,7 @@ transformations as long as possible. Hence, the general form is \begin{plList} \Gamma\proofsep& i.& \varphi_1\land \dots\land\varphi_n \leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1009,7 +1009,7 @@ transformations as long as possible. Hence, the general form is \begin{plList} \Gamma\proofsep& i.& (\varphi_1\lor \dots\lor\varphi_n) \leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1042,7 +1042,7 @@ transformations as long as possible. Hence, the general form is \begin{plList} \Gamma\proofsep& i.& \neg\varphi \leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1063,7 +1063,7 @@ transformations as long as possible. Hence, the general form is \begin{plList} \Gamma\proofsep& i.& \varphi_1\rightarrow \varphi_2 \leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1090,7 +1090,7 @@ transformations as long as possible. Hence, the general form is \begin{plList} \Gamma\proofsep& i.& (\varphi_1\leftrightarrow \varphi_2) \leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1116,7 +1116,7 @@ transformations as long as possible. Hence, the general form is \begin{plList} \Gamma\proofsep& i.& \varphi\leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1141,7 +1141,7 @@ The possible transformations are: \begin{plList} \Gamma\proofsep& i.& \psi \leftrightarrow \varphi_1 \circ\dots\circ\varphi_n - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} where $\circ \in \{\lor, \land\}$ and $\psi$ is a nested application of $\circ$. @@ -1167,7 +1167,7 @@ is $\mathbf{Bool}$ it has the form \begin{plList} \Gamma\proofsep& i.& \operatorname{ite} \varphi\;t_1\;t_2 \leftrightarrow \psi -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1177,7 +1177,7 @@ Otherwise, it has the form \begin{plList} \Gamma\proofsep& i.& \operatorname{ite} \varphi\;t_1\;t_2 \simeq u -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $u$ is the transformed term. @@ -1208,7 +1208,7 @@ The possible transformations are: \begin{plList} \Gamma\proofsep& i.& \forall x_1, \dots, x_n. \varphi \leftrightarrow \varphi - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} where $\varphi$ is either $\top$ or $\bot$. @@ -1227,7 +1227,7 @@ variables that can only have one value. \end{plSubList} \begin{plList} \Gamma \proofsep& k.& -Q x_1, \dots, x_n.\varphi \leftrightarrow Q x_{k_1}, \dots, x_{k_m}. \varphi' &(\currule)\\ +Q x_1, \dots, x_n.\varphi \leftrightarrow Q x_{k_1}, \dots, x_{k_m}. \varphi' &\currule\\ \end{plList} \end{plContainer} \end{plContainer} @@ -1278,7 +1278,7 @@ An application of the $\currule$ rule on the term $\forall x, y.\, x \simeq y Q x_1, \dots, x_n. Q x_{n+1}, \dots, x_{m}. \varphi \leftrightarrow Q x_{k_1}, \dots, x_{k_o}. \varphi - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} where $m > n$ and $Q\in\{\forall, \exists\}$. Furthermore, $k_1, \dots, k_o$ is a monotonic @@ -1291,7 +1291,7 @@ An application of the $\currule$ rule on the term $\forall x, y.\, x \simeq y \begin{plList} \Gamma\proofsep& i.& Q x_1, \dots, x_n. \varphi \leftrightarrow Q x_{k_1}, \dots, x_{k_m}.\varphi - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} where $m \leq n$ and $Q\in\{\forall, \exists\}$. Furthermore, $k_1, \dots, k_m$ is @@ -1308,7 +1308,7 @@ An application of the $\currule$ rule on the term $\forall x, y.\, x \simeq y \begin{plList} \Gamma\proofsep& i.& t_1\simeq t_2 \leftrightarrow \varphi - &(\currule)\\ + &\currule\\ \end{plList} \end{plContainer} where $\psi$ is the transformed term. @@ -1329,7 +1329,7 @@ transformations. The general form is \begin{plList} \Gamma\proofsep& i.& (t_1 / t_2) \simeq t_3 -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} @@ -1351,7 +1351,7 @@ transformations as long as possible. The general form is \begin{plList} \Gamma\proofsep& i.& t_1\times\dots\times t_n \simeq u -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} where $u$ is either a constant or a product. @@ -1379,14 +1379,14 @@ This rule is either \begin{plContainer} \begin{plList} \Gamma\proofsep& -i.& - (-t) \simeq t &(\currule)\\ +i.& - (-t) \simeq t &\currule\\ \end{plList} \end{plContainer} or \begin{plContainer} \begin{plList} \Gamma\proofsep& -i.& -t \simeq u &(\currule)\\ +i.& -t \simeq u &\currule\\ \end{plList} \end{plContainer} where $u$ is the negated numerical constant $t$. @@ -1399,7 +1399,7 @@ transformations. The general form is \begin{plContainer} \begin{plList} \Gamma\proofsep& -i.& t_1 - t_2 \simeq u &(\currule)\\ +i.