From 28d75df53dc1240213ecf07f3630b552c6b9a122 Mon Sep 17 00:00:00 2001 From: Hans-Joerg Schurr <commits@schurr.at> Date: Fri, 1 Jul 2022 23:21:17 +0200 Subject: [PATCH] WIP proof soundness --- spec/doc.tex | 27 +++++++++++++++++++++++++-- 1 file changed, 25 insertions(+), 2 deletions(-) diff --git a/spec/doc.tex b/spec/doc.tex index 3cd6cd3..38138cd 100644 --- a/spec/doc.tex +++ b/spec/doc.tex @@ -181,6 +181,7 @@ break \newtheorem{example}{Example} \newtheorem{theorem}{Theorem}[example] +\newtheorem{lemma}{Lemma}[example] \newtheorem{definition}{Definition}[example] % == Commands for Grammar == @@ -197,6 +198,8 @@ break \newcommand\negvthinspace{\kern-0.083333em} \newcommand\negvvthinspace{\kern-0.041667em} +\newcommand{\limp}{\rightarrow} + \newcommand\metafun[1]{\ensuremath{\mathit{#1}}} \newcommand\sort[1]{\mathsf{#1}} \newcommand\sym[1]{\mathsf{#1}} @@ -690,7 +693,7 @@ do not contain subpoof. \item the proof $P_{i+1}$, where the steps $s_{\mathit{start}}, \dots, s_{\mathit{end}}$ have been replaced by $s'$ as described above, is admissible. \end{itemize} - We call the proof $[s_{\mathit{start}}, \dots, s_{\mathit{end}}]$ a \emph{pure + We call the admissible proof $[s_{\mathit{start}}, \dots, s_{\mathit{end}}]$ a \emph{pure subproof}. \end{definition} @@ -733,7 +736,27 @@ steps in its outermost proof, then \] \end{theorem} -We wills tart with proofs with empty context and then add contexts. +We wills start with simple subproofs with empty contexts and then add contexts. +Here, we will assume that every rule is sound. + +\begin{lemma} + Let $P = [s_1, \dots, s_n]$ be a pure subpoof such that no $s_i$ is + an anchor, $s_n$ is a \proofRule{subproof} step with the conclusion + $\psi$, and $\varphi_1, \dots, \varphi_m$ are the conclusion of \proofRule{assume} + steps. Then $\vDash \varphi_1, \dots, \varphi_m \limp \psi$. +\end{lemma} +\begin{proof} + Let $s_j$ be the premise of the step $s_n$. Due to the definition of + \proofRule{subproof}, this conclusion of $s_j$ is $\psi$. If we can + show that $s_j$ means $\varphi_1, \dots, \varphi_m \vDash \psi$, + then $\vDash \varphi_1, \dots, \varphi_m \limp \psi$ since + \proofRule{subproof} is sound. + + We show this by induction over the proof steps. Let $V_0 = \emptyset$. + Let $\psi_i$ be the conclusions of the step $s_i$. If $s_i$ is an + \proofRule{assume} step, then let $V_i = V_{i-1} \cup \{\psi_i\}$. + Otherwies, +\end{proof} \subsubsection{Abstract Inference System} % or Rules, or Rules of Inference \label{sec:inference-system} -- GitLab