From e7566f4738a4889a04888bca68ac3327af8c7098 Mon Sep 17 00:00:00 2001
From: Romain Boman <r.boman@uliege.be>
Date: Mon, 27 Sep 2021 16:44:04 +0200
Subject: [PATCH] remove "Metafor" folder (parametric calculations from Kim -
 not tested)

---
 Metafor/Mparams/Metafor_call.py               |   78 -
 Metafor/Mparams/TaskManager.py                |  389 ---
 Metafor/Mparams/__init__.py                   |    5 -
 Metafor/Mparams/mparams.py                    |   98 -
 Metafor/Mparams/sequential.py                 |  376 --
 Metafor/Mparams/surrogate.py                  |  335 --
 Metafor/__init__.py                           |    5 -
 Metafor/config/bord01_config1.py              |  133 -
 Metafor/config/bord01_config10.py             |  209 --
 Metafor/config/bord01_config11.py             |  218 --
 Metafor/config/bord01_config12.py             |  140 -
 Metafor/config/bord01_config13.py             |  297 --
 Metafor/config/bord01_config2.py              |  128 -
 Metafor/config/bord01_config3.py              |  128 -
 Metafor/config/bord01_config4.py              |  153 -
 Metafor/config/bord01_config5.py              |  128 -
 Metafor/config/bord01_config6.py              |  128 -
 Metafor/config/bord01_config7.py              |  152 -
 Metafor/config/bord01_config8.py              |  145 -
 Metafor/config/bord01_config9.py              |  294 --
 Metafor/config/bord01_numericalSA.py          |  299 --
 Metafor/config/bord01_numericalSA2.py         |  125 -
 Metafor/config/mirror01_config1.py            |  147 -
 Metafor/config/mirror01_config2.py            |  147 -
 Metafor/config/mirror01_config3.py            |  147 -
 Metafor/config/mirror02_config2.py            |  147 -
 Metafor/config/omega01_config1.py             |  129 -
 Metafor/config/omega01_test.py                |  129 -
 Metafor/config/tube01_config1.py              |  129 -
 Metafor/config/tube01_config2.py              |  129 -
 Metafor/config/tube01_test.py                 |  129 -
 Metafor/models/__init__.py                    |    5 -
 Metafor/models/bord01/W_tp.json               |  677 ----
 Metafor/models/bord01/X_tp.json               |  677 ----
 Metafor/models/bord01/createNumericalSA.m     |   85 -
 Metafor/models/bord01/data.txt                | 3087 -----------------
 Metafor/models/bord01/frinctionSA.ascii       |   21 -
 .../models/bord01/hardening_yield.ascii.txt   |   25 -
 Metafor/models/bord01/model.py                |   21 -
 .../bord01/numericalSATrainingPoints.ascii    | 3087 -----------------
 .../bord01/numericalSATrainingPoints2.ascii   |  500 ---
 .../bord01/numericalSATrainingPoints3.ascii   |    4 -
 .../models/bord01/numericalSAWeights.ascii    | 3087 -----------------
 .../models/bord01/numericalSAWeights2.ascii   |  500 ---
 .../models/bord01/numericalSAWeights3.ascii   |    4 -
 Metafor/models/bord01/tombeBord.py            |  268 --
 Metafor/models/bord01/tombeBord_old.py        |  248 --
 Metafor/models/mirror01/__init__.py           |    5 -
 Metafor/models/mirror01/mirror.geo            |   86 -
 Metafor/models/mirror01/mirror.py             |  197 --
 Metafor/models/mirror01/model.py              |   51 -
 Metafor/models/mirror01/parameters_file.py    |   38 -
 Metafor/models/omega01/EmboutOmega.py         |  583 ----
 Metafor/models/omega01/model.py               |   23 -
 Metafor/models/tube01/model.py                |   23 -
 Metafor/models/tube01/tube.py                 |   19 -
 56 files changed, 18517 deletions(-)
 delete mode 100644 Metafor/Mparams/Metafor_call.py
 delete mode 100644 Metafor/Mparams/TaskManager.py
 delete mode 100644 Metafor/Mparams/__init__.py
 delete mode 100644 Metafor/Mparams/mparams.py
 delete mode 100644 Metafor/Mparams/sequential.py
 delete mode 100644 Metafor/Mparams/surrogate.py
 delete mode 100644 Metafor/__init__.py
 delete mode 100644 Metafor/config/bord01_config1.py
 delete mode 100644 Metafor/config/bord01_config10.py
 delete mode 100644 Metafor/config/bord01_config11.py
 delete mode 100644 Metafor/config/bord01_config12.py
 delete mode 100644 Metafor/config/bord01_config13.py
 delete mode 100644 Metafor/config/bord01_config2.py
 delete mode 100644 Metafor/config/bord01_config3.py
 delete mode 100644 Metafor/config/bord01_config4.py
 delete mode 100644 Metafor/config/bord01_config5.py
 delete mode 100644 Metafor/config/bord01_config6.py
 delete mode 100644 Metafor/config/bord01_config7.py
 delete mode 100644 Metafor/config/bord01_config8.py
 delete mode 100644 Metafor/config/bord01_config9.py
 delete mode 100644 Metafor/config/bord01_numericalSA.py
 delete mode 100644 Metafor/config/bord01_numericalSA2.py
 delete mode 100644 Metafor/config/mirror01_config1.py
 delete mode 100644 Metafor/config/mirror01_config2.py
 delete mode 100644 Metafor/config/mirror01_config3.py
 delete mode 100644 Metafor/config/mirror02_config2.py
 delete mode 100644 Metafor/config/omega01_config1.py
 delete mode 100644 Metafor/config/omega01_test.py
 delete mode 100644 Metafor/config/tube01_config1.py
 delete mode 100644 Metafor/config/tube01_config2.py
 delete mode 100644 Metafor/config/tube01_test.py
 delete mode 100644 Metafor/models/__init__.py
 delete mode 100644 Metafor/models/bord01/W_tp.json
 delete mode 100644 Metafor/models/bord01/X_tp.json
 delete mode 100644 Metafor/models/bord01/createNumericalSA.m
 delete mode 100644 Metafor/models/bord01/data.txt
 delete mode 100644 Metafor/models/bord01/frinctionSA.ascii
 delete mode 100644 Metafor/models/bord01/hardening_yield.ascii.txt
 delete mode 100644 Metafor/models/bord01/model.py
 delete mode 100644 Metafor/models/bord01/numericalSATrainingPoints.ascii
 delete mode 100644 Metafor/models/bord01/numericalSATrainingPoints2.ascii
 delete mode 100644 Metafor/models/bord01/numericalSATrainingPoints3.ascii
 delete mode 100644 Metafor/models/bord01/numericalSAWeights.ascii
 delete mode 100644 Metafor/models/bord01/numericalSAWeights2.ascii
 delete mode 100644 Metafor/models/bord01/numericalSAWeights3.ascii
 delete mode 100644 Metafor/models/bord01/tombeBord.py
 delete mode 100644 Metafor/models/bord01/tombeBord_old.py
 delete mode 100644 Metafor/models/mirror01/__init__.py
 delete mode 100644 Metafor/models/mirror01/mirror.geo
 delete mode 100644 Metafor/models/mirror01/mirror.py
 delete mode 100644 Metafor/models/mirror01/model.py
 delete mode 100644 Metafor/models/mirror01/parameters_file.py
 delete mode 100644 Metafor/models/omega01/EmboutOmega.py
 delete mode 100644 Metafor/models/omega01/model.py
 delete mode 100644 Metafor/models/tube01/model.py
 delete mode 100644 Metafor/models/tube01/tube.py

diff --git a/Metafor/Mparams/Metafor_call.py b/Metafor/Mparams/Metafor_call.py
deleted file mode 100644
index 002bd84d..00000000
--- a/Metafor/Mparams/Metafor_call.py
+++ /dev/null
@@ -1,78 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-import numpy as np
-import os
-import shutil
-
-import fwk
-
-isUnix = lambda: os.name == 'posix'
-
-def Metafor_call(d):
-    import shlex, subprocess
-    import platform
-    command_line = d['Metafor_exe'] + ' -nogui'
-    print(command_line)
-    args = shlex.split(command_line)
-
-    fileout = open('Metafor.log','w')
-
-    workdir = os.getcwd()
-
-    if isUnix(): # sans close_fds, ca freeze
-        if platform.system() == 'Darwin':
-            my_env = os.environ.copy()
-            my_env["DYLD_LIBRARY_PATH"] = my_env.get("VTK_DIR", '')
-            p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=fileout, stderr=fileout, env=my_env, shell=False,close_fds=True)
-        else:
-            p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=fileout, stderr=fileout, env=os.environ, shell=False,close_fds=True)
-    else: # si nice+Windows => "shell=True" (pour "start")
-        p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=fileout, stderr=fileout, env=os.environ, shell=True)
-
-    pin = p.stdin
-    pin.write("import sys\n")
-    pin.write("sys.path.append(%s)\n" % repr(d['Metafor_model']))
-    pin.write("load(%s)\n" % repr(d['Metafor_model_name']))
-    #pin.write("setDir(%s)\n" % repr(workdir))
-    pin.write("para = %s\n" % repr(d))
-    pin.write("instance(para)\n" )
-    pin.write("meta()\n")
-    pin.close()
-
-    retcode = p.wait()
-
-    fileout.close()
-
-    '''
-    print os.path.isfile('pars.py')
-    print os.path.isfile('Metafor.log')
-    print 'workspace/' + d['Metafor_model_name'] + '/time.ascii'
-    print os.path.isfile('workspace/' + d['Metafor_model_name'] + '/time.ascii')
-    '''
-
-    src = workdir + '/workspace/' + d['Metafor_model_name']
-
-    src_files = os.listdir(src)
-    for file_name in src_files:
-        full_file_name = os.path.join(src, file_name)
-        if os.path.isfile(full_file_name):
-            shutil.copy(full_file_name, workdir)
-
-    shutil.rmtree(workdir + '/workspace')
diff --git a/Metafor/Mparams/TaskManager.py b/Metafor/Mparams/TaskManager.py
deleted file mode 100644
index ac9764c0..00000000
--- a/Metafor/Mparams/TaskManager.py
+++ /dev/null
@@ -1,389 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import tbox
-import math
-
-import numpy as np
-import os
-import shutil
-
-import params.src.write as pwrite
-import params.src.indices as indices
-
-import fwk
-
-verb = False  # set to True for (a lot of) debug info
-
-try:
-    import mpi4py.MPI as mpi
-    comm = mpi.COMM_WORLD
-    rank = comm.rank
-    siz  = comm.size
-    name = mpi.Get_processor_name()
-    status = mpi.Status()
-    print("info: MPI found")
-except:
-    comm = None
-    rank = 0
-    siz  = 1
-    name = "noname"
-    print("info: MPI not found => MPI disabled")
-
-def enum(*sequential, **named):
-    enums = dict(list(zip(sequential, list(range(len(sequential))))), **named)
-    return type('Enum', (), enums)
-
-tags = enum('READY', 'DONE', 'EXIT', 'START', 'WAKEUP', 'SUICIDE')
-
-
-
-class Job:
-    """ Class containing data transmitted between MPI procs
-    """
-    def __init__(self, parameters, name, xi, m_i):
-        # input
-        self.m_i = m_i
-        self.name = name
-        self.parameters = parameters
-        self.xi = xi
-        # output
-        self.QoI = 0.
-
-    def execute(self):
-        """
-        [executed by worker processes]
-        solve a given job and calculate "QoI"
-        """
-        import imp
-        model = imp.load_source('Metafor_call',self.parameters['Metafor_model']+'/model.py')
-
-        name = self.name
-        if os.path.exists(name):
-            shutil.rmtree(name)
-        os.mkdir(name)
-        os.chdir(name)
-
-        self.QoI = model.model(self.parameters)
-
-        os.chdir('..')
