From 14dc232022110c8c9638c036dcd0ff2ce9914b29 Mon Sep 17 00:00:00 2001 From: dcradu <dcradu@uliege.be> Date: Sun, 28 Feb 2021 11:55:50 +0100 Subject: [PATCH] renaming and removing ol results structure --- src/helpers.py | 2 +- src/main.py | 47 +++++++++++++++++++---------------------------- 2 files changed, 20 insertions(+), 29 deletions(-) diff --git a/src/helpers.py b/src/helpers.py index 66e10d1..6980055 100644 --- a/src/helpers.py +++ b/src/helpers.py @@ -45,8 +45,8 @@ def xarray_to_ndarray(input_dict): """ key_list = return_dict_keys(input_dict) - array_list = [] + array_list = [] for region, tech in key_list: array_list.append(input_dict[region][tech]) dataset = xr.concat(array_list, dim='locations') diff --git a/src/main.py b/src/main.py index 63211ea..f8bee2c 100644 --- a/src/main.py +++ b/src/main.py @@ -2,7 +2,6 @@ import pickle import yaml from os.path import join from numpy import array -from itertools import cycle from pyomo.opt import SolverFactory import time @@ -30,11 +29,11 @@ if __name__ == '__main__': site_coordinates = return_filtered_coordinates(database, model_parameters, tech_parameters) truncated_data = selected_data(database, site_coordinates, time_horizon) - output_data = return_output(truncated_data, data_path) + capacity_factors_data = return_output(truncated_data, data_path) + time_windows_data = resource_quality_mapping(capacity_factors_data, siting_parameters) - smooth_data = resource_quality_mapping(output_data, siting_parameters) - criticality_data = xarray_to_ndarray(critical_window_mapping(smooth_data, model_parameters)) - site_positions = sites_position_mapping(smooth_data) + criticality_data = xarray_to_ndarray(critical_window_mapping(time_windows_data, model_parameters)) + site_positions = sites_position_mapping(time_windows_data) custom_log(' Data read. Building model.') @@ -67,7 +66,7 @@ if __name__ == '__main__': objective = instance.objective() x_values = array(list(instance.x.extract_values().values())) comp_location_dict = retrieve_location_dict(x_values, model_parameters, site_positions) - retrieve_site_data(model_parameters, deployment_dict, site_coordinates, output_data, criticality_data, + retrieve_site_data(model_parameters, deployment_dict, site_coordinates, capacity_factors_data, criticality_data, site_positions, params['c'], comp_location_dict, objective, output_folder) elif siting_parameters['solution_method']['MIRSA']['set']: @@ -94,32 +93,24 @@ if __name__ == '__main__': params['initial_temp'], params['no_runs'], params['algorithm']) - if params['purpose'] == 'planning': - seed = params['seed'] - for i in range(jl_selected.shape[0]): + seed = params['seed'] + for i in range(jl_selected.shape[0]): - output_folder = init_folder(model_parameters, c, suffix='_MIRSA_seed' + str(seed)) - seed += 1 + output_folder = init_folder(model_parameters, c, suffix='_MIRSA_seed' + str(seed)) + seed += 1 - with open(join(output_folder, 'config_model.yaml'), 'w') as outfile: - yaml.dump(model_parameters, outfile, default_flow_style=False, sort_keys=False) - with open(join(output_folder, 'config_techs.yaml'), 'w') as outfile: - yaml.dump(tech_parameters, outfile, default_flow_style=False, sort_keys=False) + with open(join(output_folder, 'config_model.yaml'), 'w') as outfile: + yaml.dump(model_parameters, outfile, default_flow_style=False, sort_keys=False) + with open(join(output_folder, 'config_techs.yaml'), 'w') as outfile: + yaml.dump(tech_parameters, outfile, default_flow_style=False, sort_keys=False) - jl_selected_seed = jl_selected[i, :] - jl_objective_seed = jl_objective[i] + jl_selected_seed = jl_selected[i, :] + jl_objective_seed = jl_objective[i] - jl_locations = retrieve_location_dict(jl_selected_seed, model_parameters, site_positions) - retrieve_site_data(model_parameters, deployment_dict, site_coordinates, output_data, - criticality_data, site_positions, c, jl_locations, jl_objective_seed, - output_folder, benchmarks=True) - else: - - output_folder = init_folder(model_parameters, suffix='_c' + str(c) + '_MIRSA') - - pickle.dump(jl_selected, open(join(output_folder, 'solution_matrix.p'), 'wb')) - pickle.dump(jl_objective, open(join(output_folder, 'objective_vector.p'), 'wb')) - pickle.dump(jl_traj, open(join(output_folder, 'trajectory_matrix.p'), 'wb')) + jl_locations = retrieve_location_dict(jl_selected_seed, model_parameters, site_positions) + retrieve_site_data(model_parameters, deployment_dict, site_coordinates, capacity_factors_data, + criticality_data, site_positions, c, jl_locations, jl_objective_seed, + output_folder, benchmarks=True) elif siting_parameters['solution_method']['RAND']['set']: -- GitLab