diff --git a/spec/rule_list.tex b/spec/rule_list.tex index 02a513877c3449bf135332ce642942af80a8e98a..02d926a55f39f2bd9bfbf5eff1f665717ee64fd1 100644 --- a/spec/rule_list.tex +++ b/spec/rule_list.tex @@ -574,20 +574,20 @@ as for the rule \proofRule{la_generic}. Either of the form: - \begin{AletheX} - $i$. & \ctxsep & - $(t_1 > 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie t_1 * t_3$ - & (\currule) \\ - \end{AletheX} + \begin{AletheX} + $i$. & \ctxsep & + $(t_1 > 0 \wedge t_2 \bowtie t_3) \to t_1 * t_2 \bowtie t_1 * t_3$ + & (\currule) \\ + \end{AletheX} with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\ \noindent Or of the form: \begin{AletheX} - $i$. & \ctxsep & - $(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$ - & (\currule) \\ + $i$. & \ctxsep & + $(t_1 > 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$ + & (\currule) \\ \end{AletheX} \end{RuleDescription} @@ -596,35 +596,35 @@ with $\bowtie \in \{<,>, \le,\ge, ≈\}$.\\ Either of the form: - \begin{AletheX} - $i$. & \ctxsep & - $(t_1 < 0 \land t_2 \bowtie t_3) \rightarrow t_1 * t_2 \bowtie_{inv} t_1 * t_3$ - & (\currule) \\ - \end{AletheX} - - with $\bowtie \in \{<,>, \le,\ge, ≈\}$ and $\bowtie_{inv}$ being defined according to the following table. - - \begin{center} - \begin{tabular}{|c | c|} - \hline - $\bowtie$ & $\bowtie_{inv}$ is defined as: \\ - \hline - $ < $ & $ > $ \\ - $ \le $ & $ \ge $ \\ - $ ≈ $ & $ ≈ $ \\ - $ > $ & $ < $ \\ - $ \ge $ & $ \le $ \\ - \hline - \end{tabular} - \end{center} + \begin{AletheX} + $i$. & \ctxsep & + $(t_1 < 0 \land t_2 \bowtie t_3) \rightarrow t_1 * t_2 \bowtie_{inv} t_1 * t_3$ + & (\currule) \\ + \end{AletheX} + + with $\bowtie \in \{<,>, \le,\ge, ≈\}$ and $\bowtie_{inv}$ being defined according to the following table. + + \begin{center} + \begin{tabular}{|c | c|} + \hline + $\bowtie$ & $\bowtie_{inv}$ is defined as: \\ + \hline + $ < $ & $ > $ \\ + $ \le $ & $ \ge $ \\ + $ ≈ $ & $ ≈ $ \\ + $ > $ & $ < $ \\ + $ \ge $ & $ \le $ \\ + \hline + \end{tabular} + \end{center} \noindent Or of the form: - \begin{AletheX} - $i$. & \ctxsep & - $(t_1 < 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$ - & (\currule) \\ - \end{AletheX} + \begin{AletheX} + $i$. & \ctxsep & + $(t_1 < 0 \land \neg (t_2 ≈ t_3)) \rightarrow \neg (t_1 * t_2 ≈ t_1 * t_3)$ + & (\currule) \\ + \end{AletheX} \end{RuleDescription} \begin{RuleDescription}{bind} @@ -1126,7 +1126,7 @@ $i$. & \ctxsep & $\Gamma$ & \begin{RuleDescription}{and_simplify} This rule simplifies an $\land$ term by applying equivalence-preserving -transformations as long as possible. Hence, the general form is +transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $\varphi_1\land \cdots\land\varphi_n ≈ \psi$ & \currule \\ @@ -1155,7 +1155,7 @@ The possible transformations are: \begin{RuleDescription}{or_simplify} This rule simplifies an $\lor$ term by applying equivalence-preserving -transformations as long as possible. Hence, the general form is +transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $(\varphi_1\lor \cdots\lor\varphi_n) ≈ \psi$ & \currule \\ @@ -1184,7 +1184,7 @@ The possible transformations are: \begin{RuleDescription}{not_simplify} This rule simplifies an $\neg$ term by applying equivalence-preserving -transformations as long as possible. Hence, the general form is +transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $\neg\varphi ≈ \psi$ & \currule \\ @@ -1201,7 +1201,7 @@ The possible transformations are: \begin{RuleDescription}{implies_simplify} This rule simplifies an $\rightarrow$ term by applying equivalence-preserving -transformations as long as possible. Hence, the general form is +transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $\varphi_1\rightarrow \varphi_2 ≈ \psi$ & \currule \\ @@ -1224,7 +1224,7 @@ The possible transformations are: \begin{RuleDescription}{equiv_simplify} This rule simplifies a formula with the head symbol $≈\,: \lsymb{Bool}\,\lsymb{Bool}\,\lsymb{Bool}$ by applying equivalence-preserving -transformations as long as possible. Hence, the general form is +transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $(\varphi_1≈ \varphi_2) ≈ \psi$ & \currule \\ @@ -1246,7 +1246,7 @@ The possible transformations are: \begin{RuleDescription}{bool_simplify} This rule simplifies a boolean term by applying equivalence-preserving -transformations as long as possible. Hence, the general form is +transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $\varphi≈ \psi$ & \currule \\ @@ -1390,7 +1390,7 @@ $i$. & \ctxsep & $\Gamma$ & $Q x_1, \dots, x_n.\,\varphi ≈ Q x_{k_1}, \dots, x \begin{RuleDescription}{eq_simplify} This rule simplifies an $≈$ term by applying equivalence-preserving - transformations as long as possible. Hence, the general form is + transformations until a fixed point is reached. Hence, the general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $(t_1≈ t_2) ≈ \varphi$ & \currule \\ @@ -1424,7 +1424,7 @@ The possible transformations are: \begin{RuleDescription}{prod_simplify} This rule simplifies a product by applying equivalence-preserving -transformations as long as possible. The general form is +transformations until a fixed point is reached. The general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $t_1\times\cdots\times t_n ≈ u$ & \currule \\ @@ -1481,7 +1481,7 @@ The possible transformations are: \begin{RuleDescription}{sum_simplify} This rule simplifies a sum by applying equivalence-preserving -transformations as long as possible. The general form is +transformations until a fixed point is reached. The general form is \begin{AletheXS} $i$. & \ctxsep & $\Gamma$ & $t_1+\cdots+t_n ≈ u$ & \currule \\ @@ -1505,27 +1505,30 @@ The possible transformations are: \begin{RuleDescription}{comp_simplify} This rule simplifies a comparison by applying equivalence-preserving -transformations as long as possible. The general form is +transformations until a fixed point is reached. The general form is \begin{AletheXS} -$i$. & \ctxsep & $\Gamma$ & $t_1 \bowtie t_n ≈ \psi$ & \currule \\ +$i$. & \ctxsep & $\Gamma$ & $t_1 \bowtie t_2 ≈ \psi$ & \currule \\ \end{AletheXS} -where $\bowtie$ is as for the proof rule \proofRule{la_generic}, but never -$≈$. +where $\bowtie \in \{<, >, \leq, \geq\}$. -The possible transformations are: +The following transformation rules are used to simplify $t_1 \bowtie t_2$: \begin{itemize} - \item $t_1 < t_2 ⇒ \varphi$ where $t_1$ and - $t_2$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is - strictly greater than $t_2$ and $\bot$ otherwise. - \item $t < t ⇒ \bot$ - \item $t_1 \leq t_2 ⇒ \varphi$ where $t_1$ and - $t_2$ are numerical constants and $\varphi$ is $\top$ if $t_1$ is - greater than $t_2$ or equal and $\bot$ otherwise. - \item $t \leq t ⇒ \top$ - \item $t_1 \geq t_2 ⇒ t_2 \leq t_1$ - \item $t_1 < t_2 ⇒ \neg (t_2 \leq t_1)$ - \item $t_1 > t_2 ⇒ \neg (t_1 \leq t_2)$ + \item $s_1 < s_2 ⇒ \top$ if $s_1, s_2$ are numerical constants and + $s_1$ is strictly less than $s_2$ + \item $s_1 < s_2 ⇒ \bot$ if $s_1, s_2$ are numerical constants and + $s_1$ is greater or equal than $s_2$ + + \item $s_1 \leq s_2 ⇒ \top$ if $s_1, s_2$ are numerical constants and + $s_1$ is less or equal than $s_2$ + \item $s_1 \leq s_2 ⇒ \bot$ if $s_1, s_2$ are numerical constants and + $s_1$ is strictly greater than $s_2$ + + \item $s < s ⇒ \bot$ + \item $s \leq s ⇒ \top$ + \item $s_1 \geq s_2 ⇒ s_2 \leq s_1$ + \item $s_1 < s_2 ⇒ \neg (s_2 \leq s_1)$ + \item $s_1 > s_2 ⇒ \neg (s_1 \leq s_2)$ \end{itemize} \end{RuleDescription}