-
-
-class Master:
-    """
-    MPI Process with rank #0
-    """
-    def __init__(self):
-        self.slaves = list(range(1,siz))
-
-    def start(self,parameters, surrogate_parameters, images_parameters):
-        """
-        master loop
-        """
-        global rank
-        if rank!=0:
-            raise Exception("this routine should be called with MPI rank=0")
-        if verb: print("[%d] starting master" % rank)
-
-        ##-----------------------------------------
-
-        for s in self.slaves:
-            if verb: print("[%d] sending wake-up signal to worker %d" % (rank,s))
-            comm.send(None, dest=s, tag=tags.WAKEUP)
-
-        #################################################
-        ## Read the parameters
-        fname = surrogate_parameters['fname']
-        d = surrogate_parameters['d']
-        M = surrogate_parameters['M']
-        N = surrogate_parameters['N']
-
-        Dom_min = surrogate_parameters['Dom_min']
-        Dom_max = surrogate_parameters['Dom_max']
-        P_name = surrogate_parameters['P_name']
-        solver = surrogate_parameters['solver']
-
-        normalisation = surrogate_parameters['normalisation']
-        ##
-        if surrogate_parameters['function_type'] == 'monomial':
-            from params.src.monomials import phi
-            from params.src.monomials import compute_n_max
-            n_max = compute_n_max(N,d)
-        elif surrogate_parameters['function_type'] == 'monomial_1norm':
-            from params.src.monomials_1norm import phi
-            from params.src.monomials_1norm import compute_n_max
-            n_max = compute_n_max(N,d)
-            print(n_max)
-        if surrogate_parameters['training_points'] == 'gauss':
-            import params.src.gauss as tp
-        elif surrogate_parameters['training_points'] == 'gamma':
-            import params.arnst_ponthot.src.gamma as tp
-        ##
-
-        m_max = 1
-        for j in range(0,d):
-            m_max = m_max*M[j]
-
-        if surrogate_parameters['training_points'] == 'precomputed':
-
-
-            import codecs, json
-
-            #obj_text = codecs.open(surrogate_parameters['precomputed_training_points'], 'r', encoding='utf-8').read()
-            #b_new = json.loads(obj_text)
-            #X = np.array(b_new)
-
-            X = np.genfromtxt(surrogate_parameters['precomputed_training_points'], dtype=None)
-
-            #X = np.loadtxt('/home/kliegeois/Codes/waves/params/CVT/python/cvt_circle7.txt')
-            tmp = np.shape(X)
-            m_max = tmp[0]
-            w = np.ones((m_max,))
-        else:
-            X, w = tp.grid(M)
-
-        print(X)
-
-
-
-        i =      np.zeros((d,), dtype =np.int)
-        i_zero = np.zeros((d,), dtype =np.int)
-        i_one =  np.ones((d,), dtype =np.int)
-        p = 0
-
-        xi = np.zeros((d,))
-
-        if surrogate_parameters['display']:
-            import params.src.plot as plot
-            fig, ax, current_title = plot.init2(d, images_parameters)
-
-            if not os.path.exists('images'):
-                os.mkdir('images')
-            else:
-                shutil.rmtree('images')
-                os.mkdir('images')
-
-        m_i = 0
-        sol = np.zeros((m_max,1))
-
-        Z = np.zeros((m_max,n_max))
-        W_sr = np.zeros((m_max,m_max))
-
-        #################################################
-
-        num_workers = siz-1
-        closed_workers = 0
-        while closed_workers<num_workers:
-            # get a msg from any source
-            data = comm.recv(source=mpi.ANY_SOURCE,
-                             tag=mpi.ANY_TAG, status=status)
-            source = status.Get_source()
-            tag = status.Get_tag()
-            if tag == tags.READY:
-                if verb: print("[0] worker %d is ready" % source)
-
-                #################################################
-
-                if np.all(i != -i_one):
-                    if surrogate_parameters['training_points'] == 'precomputed':
-                        if normalisation == False:
-                            for j in range(0,d):
-                                print(X[0][0])
-                                xi[j] = X[i[j]][j]
-                        else:
-                            means = surrogate_parameters['means']
-                            variances = surrogate_parameters['variances']
-                            correlations = surrogate_parameters['correlations']
-
-                            for j in range(0,d):
-                                xi[j] = (X[m_i,j]-means[j]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[j]))
-
-                    elif surrogate_parameters['training_points'] == 'gamma':
-                        means = surrogate_parameters['means']
-                        variances = surrogate_parameters['variances']
-                        correlations = surrogate_parameters['correlations']
-
-                        xi_in = np.zeros((d,1))
-                        for j in range(0,d):
-                            xi_in[j] = X[i[j],j]
-                        xi = tp.f_mapping(xi_in,d,means,variances,correlations,surrogate_parameters['f_mapping_method'])
-
-
-                        print(xi)
-                    elif normalisation == True:
-                        for j in range(0,d):
-                            xi[j] = X[i[j],j]
-                    elif normalisation == False:
-                        for j in range(0,d):
-                            xi[j] = X[i[j],j]
-                            xi[j] = Dom_min[j] + (Dom_max[j] - Dom_min[j])*(xi[j]+1.)/2.
-                            parameters[P_name[j]] = xi[j]
-
-                    # -------------------
-
-                    if surrogate_parameters['training_points'] == 'precomputed':
-                        Z[m_i,:] = np.transpose(phi(xi,N,n_max,d))
-                        #print xi2
-                    elif surrogate_parameters['training_points'] == 'gamma':
-                        xi2 = np.zeros((d,))
-                        for j in range(0,d):
-                            xi2[j] = (xi[j][0]-means[j]) / np.sqrt(variances[j])
-                        Z[m_i,:] = np.transpose(phi(xi2,N,n_max,d))
-                        #print xi2
-                    else:
-                        Z[m_i,:] = np.transpose(phi(xi,N,n_max,d))
-
-
-                    tmp = 1
-                    if surrogate_parameters['training_points'] != 'precomputed':
-                        for j in range(0,d):
-                            tmp = tmp*w[i[j],j]
-
-                    W_sr[m_i,m_i]  = np.sqrt(tmp)
-
-                    # -------------------
-
-                    if surrogate_parameters['training_points'] != 'precomputed':
-                        for j in range(0,d):
-                            tmp = xi[j]
-                            print(tmp)
-                            parameters[P_name[j]] = tmp
-
-                    if surrogate_parameters['training_points'] == 'precomputed':
-                        for j in range(0,d):
-                            parameters[P_name[j]] =  X[m_i][j]
-
-                    elif surrogate_parameters['training_points'] == 'gamma':
-                        for j in range(0,d):
-                            tmp = xi[j]
-                            parameters[P_name[j]] = tmp[0]
-
-                        #print parameters
-                    elif normalisation == True:
-                        for j in range(0,d):
-                            xi[j] = Dom_min[j] + (Dom_max[j] - Dom_min[j])*(xi[j]+1.)/2.
-                            parameters[P_name[j]] = xi[j]
-
-                    # -------------------
-
-                    name = 'i_'
-                    for j in range(0,d-1):
-                        name = name + str(i[j]) + '_'
-                    name = name + str(i[d-1]) + '_'
-                    name = name + 'M_'
-                    for j in range(0,d-1):
-                        name = name + str(M[j]) + '_'
-                    name = name + str(M[d-1])
-
-                    # -------------------
-
-                    job = Job(parameters, name, xi, m_i)
-
-                    if verb: print("[0] sending job to %d" % source)
-                    comm.send(job, dest=source, tag=tags.START)
-
-                    # -------------------
-
-                    p,i = indices.my_next(p,i,M,d)
-                    m_i = m_i+1
-                else:
-
-                    #################################################
-
-                    if verb: print("[%d] exit %d" % (rank,source))
-                    comm.send(None, dest=source, tag=tags.EXIT)
-
-            elif tag==tags.DONE:
-                if verb: print("[0] worker %d gives me its results" % source)
-
-                #################################################
-                m_ii = data.m_i
-                xi = data.xi
-                sol[m_ii] = data.QoI
-
-                if surrogate_parameters['display']:
-                    plot.scatter(xi,sol[m_ii],d,fig,ax, True,m_ii)
-
-                #################################################
-
-            elif tag==tags.EXIT:
-                closed_workers+=1
-                if verb: print("[0] worker %d exited (%d worker(s) still running)" % (source, num_workers-closed_workers))
-
-        ##-----------------------------------------
-
-        self.killslaves()
-
-
-        Image = {}
-        if surrogate_parameters['display']:
-            Image['fig'] = fig
-            Image['ax'] = ax
-            Image['current_title'] = current_title
-        return sol, Z, W_sr, Image
-
-    def killslaves(self):
-        global rank
-        for s in self.slaves:
-            if verb: print("[%d] sending suicide job to %d" % (rank,s))
-            comm.send(None, dest=s, tag=tags.SUICIDE)
-
-
-class Worker:
-    """
-    MPI Process with rank #1-#n
-    """
-    def __init__(self, rank):
-        self.rank = rank
-
-    def start(self):
-        """
-        worker loop
-        """
-        if self.rank==0:
-            raise Exception("this routine should be called with MPI rank!=0")
-
-        if verb: print("[%d] starting worker" % self.rank)
-        timers = fwk.Timers()
-        timers['total'].start()
-        while True:
-            comm.recv(source=0, tag=mpi.ANY_TAG, status=status)
-            tag = status.Get_tag()
-            if tag==tags.WAKEUP:
-                if verb: print("[%d] waking up" % self.rank)
-                while True:
-                    comm.send(None, dest=0, tag=tags.READY)
-                    job = comm.recv(source=0, tag=mpi.ANY_TAG, status=status)
-                    tag = status.Get_tag()
-                    if tag==tags.START:
-                        if verb: print("[%d] starting job" % self.rank)
-                        name = str(job.m_i)+'_'+job.name
-                        timers[name].start()
-                        job.execute()
-                        timers[name].stop()
-                        if verb: print("[%d] sending job results" % self.rank)
-                        comm.send(job, dest=0, tag=tags.DONE)
-                    elif tag==tags.EXIT:
-                        if verb: print("[%d] sending exit confirmation" % self.rank)
-                        comm.send(None, dest=0, tag=tags.EXIT)
-                        timers['total'].stop()
-                        print(timers)
-                        break
-            elif tag==tags.SUICIDE:
-                if verb: print("[%d] I'm dying..." % self.rank)
-                break
diff --git a/Metafor/Mparams/__init__.py b/Metafor/Mparams/__init__.py
deleted file mode 100644
index 0b4a1527..00000000
--- a/Metafor/Mparams/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# -*- coding: utf-8; -*-
-# mirrors MODULE initialization file
-
-import tbox
-from mirrorsw import *
diff --git a/Metafor/Mparams/mparams.py b/Metafor/Mparams/mparams.py
deleted file mode 100644
index 10e6e3b6..00000000
--- a/Metafor/Mparams/mparams.py
+++ /dev/null
@@ -1,98 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import sys
-import os
-
-import fwk
-
-import params.src.write as write
-
-from Metafor.Mparams.surrogate import *
-from Metafor.Mparams.sequential import evaluate
-import Metafor.Mparams.TaskManager as tm
-
-def master(model_parameters, surrogate_parameters, images_parameters):
-    timers = fwk.Timers()
-    timers['total'].start()
-    timers['prepocessing'].start()
-
-
-    dirname = 'master'
-    if os.path.exists(dirname):
-        shutil.rmtree(dirname)
-    os.mkdir(dirname)
-    os.chdir(dirname)
-
-    f = write.init(surrogate_parameters['fname'])
-    write.w_MPI_info(f, tm.name, tm.siz)
-
-    write.w_list(f, model_parameters, 'Model parameters')
-    write.w_list(f, surrogate_parameters, 'Surrogate parameters')
-    ##
-    timers['prepocessing'].stop()
-    timers['training points pocessing'].start()
-    if tm.siz == 1:
-        sol, Z, W_sr, Image = evaluate(model_parameters, surrogate_parameters, images_parameters)
-    else:
-        master = tm.Master()
-        sol, Z, W_sr, Image = master.start(model_parameters, surrogate_parameters, images_parameters)    
-
-    timers['training points pocessing'].stop()
-    timers['surrogate pocessing'].start()
-    s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    timers['surrogate pocessing'].stop()
-    timers['total'].stop()
-
-    write.w_vector(f, sol, 'Training points solutions') 
-    write.w_vector(f, s_hat, 'Computed coefficients') 
-    write.w_timers(f, timers)
-    write.finish(f)
-
-    return sol, Z, W_sr, s_hat
-
-def worker():
-    worker = tm.Worker(tm.rank)
-    worker.start()
-
-def AvailableComputedResults():
-    out = True
-    if not os.path.isfile('master/sol.json'):
-        out = False
-    if not os.path.isfile('master/Z.json'):
-        out = False
-    if not os.path.isfile('master/W_sr.json'):
-        out = False
-    return out
-
-def LoadComputedResults():
-    import codecs, json 
-
-    obj_text = codecs.open('master/sol.json', 'r', encoding='utf-8').read()
-    b_new = json.loads(obj_text)
-    sol = np.array(b_new)
-
-    obj_text = codecs.open('master/Z.json', 'r', encoding='utf-8').read()
-    b_new = json.loads(obj_text)
-    Z = np.array(b_new)
-
-    obj_text = codecs.open('master/W_sr.json', 'r', encoding='utf-8').read()
-    b_new = json.loads(obj_text)
-    W_sr = np.array(b_new)
-
-    return sol, Z, W_sr
diff --git a/Metafor/Mparams/sequential.py b/Metafor/Mparams/sequential.py
deleted file mode 100644
index f36bb847..00000000
--- a/Metafor/Mparams/sequential.py
+++ /dev/null
@@ -1,376 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import numpy as np
-import os
-import shutil
-
-import params.src.indices as indices
-  
-def evaluate(parameters, surrogate_parameters, images_parameters):
-    import imp
-    model = imp.load_source('Metafor_call',parameters['Metafor_model']+'/model.py')
-    ## Read the parameters
-    fname = surrogate_parameters['fname']
-    d = surrogate_parameters['d']
-    M = surrogate_parameters['M']
-    N = surrogate_parameters['N']
-
-    Dom_min = surrogate_parameters['Dom_min']
-    Dom_max = surrogate_parameters['Dom_max']
-    P_name = surrogate_parameters['P_name']
-    solver = surrogate_parameters['solver']
-
-    normalisation = surrogate_parameters['normalisation']
-    ##
-    if surrogate_parameters['function_type'] == 'monomial': 
-        from params.src.monomials import phi   
-        from params.src.monomials import compute_n_max
-        n_max = compute_n_max(N,d)
-    elif surrogate_parameters['function_type'] == 'monomial_1norm': 
-        from params.src.monomials_1norm import phi   
-        from params.src.monomials_1norm import compute_n_max
-        n_max = compute_n_max(N,d)
-    if surrogate_parameters['training_points'] == 'gauss': 
-        import params.src.gauss as tp
-    elif surrogate_parameters['training_points'] == 'gamma': 
-        import params.arnst_ponthot.src.gamma as tp
-
-    ##
-
-    X, w = tp.grid(M)  
-
-    m_max = 1
-    for j in range(0,d):
-        m_max = m_max*M[j] 
-
-    i =      np.zeros((d,), dtype =np.int)
-    i_zero = np.zeros((d,), dtype =np.int)
-    i_one =  np.ones((d,), dtype =np.int)
-    p = 0
-
-    xi = np.zeros((d,))
-
-    if surrogate_parameters['display']: 
-        import params.src.plot as plot
-        fig, ax, current_title = plot.init2(d, images_parameters)
-
-        if not os.path.exists('images'):
-            os.mkdir('images')
-        else:
-            shutil.rmtree('images')
-            os.mkdir('images')
-
-    m_i = 0
-    sol = np.zeros((m_max,1))
-
-    Z = np.zeros((m_max,n_max))
-    W_sr = np.zeros((m_max,m_max))    
-
-    while np.all(i != -i_one):   
-
-
-        if normalisation == True:
-            for j in range(0,d):
-                xi[j] = X[i[j],j]
-        elif normalisation == False:
-            for j in range(0,d):
-                xi[j] = X[i[j],j]
-                xi[j] = Dom_min[j] + (Dom_max[j] - Dom_min[j])*(xi[j]+1.)/2.