& t_1 - t_2 \simeq u &\currule\\ \end{plList} \end{plContainer} @@ -1421,7 +1421,7 @@ transformations as long as possible. The general form is \begin{plContainer} \begin{plList} \Gamma\proofsep& -i.& t_1+\dots+t_n \simeq u &(\currule)\\ +i.& t_1+\dots+t_n \simeq u &\currule\\ \end{plList} \end{plContainer} where $u$ is either a constant or a product. @@ -1448,7 +1448,7 @@ transformations as long as possible. The general form is \begin{plContainer} \begin{plList} \Gamma\proofsep& -i.& t_1 \bowtie t_n \leftrightarrow \psi &(\currule)\\ +i.& t_1 \bowtie t_n \leftrightarrow \psi &\currule\\ \end{plList} \end{plContainer} where $\bowtie$ is as for the proof rule \proofRule{la_generic}, but never @@ -1488,7 +1488,7 @@ The possible transformations are: \Gamma \proofsep& k.& (\operatorname{let} x_1 := t_1, \dots, x_n := t_n. u) \simeq u' - &(\currule;i_1 \dots i_n)\\ + &(\currule\;i_1 \dots i_n)\\ \end{plList} \end{plContainer} where $\simeq$ is replaced by $\leftrightarrow$ where necessary. @@ -1505,7 +1505,7 @@ argument this predicate always holds: \begin{plList} \proofsep& i.& (\operatorname{distinct} t) \leftrightarrow \top -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} @@ -1516,7 +1516,7 @@ distinct, hence only two cases are possible: \begin{plList} \proofsep& i.& (\operatorname{distinct} \varphi\;\psi) \leftrightarrow \neg (\varphi \leftrightarrow \psi) -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} and @@ -1524,7 +1524,7 @@ and \begin{plList} \proofsep& i.& (\operatorname{distinct} \varphi_1\;\varphi_2\;\varphi_3\dots) \leftrightarrow \bot -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} @@ -1534,7 +1534,7 @@ The general case is \proofsep& i.& (\operatorname{distinct} t_1 \dots t_n) \leftrightarrow \bigwedge_{i=1}^{n}\bigwedge_{j=i+1}^{n} t_i\;{\not\simeq}\;t_j -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -1544,7 +1544,7 @@ The general case is \begin{plList} \proofsep& i.& (t \simeq u) \simeq (t \leq u \land u \leq t) -&(\currule)\\ +&\currule\\ \end{plList} \end{plContainer} @@ -1562,7 +1562,7 @@ If the operator $\circ$ is left associative, then the rule has the form \begin{plList} \Gamma\proofsep& i.& \bigcirc_{i=1}^{n} t_i \leftrightarrow -(\dots( t_1\circ t_2) \circ t_3)\circ \dots t_n) &(\currule)\\ +(\dots( t_1\circ t_2) \circ t_3)\circ \dots t_n) &\currule\\ \end{plList} \end{plContainer} @@ -1571,7 +1571,7 @@ If the operator $\circ$ is right associative, then the rule has the form \begin{plList} \Gamma\proofsep& i.& \bigcirc_{i=1}^{n} t_i \leftrightarrow -( t_1 \circ \dots \circ ( t_{n-2} \circ ( t_{n-1} \circ t_n)\dots) &(\currule)\\ +( t_1 \circ \dots \circ ( t_{n-2} \circ ( t_{n-1} \circ t_n)\dots) &\currule\\ \end{plList} \end{plContainer} @@ -1581,7 +1581,7 @@ If the operator is \emph{chainable}, then it has the form \Gamma\proofsep& i.& \bigcirc_{i=1}^{n} t_i \leftrightarrow ( t_1\circ t_2) \land ( t_2 \circ t_3) \land \dots -\land ( t_{n-1}\circ t_n) &(\currule)\\ +\land ( t_{n-1}\circ t_n) &\currule\\ \end{plList} \end{plContainer} \end{proof-rule} @@ -1590,15 +1590,15 @@ i.& \bigcirc_{i=1}^{n} t_i \leftrightarrow \begin{plContainer} \begin{plList} \proofsep& i.& \psi &(\dots)\\ -\proofsep& j.& \varphi &(\currule; i)\\ +\proofsep& j.& \varphi &(\currule\; i)\\ \end{plList} \end{plContainer} The formula $\varphi$ is $\psi$ after boolean functions have been simplified. This happens in a two step process. Both steps recursively iterate over $\psi$. The first step expands quantified variable of type $\mathbf{Bool}$. Hence, -$\exists x.t$ becomes $t[\bot/x]\lor t[\top/x]$ and -$\forall x.t$ becomes $t[\bot/x]\land t[\top/x]$. If $n$ variables of sort +$\exists x.t$ becomes $t[x\mapsto \bot]\lor t[x\mapsto \top]$ and +$\forall x.t$ becomes $t[x\mapsto \bot]\land t[x\mapsto \top]$. If $n$ variables of sort $\mathbf{Bool}$ appear in a quantifier, the disjunction (conjunction) has $2^n$ terms. Each term replaces the variables in $t$ according to the bits of a number which is increased by one for each subsequent @@ -1617,14 +1617,14 @@ or $\bot$ it is ignored. Either \begin{plContainer} \begin{plList} -\proofsep& i.& t \simeq (t' \land u_1 \land \dots \land u_n) &(\currule)\\ +\proofsep& i.& t \simeq (t' \land u_1 \land \dots \land u_n) &\currule\\ \end{plList} \end{plContainer} or \begin{plContainer} \begin{plList} \proofsep& i.& -\varphi \leftrightarrow (\varphi' \land u_1 \land \dots \land u_n) &(\currule)\\ +\varphi \leftrightarrow (\varphi' \land u_1 \land \dots \land u_n) &\currule\\ \end{plList} \end{plContainer} -- GitLab