-                parameters[P_name[j]] = xi[j]
-
-        # -------------------
-
-        Z[m_i,:] = np.transpose(phi(xi,N,n_max,d))
-
-        tmp = 1
-        for j in range(0,d):
-            tmp = tmp*w[i[j],j]
-
-        W_sr[m_i,m_i]  = np.sqrt(tmp)   
-
-
-        # -------------------
-
-        if normalisation == True:
-            for j in range(0,d):
-                xi[j] = Dom_min[j] + (Dom_max[j] - Dom_min[j])*(xi[j]+1.)/2.
-                parameters[P_name[j]] = xi[j]
-
-        # -------------------
-
-        name = 'i_'
-        for j in range(0,d-1):
-            name = name + str(i[j]) + '_'
-        name = name + str(i[d-1]) + '_'
-        name = name + 'M_' 
-        for j in range(0,d-1):
-            name = name + str(M[j]) + '_'
-        name = name + str(M[d-1]) 
-
-        # -------------------
-
-        if os.path.exists(name):
-            shutil.rmtree(name)
-        os.mkdir(name)
-        os.chdir(name)
-
-        sol[m_i] = model.model(parameters)
-
-        os.chdir('..')
-
-        if surrogate_parameters['display']: 
-            plot.scatter(xi,sol[m_i],d,fig,ax, True,m_i)
-            
-
-        m_i = m_i + 1 
-       
-        p,i = indices.my_next(p,i,M,d)
-
-
-    #------------------
-    Image = {}
-    if surrogate_parameters['display']:
-        Image['fig'] = fig
-        Image['ax'] = ax
-        Image['current_title'] = current_title
-    return sol, Z, W_sr, Image
-
-
-def Z_evaluate(parameters, surrogate_parameters):
-    import imp
-    model = imp.load_source('Metafor_call',parameters['Metafor_model']+'/model.py')
-    ## Read the parameters
-    fname = surrogate_parameters['fname']
-    d = surrogate_parameters['d']
-    M = surrogate_parameters['M']
-    N = surrogate_parameters['N']
-
-    Dom_min = surrogate_parameters['Dom_min']
-    Dom_max = surrogate_parameters['Dom_max']
-    P_name = surrogate_parameters['P_name']
-    solver = surrogate_parameters['solver']
-
-    normalisation = surrogate_parameters['normalisation']
-    ##
-    if surrogate_parameters['function_type'] == 'monomial': 
-        from params.src.monomials import phi   
-        from params.src.monomials import compute_n_max
-        n_max = compute_n_max(N,d)
-    elif surrogate_parameters['function_type'] == 'monomial_1norm': 
-        from params.src.monomials_1norm import phi   
-        from params.src.monomials_1norm import compute_n_max
-        n_max = compute_n_max(N,d)
-    if surrogate_parameters['training_points'] == 'gauss': 
-        import params.src.gauss as tp
-    elif surrogate_parameters['training_points'] == 'gamma': 
-        import params.arnst_ponthot.src.gamma as tp
-
-    ##
-
-    if surrogate_parameters['training_points'] != 'precomputed': 
-
-        X, w = tp.grid(M)  
-
-        m_max = 1
-        for j in range(0,d):
-            m_max = m_max*M[j] 
-    if surrogate_parameters['training_points'] == 'precomputed': 
-
-
-        import codecs, json 
-
-        obj_text = codecs.open(surrogate_parameters['precomputed_training_points'], 'r', encoding='utf-8').read()
-        b_new = json.loads(obj_text)
-        X = np.array(b_new)
-
-
-        #X = np.loadtxt('/home/kliegeois/Codes/waves/params/CVT/python/cvt_circle7.txt')
-        tmp = np.shape(X)
-        m_max = tmp[0] 
-
-        obj_text = codecs.open(surrogate_parameters['precomputed_weights'], 'r', encoding='utf-8').read()
-        b_new = json.loads(obj_text)
-        w = np.array(b_new)
-
-    i =      np.zeros((d,), dtype =np.int)
-    i_zero = np.zeros((d,), dtype =np.int)
-    i_one =  np.ones((d,), dtype =np.int)
-    p = 0
-
-    xi = np.zeros((d,))
-
-    m_i = 0
-    sol = np.zeros((m_max,1))
-
-    Z = np.zeros((m_max,n_max))
-    W_sr = np.zeros((m_max,m_max))    
-
-    Xi = np.zeros((m_max,d))
-    Xi2 = np.zeros((m_max,d))
-    while np.all(i != -i_one):   
-
-
-        if surrogate_parameters['training_points'] == 'precomputed':
-            means = surrogate_parameters['means']
-            variances = surrogate_parameters['variances']
-            correlations = surrogate_parameters['correlations']
-
-            for j in range(0,d):
-                xi[j] = ((X[m_i,j]-means[j])/(surrogate_parameters['nstddeviation']*np.sqrt(variances[j])))
-
-        elif surrogate_parameters['training_points'] == 'gamma': 
-            means = surrogate_parameters['means']
-            variances = surrogate_parameters['variances']
-            correlations = surrogate_parameters['correlations']
-
-            xi_in = np.zeros((d,1))
-            for j in range(0,d):
-                xi_in[j] = X[i[j],j]
-            xi = tp.f_mapping(xi_in,d,means,variances,correlations,surrogate_parameters['f_mapping_method'])
-
-            #print xi
-
-        elif normalisation == True:
-            for j in range(0,d):
-                xi[j] = X[i[j],j]
-        elif normalisation == False:
-            for j in range(0,d):
-                xi[j] = X[i[j],j]
-                xi[j] = Dom_min[j] + (Dom_max[j] - Dom_min[j])*(xi[j]+1.)/2.
-                parameters[P_name[j]] = xi[j]
-
-        # -------------------
-        xi2 = np.zeros((d,))
-        if surrogate_parameters['training_points'] == 'gamma': 
-            
-            xi2[0] = (xi[0][0]-means[0]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[0]))
-            xi2[1] = (xi[1][0]-means[1]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[1]))    
-            Z[m_i,:] = np.transpose(phi(xi2,N,n_max,d))
-            #print xi2
-        else:
-            Z[m_i,:] = np.transpose(phi(xi,N,n_max,d))
-
-        tmp = 1
-        if surrogate_parameters['training_points'] != 'precomputed':
-            for j in range(0,d):
-                tmp = tmp*w[i[j],j]
-        else:
-            tmp = w[m_i]
-
-        W_sr[m_i,m_i]  = np.sqrt(tmp)     
-
-
-
-        Xi[m_i,:] = xi.T
-        Xi2[m_i,:] = xi2.T
-        W_sr[m_i,m_i]  = np.sqrt(tmp)  
-            
-        m_i = m_i + 1 
-       
-        p,i = indices.my_next(p,i,M,d)
-
-    return Z, W_sr, Xi, Xi2
-
-
-def scatterplot(sol, surrogate_parameters, images_parameters):
-    Image = {}
-    if surrogate_parameters['display']: 
-
-        d = surrogate_parameters['d']
-        M = surrogate_parameters['M']
-
-        Dom_min = surrogate_parameters['Dom_min']
-        Dom_max = surrogate_parameters['Dom_max']
-
-        if surrogate_parameters['training_points'] == 'gauss': 
-            import params.src.gauss as tp
-        elif surrogate_parameters['training_points'] == 'gamma': 
-            import params.arnst_ponthot.src.gamma as tp
-
-        import params.src.plot as plot
-        fig, ax, current_title = plot.init2(d, images_parameters)
-
-        if not os.path.exists('images'):
-            os.mkdir('images')
-        else:
-            shutil.rmtree('images')
-            os.mkdir('images')
-
-        if surrogate_parameters['training_points'] != 'precomputed': 
-
-            X, w = tp.grid(M)  
-
-            m_max = 1
-            for j in range(0,d):
-                m_max = m_max*M[j] 
-        if surrogate_parameters['training_points'] == 'precomputed': 
-
-
-            import codecs, json 
-
-            obj_text = codecs.open(surrogate_parameters['precomputed_training_points'], 'r', encoding='utf-8').read()
-            b_new = json.loads(obj_text)
-            X = np.array(b_new)
-
-            tmp = np.shape(X)
-            print(tmp)
-            m_max = tmp[0] 
-            print(max(X[:,0]))
-            print(min(X[:,0]))
-            print(max(X[:,1]))
-            print(min(X[:,1]))
-
-
-        xi = np.zeros((d,))
-        xi_tp = np.zeros((m_max,d))    
-        m_i = 0
-
-        i =      np.zeros((d,), dtype =np.int)
-        i_zero = np.zeros((d,), dtype =np.int)
-        i_one =  np.ones((d,), dtype =np.int)
-        p = 0
-        
-        while np.all(i != -i_one):  
-            if surrogate_parameters['training_points'] == 'gamma': 
-                means = surrogate_parameters['means']
-                variances = surrogate_parameters['variances']
-                correlations = surrogate_parameters['correlations']
-
-                xi_in = np.zeros((d,1))
-                for j in range(0,d):
-                    xi_in[j] = X[i[j],j]
-                xi = tp.f_mapping(xi_in,d,means,variances,correlations,surrogate_parameters['f_mapping_method']) 
-            
-            elif surrogate_parameters['training_points'] == 'precomputed': 
-                for j in range(0,d):
-                    xi[j] = X[m_i,j]
-
-            else:
-                for j in range(0,d):
-                    xi[j] = X[i[j],j]
-                    xi[j] = Dom_min[j] + (Dom_max[j] - Dom_min[j])*(xi[j]+1.)/2.
-            for j in range(0,d):
-                xi_tp[m_i,j] = xi[j]
-            m_i = m_i + 1
-            p,i = indices.my_next(p,i,M,d)
-
-        plot.scatters(xi_tp,sol,d,fig,ax, True,m_i)
-        Image['fig'] = fig
-        Image['ax'] = ax
-        Image['current_title'] = current_title
-    return Image
diff --git a/Metafor/Mparams/surrogate.py b/Metafor/Mparams/surrogate.py
deleted file mode 100644
index 8b13e8c5..00000000
--- a/Metafor/Mparams/surrogate.py
+++ /dev/null
@@ -1,335 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import numpy as np
-import os
-import shutil
-
-import params.src.indices as indices
-  
-
-def surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters):
-    if surrogate_parameters['display']: 
-        import params.src.plot as plot
-        fig = Image['fig']
-        ax = Image['ax'] 
-        current_title = Image['current_title']
-    d = surrogate_parameters['d']
-    M = surrogate_parameters['M']
-    N = surrogate_parameters['N']
-
-    m1 = surrogate_parameters['m1']
-    m2 = surrogate_parameters['m2']
-
-    Dom_min = surrogate_parameters['Dom_min']
-    Dom_max = surrogate_parameters['Dom_max']
-    P_name = surrogate_parameters['P_name']
-    solver = surrogate_parameters['solver']
-
-    normalisation = surrogate_parameters['normalisation']
-    ##
-    if surrogate_parameters['function_type'] == 'monomial': 
-        from params.src.monomials import phi   
-    elif surrogate_parameters['function_type'] == 'monomial_1norm': 
-        from params.src.monomials_1norm import phi     
-    ##
-
-    shape = Z.shape
-    m_max = shape[0]
-    n_max = shape[1]
-
-    x = np.linspace(-1.,1.,m1)
-    y = np.linspace(-1.,1.,m2)
-    X = np.zeros((m1,m2))
-    Y = np.zeros((m1,m2))
-    surrogate = np.zeros((m1,m2))
-    X, Y = np.meshgrid(x, y)
-    phi_tmp = np.zeros((m1,m2,n_max))
-
-    #------------------
-    
-    fixed_value = np.zeros((d-2,))
-    if d > 2:
-        fixed_value = surrogate_parameters['fixed_value'] 
-    for i in range(0,m1):
-        for j in range(0,m2):
-            xi = np.zeros((d,))
-
-            if surrogate_parameters['training_points'] == 'gamma': 
-                X[i,j] = Dom_min[0] + (Dom_max[0] - Dom_min[0])*(X[i,j]+1.)/2.
-                Y[i,j] = Dom_min[1] + (Dom_max[1] - Dom_min[1])*(Y[i,j]+1.)/2.
-                means = surrogate_parameters['means']
-                variances = surrogate_parameters['variances']
-               
-                xi[0] = (X[i,j]-means[0])/(surrogate_parameters['nstddeviation']*np.sqrt(variances[0]))
-                xi[1] = (Y[i,j]-means[1])/(surrogate_parameters['nstddeviation']*np.sqrt(variances[1]))
-                for k in range(2,d):
-                    xi[k] = (fixed_value[k-2]-means[k]) / np.sqrt(variances[k])
-
-
-            elif surrogate_parameters['training_points'] == 'precomputed': 
-                X[i,j] = Dom_min[0] + (Dom_max[0] - Dom_min[0])*(X[i,j]+1.)/2.
-                Y[i,j] = Dom_min[1] + (Dom_max[1] - Dom_min[1])*(Y[i,j]+1.)/2.
-                means = surrogate_parameters['means']
-                variances = surrogate_parameters['variances']
-               
-                xi[0] = (X[i,j]-means[0]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[0]))
-                xi[1] = (Y[i,j]-means[1]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[1]))
-                for k in range(2,d):
-                    xi[k] = (fixed_value[k-2]-means[k]) / np.sqrt(variances[k])
-
-            elif normalisation == False:
-                X[i,j] = Dom_min[0] + (Dom_max[0] - Dom_min[0])*(X[i,j]+1.)/2.
-                Y[i,j] = Dom_min[1] + (Dom_max[1] - Dom_min[1])*(Y[i,j]+1.)/2.
-            
-                xi[0] = X[i,j]
-                xi[1] = Y[i,j]
-            else:
-                xi[0] = X[i,j]
-                xi[1] = Y[i,j]
-
-
-            phi_tmp[i,j,:] = phi(xi,N,n_max,d)
-
-
-    if normalisation == True:
-        for i in range(0,m1):
-            for j in range(0,m2):
-                X[i,j] = Dom_min[0] + (Dom_max[0] - Dom_min[0])*(X[i,j]+1.)/2.
-                Y[i,j] = Dom_min[1] + (Dom_max[1] - Dom_min[1])*(Y[i,j]+1.)/2.
-
-
-    if solver == 'QR': 
-        W_srZ = np.dot(W_sr,Z)
-        print(np.linalg.cond(W_srZ))
-        Q, R = np.linalg.qr(W_srZ)
-        rhs = np.dot(np.transpose(Q),np.dot(W_sr,sol))
-        s_hat = np.linalg.solve(R, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-
-    if solver == 'sp': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        import scipy.sparse.linalg
-        s_hat = scipy.sparse.linalg.spsolve(ZWZ, rhs, 'NATURAL', False)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'numpy_linalg': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        s_hat = np.linalg.solve(ZWZ, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'scipy_linalg': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        import scipy.sparse.linalg
-        s_hat = scipy.linalg.solve(ZWZ, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'scipy_lu': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        import scipy.sparse.linalg
-        PL, U = scipy.linalg.lu(ZWZ,True)
-        print(np.linalg.cond(PL))
-        print(np.linalg.cond(U))
-        tmp = scipy.linalg.solve(PL,rhs)
-        s_hat = scipy.linalg.solve(U,tmp)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'minres': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        import scipy.sparse.linalg
-        s_hat, info = scipy.sparse.linalg.minres(ZWZ, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'gmres': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        import scipy.sparse.linalg
-        s_hat, info = scipy.sparse.linalg.gmres(ZWZ, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'lgmres': 
-        W_srZ = np.dot(W_sr,Z)
-        ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-        print(np.linalg.cond(ZWZ))
-        rhs = np.dot(np.transpose(W_srZ),np.dot(W_sr,sol))
-        import scipy.sparse.linalg
-        s_hat, info = scipy.sparse.linalg.lgmres(ZWZ, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'lsqr': 
-        W_srZ = np.dot(W_sr,Z)
-        print(np.linalg.cond(W_srZ))
-        rhs = np.dot(W_sr,sol)
-        import scipy.sparse.linalg
-        s_hat, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var = scipy.sparse.linalg.lsqr(W_srZ, rhs)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'lsmr': 
-        W_srZ = np.dot(W_sr,Z)
-        print(np.linalg.cond(W_srZ))
-        rhs = np.dot(W_sr,sol)
-        import scipy.sparse.linalg
-        s_hat, lstop, itn, normr, normar, norma, conda, normx = scipy.sparse.linalg.lsmr(W_srZ, rhs,1e045)
-        print(lstop)
-        print(itn)
-        print(normr)
-        print(normar)
-        print(norma)
-        print(conda)
-        print(normx)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if solver == 'lstsq': 
-        W_srZ = np.dot(W_sr,Z)
-        print(np.linalg.cond(W_srZ))
-        rhs = np.dot(W_sr,sol)
-        import scipy.linalg
-        s_hat, residues, rank, s = scipy.linalg.lstsq(W_srZ, rhs)
-        print(rank)
-        for i in range(0,m1):
-            for j in range(0,m2):
-                surrogate[i,j] = np.dot(np.transpose(phi_tmp[i,j,:]),s_hat)
-
-    if surrogate_parameters['display']: 
-        plot.surf(X, Y, surrogate, sol, fixed_value, fig, ax, current_title, True, True, 'Surrogate model','surrogate.png',d)
-        #from matplotlib2tikz import save as tikz_save
-        #tikz_save('surrogate.tex', figureheight = '\\figureheight', figurewidth = '\\figurewidth')
-        plot.finish()
-
-    return s_hat
-
-def surrogate_4d(sol, Z, W_sr, s_hat, surrogate_parameters, Image, images_parameters):
-    if surrogate_parameters['display']:
-        import params.src.plot as plot
-        fig = Image['fig']
-        ax = Image['ax'] 
-        current_title = Image['current_title']
-        d = surrogate_parameters['d']
-        M = surrogate_parameters['M']
-        N = surrogate_parameters['N']
-
-        m1 = surrogate_parameters['m1']
-        m2 = surrogate_parameters['m2']
-
-        Dom_min = surrogate_parameters['Dom_min']
-        Dom_max = surrogate_parameters['Dom_max']
-        P_name = surrogate_parameters['P_name']
-        solver = surrogate_parameters['solver']
-
-        normalisation = surrogate_parameters['normalisation']
-        ##
-        if surrogate_parameters['function_type'] == 'monomial': 
-            from params.src.monomials import phi   
-        elif surrogate_parameters['function_type'] == 'monomial_1norm': 
-            from params.src.monomials_1norm import phi     
-        ##
-
-        shape = Z.shape
-        m_max = shape[0]
-        n_max = shape[1]
-
-        x = np.linspace(-1.,1.,m1)
-        y = np.linspace(-1.,1.,m2)
-
-        surrogate = np.zeros((m1,m2))
-        X0, Y0 = np.meshgrid(x, y)
-        phi_tmp = np.zeros((m1,m2,n_max))
-
-        n_c = images_parameters['number_of_cuts']
-
-        index_c = images_parameters['index_c']
-        point_c = images_parameters['point_c'] 
-
-        c_min = sol.min()
-        c_max = sol.max()
-
-        print(index_c)
-        print(point_c)
-
-        for c in range(0,n_c):
-            X = np.zeros((m1,m2))
-            Y = np.zeros((m1,m2))
-            Z = np.zeros((m1,m2))
-
-            xi0 = point_c[c]
-            print(index_c[c])
-            for i in range(0,m1):
-                for j in range(0,m2):
-                    xi = np.zeros((d,))
-
-                    if surrogate_parameters['training_points'] == 'gamma': 
-                        means = surrogate_parameters['means']
-                        variances = surrogate_parameters['variances']
-
-                        X[i,j] = Dom_min[index_c[c,0]] + (Dom_max[index_c[c,0]] - Dom_min[index_c[c,0]])*(X0[i,j]+1.)/2.
-                        Y[i,j] = Dom_min[index_c[c,1]] + (Dom_max[index_c[c,1]] - Dom_min[index_c[c,1]])*(Y0[i,j]+1.)/2.
-                        Z[i,j] = xi0[index_c[c,2]]
-
-                       
-                        xi[index_c[c,0]] = (X[i,j]-means[index_c[c,0]]) / np.sqrt(variances[index_c[c,0]])
-                        xi[index_c[c,1]] = (Y[i,j]-means[index_c[c,1]]) / np.sqrt(variances[index_c[c,1]])
-                        xi[index_c[c,2]] = (Z[i,j]-means[index_c[c,2]]) / np.sqrt(variances[index_c[c,2]])
-
-                    tmp = phi(xi,N,n_max,d)
-                    surrogate[i,j] = np.dot(np.transpose(tmp),s_hat)
-
-            if index_c[c,0] == 1:
-                plot.surf4d(Z, X, Y, surrogate, c_min, c_max, fig, ax, current_title, True, True, 'Surrogate model','surrogate.png',d)
-            elif index_c[c,1] == 2:
-                plot.surf4d(X, Z, Y, surrogate, c_min, c_max, fig, ax, current_title, True, True, 'Surrogate model','surrogate.png',d)
-            else:
-                plot.surf4d(X, Y, Z, surrogate, c_min, c_max, fig, ax, current_title, True, True, 'Surrogate model','surrogate.png',d)
-        plot.finish()
diff --git a/Metafor/__init__.py b/Metafor/__init__.py
deleted file mode 100644
index 0b4a1527..00000000
--- a/Metafor/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# -*- coding: utf-8; -*-
-# mirrors MODULE initialization file
-
-import tbox
-from mirrorsw import *
diff --git a/Metafor/config/bord01_config1.py b/Metafor/config/bord01_config1.py
deleted file mode 100644
index 9ed4452a..00000000
--- a/Metafor/config/bord01_config1.py
+++ /dev/null
@@ -1,133 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        import platform
-
-        if isUnix():
-            if platform.system() == 'Darwin':
-                model_parameters['Metafor_exe']  = '/Users/kliegeois/dev/Metafor/oo_metaB/bin/Metafor'
-                model_parameters['Metafor_model'] = '/Users/kliegeois/dev/waves/Metafor/models/bord01'
-            else:
-                model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-                model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'
-        else:
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True
-        if not isUnix():
-            surrogate_parameters['display'] = False
-        surrogate_parameters['normalisation'] = True
-        #--------------------------------------------------------
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'sigEl0', 'Thickness'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 3
-
-        surrogate_parameters['M'] = M
-
-        surrogate_parameters['Dom_min'] = np.array([ 350., 1])
-        surrogate_parameters['Dom_max'] = np.array([ 450., 2.])
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------
-        #--------------------------------------------------------
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'Yield stress $[$MPa$]$'
-        images_parameters['ylabel'] = 'Thickness $[$mm$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json
-
-            tmp = sol.tolist()
-            file_path = "sol.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = Z.tolist()
-            file_path = "Z.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = W_sr.tolist()
-            file_path = "W_sr.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = s_hat.tolist()
-            file_path = "s_hat.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config10.py b/Metafor/config/bord01_config10.py
deleted file mode 100644
index 0e5e2f17..00000000
--- a/Metafor/config/bord01_config10.py
+++ /dev/null
@@ -1,209 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 15    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1200., 200.])
-        surrogate_parameters['Dom_max'] = np.array([ 1800., 650.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'gamma'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho  
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$[$MPa$]$'
-        images_parameters['ylabel'] = '$[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-
-       
-        from Metafor.Mparams.sequential import Z_evaluate
-
-        m_max = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
-        p_max = m_max
-
-        Zcond = np.zeros((len(m_max),len(p_max)))
-        Zsigma_max = np.zeros((len(m_max),len(p_max)))
-        Zsigma_min = np.zeros((len(m_max),len(p_max)))
-        ZZrank = np.zeros((len(m_max),len(p_max)))
-        ZZdet = np.zeros((len(m_max),len(p_max)))
-
-        W_srZcond = np.zeros((len(m_max),len(p_max)))
-        ZWZrank = np.zeros((len(m_max),len(p_max)))
-        ZWZdet = np.zeros((len(m_max),len(p_max)))
-        W_srZsigma_max = np.zeros((len(m_max),len(p_max)))
-        W_srZsigma_min = np.zeros((len(m_max),len(p_max)))
-
-        np.set_printoptions(linewidth = 210)
-        surrogate_parameters['nstddeviation'] = 1.
-        for m_i in range(0,len(m_max)):
-
-            for j in range(0,d):
-                M[j] = m_max[m_i]   
-
-            surrogate_parameters['M'] = M
-            for p_i in range(0,m_i+1):
-                N = np.zeros((d,), dtype =np.int)
-                for j in range(0,d):
-                    N[j] = p_max[p_i] 
-
-                surrogate_parameters['N'] = N
-                
-                Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-                
-                
-                ZZ = np.dot(Z.T,Z)
-                W_srZ = np.dot(W_sr,Z)
-                ZWZ = np.dot(np.transpose(W_srZ),W_srZ)        
-
-                U1, s1, V1_t = np.linalg.svd(Z, full_matrices=True)  
-                U2, s2, V2_t = np.linalg.svd(W_srZ, full_matrices=True)  
-
-
-                Zcond[m_i,p_i] = np.linalg.cond(Z)
-
-                ZZrank[m_i,p_i] = np.linalg.matrix_rank(ZZ)
-                ZZdet[m_i,p_i] = np.linalg.det(ZZ)
-
-                W_srZcond[m_i,p_i] = np.linalg.cond(W_srZ)
-
-                ZWZrank[m_i,p_i] = np.linalg.matrix_rank(ZWZ)
-                ZWZdet[m_i,p_i] = np.linalg.det(ZWZ)
-
-                Zsigma_max[m_i,p_i] = s1.max()
-                Zsigma_min[m_i,p_i] = s1.min()
-
-                W_srZsigma_max[m_i,p_i] = s2.max()
-                W_srZsigma_min[m_i,p_i] = s2.min()
-        print('Condition number of Z')
-        print(Zcond)
-        print('Rank of ZZ')
-        print(ZZrank)
-        print('Determinant of ZZ')
-        print(ZZdet)
-
-        print('Maximal singular value of Z')
-        print(Zsigma_max)
-        print('Minimal singular value of Z')
-        print(Zsigma_min)
-
-        print('Condition number of W_srZ')
-        print(W_srZcond)
-        print('Rank of ZWZ')
-        print(ZWZrank)
-        print('Determinant of ZWZ')
-        print(ZWZdet)
-
-        print('Maximal singular value of W_srZ')
-        print(W_srZsigma_max)
-        print('Minimal singular value of W_srZ')
-        print(W_srZsigma_min)
-    '''
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-    '''
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config11.py b/Metafor/config/bord01_config11.py
deleted file mode 100644
index 12e789b2..00000000
--- a/Metafor/config/bord01_config11.py
+++ /dev/null
@@ -1,218 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 15    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1200., 200.])
-        surrogate_parameters['Dom_max'] = np.array([ 1800., 650.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'gamma'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho  
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$[$MPa$]$'
-        images_parameters['ylabel'] = '$[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-
-       
-        from Metafor.Mparams.sequential import Z_evaluate
-
-        m_max = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
-        nstddeviation = np.linspace(0.5,10.,100) #np.array([0.5, 0.75, 1., 1.25, 1.5, 1.75, 2., 2.25, 2.5, 2.75, 3., 3.25, 3.5, 3.75, 4.,4.25,4.5,4.75,5.])
-
-        Xi2max = np.zeros((len(nstddeviation),len(m_max)))
-        Xi2min = np.zeros((len(nstddeviation),len(m_max)))
-
-        Zcond = np.zeros((len(nstddeviation),len(m_max)))
-        Zsigma_max = np.zeros((len(nstddeviation),len(m_max)))
-        Zsigma_min = np.zeros((len(nstddeviation),len(m_max)))
-        ZZrank = np.zeros((len(nstddeviation),len(m_max)))
-        ZZdet = np.zeros((len(nstddeviation),len(m_max)))
-
-        W_srZcond = np.zeros((len(nstddeviation),len(m_max)))
-        ZWZrank = np.zeros((len(nstddeviation),len(m_max)))
-        ZWZdet = np.zeros((len(nstddeviation),len(m_max)))
-        W_srZsigma_max = np.zeros((len(nstddeviation),len(m_max)))
-        W_srZsigma_min = np.zeros((len(nstddeviation),len(m_max)))
-
-        np.set_printoptions(linewidth = 210)
-        for m_i in range(0,len(m_max)):
-
-            for j in range(0,d):
-                M[j] = m_max[m_i]   
-
-            for j in range(0,d):
-                N[j] = m_max[m_i]  
-
-            surrogate_parameters['M'] = M
-            surrogate_parameters['N'] = N
-
-            for nst_i in range(0,len(nstddeviation)):
-
-                surrogate_parameters['nstddeviation'] = nstddeviation[nst_i]
-                Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-                
-                ZZ = np.dot(Z.T,Z)
-                W_srZ = np.dot(W_sr,Z)
-                ZWZ = np.dot(np.transpose(W_srZ),W_srZ)        
-
-                U1, s1, V1_t = np.linalg.svd(Z, full_matrices=True)  
-                U2, s2, V2_t = np.linalg.svd(W_srZ, full_matrices=True)  
-
-                Xi2max[nst_i,m_i] = np.abs(Xi2).max()
-                Xi2min[nst_i,m_i] = np.abs(Xi2).min()
-
-                Zcond[nst_i,m_i] = np.linalg.cond(Z)
-
-                ZZrank[nst_i,m_i] = np.linalg.matrix_rank(ZZ)
-                ZZdet[nst_i,m_i] = np.linalg.det(ZZ)
-
-                W_srZcond[nst_i,m_i] = np.linalg.cond(W_srZ)
-
-                ZWZrank[nst_i,m_i] = np.linalg.matrix_rank(ZWZ)
-                ZWZdet[nst_i,m_i] = np.linalg.det(ZWZ)
-
-                Zsigma_max[nst_i,m_i] = s1.max()
-                Zsigma_min[nst_i,m_i] = s1.min()
-
-                W_srZsigma_max[nst_i,m_i] = s2.max()
-                W_srZsigma_min[nst_i,m_i] = s2.min()
-
-        print('Max of abs(Xi2)')
-        print(Xi2max)
-        print('Min of abs(Xi2)')
-        print(Xi2min)
-        print('Condition number of Z')
-        print(Zcond)
-        print('Rank of ZZ')
-        print(ZZrank)
-        print('Determinant of ZZ')
-        print(ZZdet)
-
-        print('Maximal singular value of Z')
-        print(Zsigma_max)
-        print('Minimal singular value of Z')
-        print(Zsigma_min)
-
-        print('Condition number of W_srZ')
-        print(W_srZcond)
-        print('Rank of ZWZ')
-        print(ZWZrank)
-        print('Determinant of ZWZ')
-        print(ZWZdet)
-
-        print('Maximal singular value of W_srZ')
-        print(W_srZsigma_max)
-        print('Minimal singular value of W_srZ')
-        print(W_srZsigma_min)
-    '''
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-    '''
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config12.py b/Metafor/config/bord01_config12.py
deleted file mode 100644
index 58e98ed7..00000000
--- a/Metafor/config/bord01_config12.py
+++ /dev/null
@@ -1,140 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 5    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1300., 300.])
-        surrogate_parameters['Dom_max'] = np.array([ 1700., 550.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 5  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'precomputed'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['nstddeviation'] = 1.
-        surrogate_parameters['rho'] = rho  
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$[$MPa$]$'
-        images_parameters['ylabel'] = '$[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_4d
-            surrogate_4d(sol, Z, W_sr, s_hat, surrogate_parameters, Image, images_parameters)
-            
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config13.py b/Metafor/config/bord01_config13.py
deleted file mode 100644
index 6e880060..00000000
--- a/Metafor/config/bord01_config13.py
+++ /dev/null
@@ -1,297 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 15    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1400., 350.])
-        surrogate_parameters['Dom_max'] = np.array([ 1600., 450.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'precomputed'
-        surrogate_parameters['precomputed_training_points'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01/X_tp.json'
-        surrogate_parameters['precomputed_weights'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01/W_tp.json'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho  
-        surrogate_parameters['nstddeviation'] = 2.6281407
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$H\;[$MPa$]$'
-        images_parameters['ylabel'] = '$S\;[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-
-            from Metafor.Mparams.sequential import Z_evaluate
-            from Metafor.Mparams.sequential import scatterplot
-            from Metafor.Mparams.surrogate import surrogate_creation
-
-            surrogate_parameters['nstddeviation'] = 1
-            Z1, W1_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-            i_max = 1
-            cond = np.zeros((i_max,1))
-            ZWZrank = np.zeros((i_max,1))
-            ZWZdet = np.zeros((i_max,1))
-            residual = np.zeros((i_max,1))
-            max_residual = np.zeros((i_max,1))
-            min_residual = np.zeros((i_max,1))
-            w_residual = np.zeros((i_max,1))
-            max_w_residual = np.zeros((i_max,1))
-            min_w_residual = np.zeros((i_max,1))
-
-            np.set_printoptions(linewidth = 210)
-
-            for j in range(0,d):
-                N[j] = 9  
-
-            surrogate_parameters['N'] = N
-
-
-            nstddeviation = np.linspace(0.1,10.,i_max)
-            for i in range(0,i_max):
-                surrogate_parameters['nstddeviation'] = nstddeviation[i]
-                Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-
-                #W_sr = np.eye(W_sr.shape[0])
-
-
-
-                W_srZ = np.dot(W_sr,Z)
-                cond[i] = np.linalg.cond(W_srZ)
-
-                '''
-                Image = scatterplot(sol, surrogate_parameters, images_parameters)
-                s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-
-                ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-
-                ZWZrank[i] = np.linalg.matrix_rank(ZWZ)
-                ZWZdet[i] = np.linalg.det(ZWZ)
-                res = np.dot(Z,s_hat)-sol
-                residual[i] = np.linalg.norm(res)
-                max_residual[i] = np.abs(res).max()
-                min_residual[i] = np.abs(res).min()
-
-                w_res = np.dot(W,res)
-                w_residual[i] = np.linalg.norm(w_res)
-                max_w_residual[i] = np.abs(w_res).max()
-                min_w_residual[i] = np.abs(w_res).min()
-                '''
-                print(i)
-
-            #import matplotlib.pyplot as plt
-            #plt.semilogy(nstddeviation, cond)
-            #plt.show()
-            print('Condition number of W_srZ')
-            print(cond.T)
-            print('nstddeviation')
-            print(nstddeviation.T)
-            
-            #'''
-            surrogate_parameters['nstddeviation'] = 2.6281407
-            for j in range(0,d):
-                N[j] = 9  
-
-            surrogate_parameters['N'] = N
-            surrogate_parameters['display'] = True 
-            Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            s_hat_w = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            print(s_hat_w.T)
-
-            W_sr = np.eye(W_sr.shape[0])
-
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            s_hat_wout = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            print(s_hat_wout.T)
-
-            ## ---------------------------
-            from params.src.monomials_1norm import phi   
-            from params.src.monomials_1norm import compute_n_max
-            n_max = compute_n_max(N,d)
-            import params.arnst_ponthot.src.gamma as tp 
-
-            means = surrogate_parameters['means']
-            variances = surrogate_parameters['variances']
-            correlations = surrogate_parameters['correlations']
-
-            n_MC = 200
-
-
-            values_w = np.zeros((n_MC,1)) 
-            values_wout = np.zeros((n_MC,1)) 
-            xi_s = np.zeros((2,n_MC)) 
-            for i in range(0,n_MC):
-                if np.mod(i,1000) == 0:
-                    print(i)
-                xi_in = np.random.normal(0., 1., 2)     
-
-
-
-                xi_in[0] = 5.273790423018157
-
-           
-                xi = tp.f_mapping(xi_in,2,means,variances,correlations,surrogate_parameters['f_mapping_method'])
-                xi_s[0,i] = (xi[0]-means[0]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[0]))
-                xi_s[1,i] = (xi[1]-means[1]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[1]))
-                phi_xi = phi(xi_s[:,i],N,n_max,d)
-                values_w[i] = np.dot(np.transpose(phi_xi),s_hat_w)
-                values_wout[i] = np.dot(np.transpose(phi_xi),s_hat_wout)
-            '''
-            mean = 0.
-            variance = 0.
-            exceedence = 0.
-            for i in range(0,n_MC):
-                mean = mean + values[i]
-
-                if values[i] >= 0.065:
-                    exceedence = exceedence + 1.
-
-            mean = mean/n_MC
-
-            xi_s = np.zeros((2,1)) 
-            for i in range(0,n_MC):
-                variance = variance + (mean - values[i])**2
-
-            variance = variance/(n_MC-1.)
-
-            print 'Number of MC points'
-            print n_MC
-            print 'Mean'
-            print mean
-            print 'Variance'
-            print variance
-            print 'exceedence'
-            print exceedence
-            '''
-            '''
-            import codecs, json 
-            tmp = values_w.tolist() 
-            file_path = "values_w.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = values_wout.tolist() 
-            file_path = "values_wout.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = xi_s.tolist() 
-            file_path = "xi_s.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-            '''
-            #import matplotlib.pyplot as plt
-            #count, bins, ignored = plt.hist(values, 100, normed=True)
-            #plt.show()
-            #'''
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config2.py b/Metafor/config/bord01_config2.py
deleted file mode 100644
index 897d250c..00000000
--- a/Metafor/config/bord01_config2.py
+++ /dev/null
@@ -1,128 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'sigEl0', 'ih_H'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 10    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 350., 1300.])
-        surrogate_parameters['Dom_max'] = np.array([ 450., 1700.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 5   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'Yield stress $[$MPa$]$'
-        images_parameters['ylabel'] = 'Hardening modulus $[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config3.py b/Metafor/config/bord01_config3.py
deleted file mode 100644
index 0d222b8b..00000000
--- a/Metafor/config/bord01_config3.py
+++ /dev/null
@@ -1,128 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 4
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'sigEl0', 'ih_H', 'Thickness', 'Gap'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 4    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 350., 1300., 0.5, 1.])
-        surrogate_parameters['Dom_max'] = np.array([ 450., 1700., 1.0, 2.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'Yield stress $[$MPa$]$'
-        images_parameters['ylabel'] = 'Thickness $[$mm$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config4.py b/Metafor/config/bord01_config4.py
deleted file mode 100644
index efc986ff..00000000
--- a/Metafor/config/bord01_config4.py
+++ /dev/null
@@ -1,153 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 15    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1200., 200.])
-        surrogate_parameters['Dom_max'] = np.array([ 1800., 650.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'gamma'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho  
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$[$MPa$]$'
-        images_parameters['ylabel'] = '$[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            if 1:
-                from Metafor.Mparams.sequential import Z_evaluate
-                Z1, W1_sr = Z_evaluate(model_parameters, surrogate_parameters)
-                cond = np.zeros((14,1))
-                for i in range(1,15):
-                    N = np.zeros((d,), dtype =np.int)
-                    for j in range(0,d):
-                        N[j] = i  
-
-                    surrogate_parameters['N'] = N
-                    Z, W_sr = Z_evaluate(model_parameters, surrogate_parameters)
-
-                    W_srZ = np.dot(W_sr,Z)
-                    cond[i-1] = np.linalg.cond(W_srZ)
-                print(cond)
-
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config5.py b/Metafor/config/bord01_config5.py
deleted file mode 100644
index f63b8675..00000000
--- a/Metafor/config/bord01_config5.py
+++ /dev/null
@@ -1,128 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'sigEl0', 'ih_H'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 2    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 350., 1300.])
-        surrogate_parameters['Dom_max'] = np.array([ 450., 1700.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'Yield stress $[$MPa$]$'
-        images_parameters['ylabel'] = 'Hardening modulus $[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config6.py b/Metafor/config/bord01_config6.py
deleted file mode 100644
index 638e28ce..00000000
--- a/Metafor/config/bord01_config6.py
+++ /dev/null
@@ -1,128 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'sigEl0', 'ih_H'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 10    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 350., 1300.])
-        surrogate_parameters['Dom_max'] = np.array([ 450., 1700.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 10   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'scipy_lu'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'Yield stress $[$MPa$]$'
-        images_parameters['ylabel'] = 'Hardening modulus $[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config7.py b/Metafor/config/bord01_config7.py
deleted file mode 100644
index 02ea9d55..00000000
--- a/Metafor/config/bord01_config7.py
+++ /dev/null
@@ -1,152 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 5    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1300., 300.])
-        surrogate_parameters['Dom_max'] = np.array([ 1700., 550.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 5  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'gamma'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'PCA'
-        surrogate_parameters['rho'] = rho  
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$[$MPa$]$'
-        images_parameters['ylabel'] = '$[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            if 1:
-                from Metafor.Mparams.sequential import Z_evaluate
-                Z1, W1_sr = Z_evaluate(model_parameters, surrogate_parameters)
-
-                N = np.zeros((d,), dtype =np.int)
-                for j in range(0,d):
-                    N[j] = 5  
-
-                surrogate_parameters['N'] = N
-                Z, W_sr = Z_evaluate(model_parameters, surrogate_parameters)
-
-                TMP = Z1.shape
-                #print Z[5,0:TMP[1]] - Z1[5,0:TMP[1]]
-                print(Z[5,:])
-                print(Z1[5,:])
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config8.py b/Metafor/config/bord01_config8.py
deleted file mode 100644
index f2a1858a..00000000
--- a/Metafor/config/bord01_config8.py
+++ /dev/null
@@ -1,145 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 3
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0','Young'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 5    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1300., 300.,209600.0])
-        surrogate_parameters['Dom_max'] = np.array([ 1700., 600.,210300.0])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 3  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'gamma'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.,210000.0])
-        surrogate_parameters['variances'] = np.array([1390.,660.,10000.0])
-        rho12 = -0.233 
-        rho13 = -0.233 
-        rho23 = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho12,rho13],[rho12,1.,rho23],[rho13,rho23,1.]])
-        surrogate_parameters['f_mapping_method'] = 'PCA'
-        surrogate_parameters['fixed_value'] = np.array([209800.0])
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 20
-        surrogate_parameters['m2'] = 20
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$[$MPa$]$'
-        images_parameters['ylabel'] = '$[$MPa$]$'
-        images_parameters['zlabel'] = '$[$MPa$]$'
-        images_parameters['z_min'] = 180000.0
-        images_parameters['z_max'] = 240000.0
-
-        images_parameters['number_of_cuts'] = 3
-        images_parameters['index_c'] = np.array([[0,1,2],[0,2,1],[1,2,0]])
-        images_parameters['point_c'] = np.array([[1300., 300.,209600.0],[1300., 300.,209600.0],[1300., 300.,209600.0]])
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_4d
-            surrogate_4d(sol, Z, W_sr, s_hat, surrogate_parameters, Image, images_parameters)
-            
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_config9.py b/Metafor/config/bord01_config9.py
deleted file mode 100644
index a3b7ed54..00000000
--- a/Metafor/config/bord01_config9.py
+++ /dev/null
@@ -1,294 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False 
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = False 
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'ih_H', 'sigEl0'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 15    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 1200., 200.])
-        surrogate_parameters['Dom_max'] = np.array([ 1800., 650.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2  
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'gamma'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233 
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho  
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$H\;[$MPa$]$'
-        images_parameters['ylabel'] = '$S\;[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-
-            from Metafor.Mparams.sequential import Z_evaluate
-            from Metafor.Mparams.sequential import scatterplot
-            from Metafor.Mparams.surrogate import surrogate_creation
-
-            surrogate_parameters['nstddeviation'] = 1
-            Z1, W1_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-            i_max = 2
-            cond = np.zeros((i_max,1))
-            ZWZrank = np.zeros((i_max,1))
-            ZWZdet = np.zeros((i_max,1))
-            residual = np.zeros((i_max,1))
-            max_residual = np.zeros((i_max,1))
-            min_residual = np.zeros((i_max,1))
-            w_residual = np.zeros((i_max,1))
-            max_w_residual = np.zeros((i_max,1))
-            min_w_residual = np.zeros((i_max,1))
-
-            np.set_printoptions(linewidth = 210)
-
-            for j in range(0,d):
-                N[j] = 9  
-
-            surrogate_parameters['N'] = N
-
-
-            nstddeviation = np.linspace(1.,10.,i_max)
-            for i in range(0,i_max):
-                surrogate_parameters['nstddeviation'] = nstddeviation[i]
-                Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-
-                #W_sr = np.eye(W_sr.shape[0])
-
-
-
-                W_srZ = np.dot(W_sr,Z)
-                cond[i] = np.linalg.cond(W_srZ)
-
-                '''
-                Image = scatterplot(sol, surrogate_parameters, images_parameters)
-                s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-
-                ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-
-                ZWZrank[i] = np.linalg.matrix_rank(ZWZ)
-                ZWZdet[i] = np.linalg.det(ZWZ)
-                res = np.dot(Z,s_hat)-sol
-                residual[i] = np.linalg.norm(res)
-                max_residual[i] = np.abs(res).max()
-                min_residual[i] = np.abs(res).min()
-
-                w_res = np.dot(W,res)
-                w_residual[i] = np.linalg.norm(w_res)
-                max_w_residual[i] = np.abs(w_res).max()
-                min_w_residual[i] = np.abs(w_res).min()
-                '''
-                print(i)
-
-            #import matplotlib.pyplot as plt
-            #plt.semilogy(nstddeviation, cond)
-            #plt.show()
-            print('Condition number of W_srZ')
-            print(cond.T)
-            print('nstddeviation')
-            print(nstddeviation.T)
-            
-            #'''
-            surrogate_parameters['nstddeviation'] = 2.6281407 # 6.32653061
-            for j in range(0,d):
-                N[j] = 9  
-
-            surrogate_parameters['N'] = N
-            surrogate_parameters['display'] = True 
-            Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            s_hat_w = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            print(s_hat_w.T)
-
-            W_sr = np.eye(W_sr.shape[0])
-
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            s_hat_wout = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            print(s_hat_wout.T)
-
-            ## ---------------------------
-            from params.src.monomials_1norm import phi   
-            from params.src.monomials_1norm import compute_n_max
-            n_max = compute_n_max(N,d)
-            import params.arnst_ponthot.src.gamma as tp 
-
-            means = surrogate_parameters['means']
-            variances = surrogate_parameters['variances']
-            correlations = surrogate_parameters['correlations']
-
-            n_MC = 200
-
-
-            values_w = np.zeros((n_MC,1)) 
-            values_wout = np.zeros((n_MC,1)) 
-            xi_s = np.zeros((2,n_MC)) 
-            for i in range(0,n_MC):
-                if np.mod(i,1000) == 0:
-                    print(i)
-                xi_in = np.random.normal(0., 1., 2)     
-
-
-
-                xi_in[0] = 5.273790423018157
-
-           
-                xi = tp.f_mapping(xi_in,2,means,variances,correlations,surrogate_parameters['f_mapping_method'])
-                xi_s[0,i] = (xi[0]-means[0]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[0]))
-                xi_s[1,i] = (xi[1]-means[1]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[1]))
-                phi_xi = phi(xi_s[:,i],N,n_max,d)
-                values_w[i] = np.dot(np.transpose(phi_xi),s_hat_w)
-                values_wout[i] = np.dot(np.transpose(phi_xi),s_hat_wout)
-            '''
-            mean = 0.
-            variance = 0.
-            exceedence = 0.
-            for i in range(0,n_MC):
-                mean = mean + values[i]
-
-                if values[i] >= 0.065:
-                    exceedence = exceedence + 1.
-
-            mean = mean/n_MC
-
-            xi_s = np.zeros((2,1)) 
-            for i in range(0,n_MC):
-                variance = variance + (mean - values[i])**2
-
-            variance = variance/(n_MC-1.)
-
-            print 'Number of MC points'
-            print n_MC
-            print 'Mean'
-            print mean
-            print 'Variance'
-            print variance
-            print 'exceedence'
-            print exceedence
-            '''
-            '''
-            import codecs, json 
-            tmp = values_w.tolist() 
-            file_path = "values_w.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = values_wout.tolist() 
-            file_path = "values_wout.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = xi_s.tolist() 
-            file_path = "xi_s.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-            '''
-            #import matplotlib.pyplot as plt
-            #count, bins, ignored = plt.hist(values, 100, normed=True)
-            #plt.show()
-            #'''
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_numericalSA.py b/Metafor/config/bord01_numericalSA.py
deleted file mode 100644
index 06b66c07..00000000
--- a/Metafor/config/bord01_numericalSA.py
+++ /dev/null
@@ -1,299 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import numpy as np
-import os
-import shutil
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix():
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01'
-        else:
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False
-        if not isUnix():
-            surrogate_parameters['display'] = False
-        surrogate_parameters['normalisation'] = False
-        #--------------------------------------------------------
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 4
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'NRTol', 'nx', 'ny', 'peno'])
-
-        M = np.zeros((d,), dtype =np.int)
-        M[0] = 7
-        M[1] = 9
-        M[2] = 7
-        M[3] = 7
-
-        surrogate_parameters['M'] = M
-
-        surrogate_parameters['Dom_min'] = np.array([ 1400., 350.])
-        surrogate_parameters['Dom_max'] = np.array([ 1600., 450.])
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------
-        #--------------------------------------------------------
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'precomputed'
-        surrogate_parameters['precomputed_training_points'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01/numericalSATrainingPoints.ascii'
-        surrogate_parameters['precomputed_weights'] = '/home/kliegeois/Codes/waves/Metafor/models/bord01/numericalSAWeights.ascii'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho
-        surrogate_parameters['nstddeviation'] = 2.6281407
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$H\;[$MPa$]$'
-        images_parameters['ylabel'] = '$S\;[$MPa$]$'
-        images_parameters['zlabel'] = 'Angle $[$rad$]$'
-        images_parameters['z_min'] = 0.04
-        images_parameters['z_max'] = 0.07
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-
-            from Metafor.Mparams.sequential import Z_evaluate
-            from Metafor.Mparams.sequential import scatterplot
-            from Metafor.Mparams.surrogate import surrogate_creation
-
-            surrogate_parameters['nstddeviation'] = 1
-            Z1, W1_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-            i_max = 1
-            cond = np.zeros((i_max,1))
-            ZWZrank = np.zeros((i_max,1))
-            ZWZdet = np.zeros((i_max,1))
-            residual = np.zeros((i_max,1))
-            max_residual = np.zeros((i_max,1))
-            min_residual = np.zeros((i_max,1))
-            w_residual = np.zeros((i_max,1))
-            max_w_residual = np.zeros((i_max,1))
-            min_w_residual = np.zeros((i_max,1))
-
-            np.set_printoptions(linewidth = 210)
-
-            for j in range(0,d):
-                N[j] = 9
-
-            surrogate_parameters['N'] = N
-
-
-            nstddeviation = np.linspace(0.1,10.,i_max)
-            for i in range(0,i_max):
-                surrogate_parameters['nstddeviation'] = nstddeviation[i]
-                Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-
-                #W_sr = np.eye(W_sr.shape[0])
-
-
-
-                W_srZ = np.dot(W_sr,Z)
-                cond[i] = np.linalg.cond(W_srZ)
-
-                '''
-                Image = scatterplot(sol, surrogate_parameters, images_parameters)
-                s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-
-                ZWZ = np.dot(np.transpose(W_srZ),W_srZ)
-
-                ZWZrank[i] = np.linalg.matrix_rank(ZWZ)
-                ZWZdet[i] = np.linalg.det(ZWZ)
-                res = np.dot(Z,s_hat)-sol
-                residual[i] = np.linalg.norm(res)
-                max_residual[i] = np.abs(res).max()
-                min_residual[i] = np.abs(res).min()
-
-                w_res = np.dot(W,res)
-                w_residual[i] = np.linalg.norm(w_res)
-                max_w_residual[i] = np.abs(w_res).max()
-                min_w_residual[i] = np.abs(w_res).min()
-                '''
-                print(i)
-
-            #import matplotlib.pyplot as plt
-            #plt.semilogy(nstddeviation, cond)
-            #plt.show()
-            print('Condition number of W_srZ')
-            print(cond.T)
-            print('nstddeviation')
-            print(nstddeviation.T)
-
-            #'''
-            surrogate_parameters['nstddeviation'] = 2.6281407
-            for j in range(0,d):
-                N[j] = 9
-
-            surrogate_parameters['N'] = N
-            surrogate_parameters['display'] = True
-            Z, W_sr, Xi, Xi2 = Z_evaluate(model_parameters, surrogate_parameters)
-
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            s_hat_w = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            print(s_hat_w.T)
-
-            W_sr = np.eye(W_sr.shape[0])
-
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            s_hat_wout = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-            print(s_hat_wout.T)
-
-            ## ---------------------------
-            from params.src.monomials_1norm import phi
-            from params.src.monomials_1norm import compute_n_max
-            n_max = compute_n_max(N,d)
-            import params.arnst_ponthot.src.gamma as tp
-
-            means = surrogate_parameters['means']
-            variances = surrogate_parameters['variances']
-            correlations = surrogate_parameters['correlations']
-
-            n_MC = 200
-
-
-            values_w = np.zeros((n_MC,1))
-            values_wout = np.zeros((n_MC,1))
-            xi_s = np.zeros((2,n_MC))
-            for i in range(0,n_MC):
-                if np.mod(i,1000) == 0:
-                    print(i)
-                xi_in = np.random.normal(0., 1., 2)
-
-
-
-                xi_in[0] = 5.273790423018157
-
-
-                xi = tp.f_mapping(xi_in,2,means,variances,correlations,surrogate_parameters['f_mapping_method'])
-                xi_s[0,i] = (xi[0]-means[0]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[0]))
-                xi_s[1,i] = (xi[1]-means[1]) / (surrogate_parameters['nstddeviation']*np.sqrt(variances[1]))
-                phi_xi = phi(xi_s[:,i],N,n_max,d)
-                values_w[i] = np.dot(np.transpose(phi_xi),s_hat_w)
-                values_wout[i] = np.dot(np.transpose(phi_xi),s_hat_wout)
-            '''
-            mean = 0.
-            variance = 0.
-            exceedence = 0.
-            for i in range(0,n_MC):
-                mean = mean + values[i]
-
-                if values[i] >= 0.065:
-                    exceedence = exceedence + 1.
-
-            mean = mean/n_MC
-
-            xi_s = np.zeros((2,1))
-            for i in range(0,n_MC):
-                variance = variance + (mean - values[i])**2
-
-            variance = variance/(n_MC-1.)
-
-            print 'Number of MC points'
-            print n_MC
-            print 'Mean'
-            print mean
-            print 'Variance'
-            print variance
-            print 'exceedence'
-            print exceedence
-            '''
-            '''
-            import codecs, json
-            tmp = values_w.tolist()
-            file_path = "values_w.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = values_wout.tolist()
-            file_path = "values_wout.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = xi_s.tolist()
-            file_path = "xi_s.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-            '''
-            #import matplotlib.pyplot as plt
-            #count, bins, ignored = plt.hist(values, 100, normed=True)
-            #plt.show()
-            #'''
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json
-
-            tmp = sol.tolist()
-            file_path = "sol.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = Z.tolist()
-            file_path = "Z.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = W_sr.tolist()
-            file_path = "W_sr.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = s_hat.tolist()
-            file_path = "s_hat.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/bord01_numericalSA2.py b/Metafor/config/bord01_numericalSA2.py
deleted file mode 100644
index a8831c69..00000000
--- a/Metafor/config/bord01_numericalSA2.py
+++ /dev/null
@@ -1,125 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-import numpy as np
-import os
-import shutil
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix():
-            model_parameters['Metafor_exe']  = '/Users/kliegeois/dev/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/Users/kliegeois/dev/waves/Metafor/models/bord01'
-        else:
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/bord01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False
-        if not isUnix():
-            surrogate_parameters['display'] = False
-        surrogate_parameters['normalisation'] = False
-        #--------------------------------------------------------
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 6
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'NRTol', 'peno', 'peta', 'PEAS', 'nx', 'ny'])
-
-        M = np.zeros((d,), dtype =np.int)
-        M[0] = 1
-        M[1] = 1
-        M[2] = 1
-        M[3] = 1
-        M[4] = 1
-        M[5] = 4
-
-        surrogate_parameters['M'] = M
-
-        surrogate_parameters['Dom_min'] = np.array([ 1400., 350.])
-        surrogate_parameters['Dom_max'] = np.array([ 1600., 450.])
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------
-        #--------------------------------------------------------
-        surrogate_parameters['function_type'] = 'monomial_1norm'
-        surrogate_parameters['training_points'] = 'precomputed'
-        surrogate_parameters['precomputed_training_points'] = '/Users/kliegeois/dev/waves/Metafor/models/bord01/numericalSATrainingPoints3.ascii'
-        surrogate_parameters['precomputed_weights'] = '/Users/kliegeois/dev/waves/Metafor/models/bord01/numericalSAWeights3.ascii'
-        surrogate_parameters['solver'] = 'QR'
-        surrogate_parameters['means'] = np.array([1495.,396.])
-        surrogate_parameters['variances'] = np.array([1390.,660.])
-        rho = -0.233
-        surrogate_parameters['correlations'] = np.array([[1.,rho],[rho,1.]])
-        surrogate_parameters['f_mapping_method'] = 'Cholesky'
-        surrogate_parameters['rho'] = rho
-        surrogate_parameters['nstddeviation'] = 2.6281407
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json
-
-            tmp = sol.tolist()
-            file_path = "sol.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = Z.tolist()
-            file_path = "Z.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = W_sr.tolist()
-            file_path = "W_sr.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = s_hat.tolist()
-            file_path = "s_hat.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/mirror01_config1.py b/Metafor/config/mirror01_config1.py
deleted file mode 100644
index 830ae520..00000000
--- a/Metafor/config/mirror01_config1.py
+++ /dev/null
@@ -1,147 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = '/home/kliegeois/Codes/waves/Metafor/models/mirror01/mirror.geo'        
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01/mirror.geo'  
-        #----------------------Geometry--------------------------
-        model_parameters['L']    = 250.
-        model_parameters['L_1']  = 250.
-        model_parameters['H']    =  50.
-        model_parameters['W']    = 150.
-        #------------------------Mesh----------------------------   
-        model_parameters['nL']   =   6
-        model_parameters['nL_1'] =   6
-        model_parameters['nH']   =   6
-        model_parameters['nH_1'] =   6
-        model_parameters['nW']   =   5 
-        #------------------------Load----------------------------
-        model_parameters['tmax']          = 1.          #sec
-        model_parameters['dtinit']        = 0.01         #sec
-        model_parameters['dtmax']         = 0.1          #sec
-
-        model_parameters['TempInit']      = 70.0         #°
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'TempFinal', 'H_1'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 10    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 100., 2.])
-        surrogate_parameters['Dom_max'] = np.array([ 500., 10.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 5   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$T [$C$]$'
-        images_parameters['ylabel'] = '$H_1 [$mm$]$'
-        images_parameters['zlabel'] = 'max $\sigma_{VM} [$MPa$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/mirror01_config2.py b/Metafor/config/mirror01_config2.py
deleted file mode 100644
index 55a3e275..00000000
--- a/Metafor/config/mirror01_config2.py
+++ /dev/null
@@ -1,147 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = '/home/kliegeois/Codes/waves/Metafor/models/mirror01/mirror.geo'        
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01/mirror.geo'  
-        #----------------------Geometry--------------------------
-        model_parameters['L']    = 250.
-        model_parameters['L_1']  = 250.
-        model_parameters['H']    =  50.
-        model_parameters['W']    = 150.
-        #------------------------Mesh----------------------------   
-        model_parameters['nL']   =   6
-        model_parameters['nL_1'] =   6
-        model_parameters['nH']   =   6
-        model_parameters['nH_1'] =   6
-        model_parameters['nW']   =   5 
-        #------------------------Load----------------------------
-        model_parameters['tmax']          = 1.          #sec
-        model_parameters['dtinit']        = 0.01         #sec
-        model_parameters['dtmax']         = 0.1          #sec
-
-        model_parameters['TempInit']      = 70.0         #°
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'TempFinal', 'H_1'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 40    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 100., 2.])
-        surrogate_parameters['Dom_max'] = np.array([ 500., 10.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 20   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$T [$C$]$'
-        images_parameters['ylabel'] = '$H_1 [$mm$]$'
-        images_parameters['zlabel'] = 'max $\sigma_{VM} [$MPa$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/mirror01_config3.py b/Metafor/config/mirror01_config3.py
deleted file mode 100644
index aa591d01..00000000
--- a/Metafor/config/mirror01_config3.py
+++ /dev/null
@@ -1,147 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = '/home/kliegeois/Codes/waves/Metafor/models/mirror01/mirror.geo'        
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01/mirror.geo'  
-        #----------------------Geometry--------------------------
-        model_parameters['L']    = 250.
-        model_parameters['L_1']  = 250.
-        model_parameters['H']    =  50.
-        model_parameters['W']    = 150.
-        #------------------------Mesh----------------------------   
-        model_parameters['nL']   =   6
-        model_parameters['nL_1'] =   6
-        model_parameters['nH']   =   6
-        model_parameters['nH_1'] =   6
-        model_parameters['nW']   =   5 
-        #------------------------Load----------------------------
-        model_parameters['tmax']          = 1.          #sec
-        model_parameters['dtinit']        = 0.01         #sec
-        model_parameters['dtmax']         = 0.1          #sec
-
-        model_parameters['TempInit']      = 70.0         #°
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'TempFinal', 'H_1'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 20    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 100., 2.])
-        surrogate_parameters['Dom_max'] = np.array([ 500., 10.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 10   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$T [$C$]$'
-        images_parameters['ylabel'] = '$H_1 [$mm$]$'
-        images_parameters['zlabel'] = 'max $\sigma_{VM} [$MPa$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/mirror02_config2.py b/Metafor/config/mirror02_config2.py
deleted file mode 100644
index a16cefb4..00000000
--- a/Metafor/config/mirror02_config2.py
+++ /dev/null
@@ -1,147 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = '/home/kliegeois/Codes/waves/Metafor/models/mirror01/mirror.geo'        
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01'
-            model_parameters['geo']  = 'C:/Users/kimli_000/dev/waves/Metafor/models/mirror01/mirror.geo'  
-        #----------------------Geometry--------------------------
-        model_parameters['L']    = 250.
-        model_parameters['L_1']  = 250.
-        model_parameters['H']    =  50.
-        model_parameters['W']    = 150.
-        #------------------------Mesh----------------------------   
-        model_parameters['nL']   =   6
-        model_parameters['nL_1'] =   6
-        model_parameters['nH']   =   6
-        model_parameters['nH_1'] =   6
-        model_parameters['nW']   =   5 
-        #------------------------Load----------------------------
-        model_parameters['tmax']          = 1.          #sec
-        model_parameters['dtinit']        = 0.01         #sec
-        model_parameters['dtmax']         = 0.1          #sec
-
-        model_parameters['TempInit']      = 70.0         #°
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'TempFinal', 'H_1'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 2    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 100., 2.])
-        surrogate_parameters['Dom_max'] = np.array([ 500., 10.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = '$T [$C$]$'
-        images_parameters['ylabel'] = '$H_1 [$mm$]$'
-        images_parameters['zlabel'] = 'max $\sigma_{VM} [$MPa$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/omega01_config1.py b/Metafor/config/omega01_config1.py
deleted file mode 100644
index 7c41ab7a..00000000
--- a/Metafor/config/omega01_config1.py
+++ /dev/null
@@ -1,129 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix():
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/omega01'
-        else:
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/omega01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = False  
-        if not isUnix():
-            surrogate_parameters['display'] = False
-        surrogate_parameters['normalisation'] = True
-        #--------------------------------------------------------
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'LxP1', 'Lx'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 8
-
-        surrogate_parameters['M'] = M
-
-        surrogate_parameters['Dom_min'] = np.array([ 30., 150.])
-        surrogate_parameters['Dom_max'] = np.array([ 50., 250.])
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 4
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------
-        #--------------------------------------------------------
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'LxP1 $[$mm$]$'
-        images_parameters['ylabel'] = 'Lx $[$mm$]$'
-        images_parameters['zlabel'] = 'Springback $[$mm$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json
-
-            tmp = sol.tolist()
-            file_path = "sol.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = Z.tolist()
-            file_path = "Z.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = W_sr.tolist()
-            file_path = "W_sr.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-            tmp = s_hat.tolist()
-            file_path = "s_hat.json"
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/omega01_test.py b/Metafor/config/omega01_test.py
deleted file mode 100644
index 18bbec79..00000000
--- a/Metafor/config/omega01_test.py
+++ /dev/null
@@ -1,129 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/omega01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/omega01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'LxP1', 'Lx'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 2    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 30., 150.])
-        surrogate_parameters['Dom_max'] = np.array([ 50., 250.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'LxP1 $[$mm$]$'
-        images_parameters['ylabel'] = 'Lx $[$mm$]$'
-        images_parameters['zlabel'] = 'Springback $[$mm$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/tube01_config1.py b/Metafor/config/tube01_config1.py
deleted file mode 100644
index f5298794..00000000
--- a/Metafor/config/tube01_config1.py
+++ /dev/null
@@ -1,129 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/tube01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/tube01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'R1', 'R2'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 8    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 3., 4.5])
-        surrogate_parameters['Dom_max'] = np.array([ 4., 5.5])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 4   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'R_1 $[$mm$]$'
-        images_parameters['ylabel'] = 'R_2 $[$mm$]$'
-        images_parameters['zlabel'] = 'F_x $[$N$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/tube01_config2.py b/Metafor/config/tube01_config2.py
deleted file mode 100644
index cba67f7f..00000000
--- a/Metafor/config/tube01_config2.py
+++ /dev/null
@@ -1,129 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/tube01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/tube01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'R1', 'pressure'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 8    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 3., 45.])
-        surrogate_parameters['Dom_max'] = np.array([ 4.5, 55.])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 4   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'R1 $[$mm$]$'
-        images_parameters['ylabel'] = 'Pressure $[$MPa$]$'
-        images_parameters['zlabel'] = 'F_x $[$N$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/config/tube01_test.py b/Metafor/config/tube01_test.py
deleted file mode 100644
index d62373f1..00000000
--- a/Metafor/config/tube01_test.py
+++ /dev/null
@@ -1,129 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-# Copyright 2020 University of Liège
-# 
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# 
-#     http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-
-
-import numpy as np
-import os
-import shutil 
-
-import Metafor.Mparams.TaskManager as tm
-import Metafor.Mparams.mparams as mp
-
-
-def main():
-    if tm.rank == 0:
-        #--------------------------------------------------------
-        #                       Model parameters
-        #--------------------------------------------------------
-        model_parameters = {}
-        isUnix = lambda: os.name == 'posix'
-
-        if isUnix(): 
-            model_parameters['Metafor_exe']  = '/home/kliegeois/Codes/Metafor/oo_metaB/bin/Metafor'
-            model_parameters['Metafor_model'] = '/home/kliegeois/Codes/waves/Metafor/models/tube01'      
-        else:     
-            model_parameters['Metafor_exe']  = 'C:/Users/kimli_000/dev/oo_metaB/bin/Release/Metafor'
-            model_parameters['Metafor_model'] = 'C:/Users/kimli_000/dev/waves/Metafor/models/tube01'
-        #--------------------------------------------------------
-        #                    Surrogate parameters
-        #--------------------------------------------------------
-        surrogate_parameters = {}
-        surrogate_parameters['display'] = True  
-        if not isUnix():
-            surrogate_parameters['display'] = False 
-        surrogate_parameters['normalisation'] = True  
-        #--------------------------------------------------------    
-        surrogate_parameters['fname'] = 'mparams.log'
-        d = 2
-        surrogate_parameters['d'] = d
-        surrogate_parameters['P_name'] = np.array([ 'R1', 'R2'])
-
-        M = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            M[j] = 2    
-
-        surrogate_parameters['M'] = M
-            
-        surrogate_parameters['Dom_min'] = np.array([ 3., 4.5])
-        surrogate_parameters['Dom_max'] = np.array([ 4., 5.5])   
-
-        N = np.zeros((d,), dtype =np.int)
-        for j in range(0,d):
-            N[j] = 2   
-
-        surrogate_parameters['N'] = N
-        #--------------------------------------------------------   
-        #-------------------------------------------------------- 
-        surrogate_parameters['function_type'] = 'monomial'
-        surrogate_parameters['training_points'] = 'gauss'
-        surrogate_parameters['solver'] = 'QR'
-        #--------------------------------------------------------
-        surrogate_parameters['m1'] = 40
-        surrogate_parameters['m2'] = 40
-        #--------------------------------------------------------
-        #                    Images parameters
-        #--------------------------------------------------------
-        images_parameters = {}
-        images_parameters['xlabel'] = 'R_1 $[$mm$]$'
-        images_parameters['ylabel'] = 'R_2 $[$mm$]$'
-        images_parameters['zlabel'] = 'F_x $[$N$]$'
-
-    if mp.AvailableComputedResults():
-        if tm.rank == 0:
-            print("the master/sol.json file will be loaded")
-            print("the master/Z.json file will be loaded")
-            print("the master/W_sr.json file will be loaded")
-            sol, Z, W_sr = mp.LoadComputedResults()
-
-            from Metafor.Mparams.sequential import scatterplot
-            Image = scatterplot(sol, surrogate_parameters, images_parameters)
-            from Metafor.Mparams.surrogate import surrogate_creation
-            s_hat = surrogate_creation(sol, Z, W_sr, surrogate_parameters, Image, images_parameters)
-    else:
-        if tm.rank == 0:
-            ##
-
-            sol, Z, W_sr, s_hat = mp.master(model_parameters,surrogate_parameters,images_parameters)
-
-            ##
-
-            import codecs, json 
-
-            tmp = sol.tolist() 
-            file_path = "sol.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = Z.tolist() 
-            file_path = "Z.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = W_sr.tolist() 
-            file_path = "W_sr.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-            tmp = s_hat.tolist() 
-            file_path = "s_hat.json" 
-            json.dump(tmp, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4) 
-
-
-        else:
-            mp.worker()
-
-if __name__ == "__main__":
-    main()
diff --git a/Metafor/models/__init__.py b/Metafor/models/__init__.py
deleted file mode 100644
index 0b4a1527..00000000
--- a/Metafor/models/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# -*- coding: utf-8; -*-
-# mirrors MODULE initialization file
-
-import tbox
-from mirrorsw import *
diff --git a/Metafor/models/bord01/W_tp.json b/Metafor/models/bord01/W_tp.json
deleted file mode 100644
index 1443c74f..00000000
--- a/Metafor/models/bord01/W_tp.json
+++ /dev/null
@@ -1,677 +0,0 @@
-[
-    [
-        0.0043813247244655
-    ],
-    [
-        0.0041902242642032
-    ],
-    [
-        0.0043245990471902
-    ],
-    [
-        0.0043527853995835
-    ],
-    [
-        0.0047455106780257
-    ],
-    [
-        0.0044786341418169
-    ],
-    [
-        0.0043349136256411
-    ],
-    [
-        0.0044735428941430
-    ],
-    [
-        0.0045326750592072
-    ],
-    [
-        0.0044404369980397
-    ],
-    [
-        0.0044548260413409
-    ],
-    [
-        0.0047684023510459
-    ],
-    [
-        0.0046325377624902
-    ],
-    [
-        0.0045404216109141
-    ],
-    [
-        0.0039386962304334
-    ],
-    [
-        0.0044731677888961
-    ],
-    [
-        0.0044238803490404
-    ],
-    [
-        0.0044851835893342
-    ],
-    [
-        0.0043686274508754
-    ],
-    [
-        0.0042456639130339
-    ],
-    [
-        0.0043792285076274
-    ],
-    [
-        0.0046871503288540
-    ],
-    [
-        0.0043585040478550
-    ],
-    [
-        0.0046813678455606
-    ],
-    [
-        0.0044859025057971
-    ],
-    [
-        0.0048573831036976
-    ],
-    [
-        0.0046314834119102
-    ],
-    [
-        0.0045285028187358
-    ],
-    [
-        0.0040676647056808
-    ],
-    [
-        0.0040008831289053
-    ],
-    [
-        0.0043528363372455
-    ],
-    [
-        0.0043061610031889
-    ],
-    [
-        0.0043355155875944
-    ],
-    [
-        0.0043097442759384
-    ],
-    [
-        0.0044281204000570
-    ],
-    [
-        0.0044478747442479
-    ],
-    [
-        0.0045522839095942
-    ],
-    [
-        0.0045832644806173
-    ],
-    [
-        0.0046508433173443
-    ],
-    [
-        0.0046664055968727
-    ],
-    [
-        0.0038821411364062
-    ],
-    [
-        0.0046545807817257
-    ],
-    [
-        0.0042178042157667
-    ],
-    [
-        0.0040269386895047
-    ],
-    [
-        0.0039576067594742
-    ],
-    [
-        0.0041134877747083
-    ],
-    [
-        0.0046543128659837
-    ],
-    [
-        0.0041788931930955
-    ],
-    [
-        0.0043316537178354
-    ],
-    [
-        0.0041394347068848
-    ],
-    [
-        0.0042083864375465
-    ],
-    [
-        0.0044414497902181
-    ],
-    [
-        0.0046224045622007
-    ],
-    [
-        0.0045266303300177
-    ],
-    [
-        0.0046412828002598
-    ],
-    [
-        0.0046741571824404
-    ],
-    [
-        0.0042504930683438
-    ],
-    [
-        0.0043272731475617
-    ],
-    [
-        0.0037828881345242
-    ],
-    [
-        0.0042666103003733
-    ],
-    [
-        0.0041121767776984
-    ],
-    [
-        0.0042350464134537
-    ],
-    [
-        0.0042233340252026
-    ],
-    [
-        0.0047860031121863
-    ],
-    [
-        0.0042729770264256
-    ],
-    [
-        0.0042989494506662
-    ],
-    [
-        0.0041784319632612
-    ],
-    [
-        0.0045807213055643
-    ],
-    [
-        0.0043952932398420
-    ],
-    [
-        0.0047221104055627
-    ],
-    [
-        0.0038393764690434
-    ],
-    [
-        0.0050195756314728
-    ],
-    [
-        0.0043413848857403
-    ],
-    [
-        0.0046264465270650
-    ],
-    [
-        0.0040863766494325
-    ],
-    [
-        0.0042884198965360
-    ],
-    [
-        0.0043398048098036
-    ],
-    [
-        0.0041604952875550
-    ],
-    [
-        0.0039397932138996
-    ],
-    [
-        0.0044885160633276
-    ],
-    [
-        0.0044668096763449
-    ],
-    [
-        0.0044832183995980
-    ],
-    [
-        0.0046637027929637
-    ],
-    [
-        0.0045397355333413
-    ],
-    [
-        0.0047362223181843
-    ],
-    [
-        0.0045622101789646
-    ],
-    [
-        0.0043552063727685
-    ],
-    [
-        0.0042831365659057
-    ],
-    [
-        0.0041753787576344
-    ],
-    [
-        0.0044739544056193
-    ],
-    [
-        0.0038314270797159
-    ],
-    [
-        0.0042395729567698
-    ],
-    [
-        0.0041378503057824
-    ],
-    [
-        0.0045940579192276
-    ],
-    [
-        0.0045699639565661
-    ],
-    [
-        0.0044238743726926
-    ],
-    [
-        0.0046229621174730
-    ],
-    [
-        0.0046496367543535
-    ],
-    [
-        0.0045024132308138
-    ],
-    [
-        0.0045277993263197
-    ],
-    [
-        0.0042667978737911
-    ],
-    [
-        0.0044253597837634
-    ],
-    [
-        0.0039167418555190
-    ],
-    [
-        0.0044054986507488
-    ],
-    [
-        0.0044121125193260
-    ],
-    [
-        0.0048026418978102
-    ],
-    [
-        0.0042731397166454
-    ],
-    [
-        0.0041925291719111
-    ],
-    [
-        0.0043732971431471
-    ],
-    [
-        0.0045283493583667
-    ],
-    [
-        0.0041954687783817
-    ],
-    [
-        0.0051664441394064
-    ],
-    [
-        0.0042158909390992
-    ],
-    [
-        0.0042535633390105
-    ],
-    [
-        0.0042835691255615
-    ],
-    [
-        0.0039943354812124
-    ],
-    [
-        0.0044995727074902
-    ],
-    [
-        0.0043578017937420
-    ],
-    [
-        0.0046378873684791
-    ],
-    [
-        0.0046851330899908
-    ],
-    [
-        0.0048956752048324
-    ],
-    [
-        0.0044027755265355
-    ],
-    [
-        0.0044453834229869
-    ],
-    [
-        0.0045352871343143
-    ],
-    [
-        0.0042602306149964
-    ],
-    [
-        0.0045439737270670
-    ],
-    [
-        0.0041653264855230
-    ],
-    [
-        0.0040656584951363
-    ],
-    [
-        0.0044609040852817
-    ],
-    [
-        0.0046784869386564
-    ],
-    [
-        0.0045426763032804
-    ],
-    [
-        0.0044972953737267
-    ],
-    [
-        0.0044534462752016
-    ],
-    [
-        0.0042549047674430
-    ],
-    [
-        0.0042487487330687
-    ],
-    [
-        0.0044875984070597
-    ],
-    [
-        0.0045461019742390
-    ],
-    [
-        0.0043564650571277
-    ],
-    [
-        0.0046223620392847
-    ],
-    [
-        0.0040060717591179
-    ],
-    [
-        0.0046465188487442
-    ],
-    [
-        0.0043745817068993
-    ],
-    [
-        0.0043199283731649
-    ],
-    [
-        0.0049231551134572
-    ],
-    [
-        0.0045348665419038
-    ],
-    [
-        0.0044955143562316
-    ],
-    [
-        0.0046183780532439
-    ],
-    [
-        0.0045304822959188
-    ],
-    [
-        0.0045476862060853
-    ],
-    [
-        0.0047619560926066
-    ],
-    [
-        0.0044356268222791
-    ],
-    [
-        0.0042361039435871
-    ],
-    [
-        0.0042736626726660
-    ],
-    [
-        0.0045286193965511
-    ],
-    [
-        0.0046614789987695
-    ],
-    [
-        0.0045759928465260
-    ],
-    [
-        0.0045809318120985
-    ],
-    [
-        0.0046677630826227
-    ],
-    [
-        0.0045223358627016
-    ],
-    [
-        0.0045372446902717
-    ],
-    [
-        0.0045170514258361
-    ],
-    [
-        0.0043847550241327
-    ],
-    [
-        0.0046323571763855
-    ],
-    [
-        0.0041050255897222
-    ],
-    [
-        0.0044592027045534
-    ],
-    [
-        0.0047898527403645
-    ],
-    [
-        0.0043492039629812
-    ],
-    [
-        0.0045806878752033
-    ],
-    [
-        0.0049533561601646
-    ],
-    [
-        0.0047553014574228
-    ],
-    [
-        0.0053676131481515
-    ],
-    [
-        0.0049933088185886
-    ],
-    [
-        0.0046022266081857
-    ],
-    [
-        0.0044449710053233
-    ],
-    [
-        0.0045391906466067
-    ],
-    [
-        0.0044640732616789
-    ],
-    [
-        0.0044630172083214
-    ],
-    [
-        0.0043411168120980
-    ],
-    [
-        0.0041973747786922
-    ],
-    [
-        0.0045488423877479
-    ],
-    [
-        0.0040272643282609
-    ],
-    [
-        0.0039963259463939
-    ],
-    [
-        0.0049260861819367
-    ],
-    [
-        0.0047235411567585
-    ],
-    [
-        0.0046268966047504
-    ],
-    [
-        0.0044520842442575
-    ],
-    [
-        0.0044499590756570
-    ],
-    [
-        0.0044813464818924
-    ],
-    [
-        0.0045149695598989
-    ],
-    [
-        0.0045157284711741
-    ],
-    [
-        0.0050058562253882
-    ],
-    [
-        0.0044261659797529
-    ],
-    [
-        0.0043519535381462
-    ],
-    [
-        0.0042804963192204
-    ],
-    [
-        0.0040711989663459
-    ],
-    [
-        0.0042102390793448
-    ],
-    [
-        0.0042737257963791
-    ],
-    [
-        0.0045955206190435
-    ],
-    [
-        0.0045845917249318
-    ],
-    [
-        0.0044396950812076
-    ],
-    [
-        0.0045700441698161
-    ],
-    [
-        0.0043886366674709
-    ],
-    [
-        0.0045573445264159
-    ],
-    [
-        0.0044578540105580
-    ],
-    [
-        0.0042618214468239
-    ],
-    [
-        0.0045381596255762
-    ],
-    [
-        0.0043861446315850
-    ],
-    [
-        0.0044223646529415
-    ],
-    [
-        0.0039965573018068
-    ],
-    [
-        0.0042536376727070
-    ],
-    [
-        0.0043257446587369
-    ],
-    [
-        0.0045899146450433
-    ],
-    [
-        0.0053674322014641
-    ],
-    [
-        0.0046413954970462
-    ],
-    [
-        0.0046314425086865
-    ],
-    [
-        0.0049228563441995
-    ],
-    [
-        0.0044411815964337
-    ],
-    [
-        0.0045154232503175
-    ],
-    [
-        0.0043603682239250
-    ],
-    [
-        0.0046553087808792
-    ],
-    [
-        0.0044422240624081
-    ],
-    [
-        0.0046546270503556
-    ],
-    [
-        0.0047110254435762
-    ],
-    [
-        0.0044697319448693
-    ],
-    [
-        0.0042982803921521
-    ]
-]
\ No newline at end of file
diff --git a/Metafor/models/bord01/X_tp.json b/Metafor/models/bord01/X_tp.json
deleted file mode 100644
index 66a4cc86..00000000
--- a/Metafor/models/bord01/X_tp.json
+++ /dev/null
@@ -1,677 +0,0 @@
-[
-    [
-        1485.767736, 396.722897
-    ],
-    [
-        1486.733994, 393.745493
-    ],
-    [
-        1497.022826, 389.202233
-    ],
-    [
-        1492.938289, 389.522712
-    ],
-    [
-        1500.397886, 399.632563
-    ],
-    [
-        1488.662873, 401.332139
-    ],
-    [
-        1503.502034, 391.524954
-    ],
-    [
-        1492.248423, 402.095514
-    ],
-    [
-        1496.418272, 401.563917
-    ],
-    [
-        1488.896171, 391.149233
-    ],
-    [
-        1501.063291, 389.533218
-    ],
-    [
-        1503.511422, 396.977026
-    ],
-    [
-        1485.774521, 399.552500
-    ],
-    [
-        1504.643068, 393.930162
-    ],
-    [
-        1479.952875, 394.750347
-    ],
-    [
-        1488.252684, 386.678783
-    ],
-    [
-        1495.636117, 384.580099
-    ],
-    [
-        1494.476296, 406.520186
-    ],
-    [
-        1502.747023, 384.735172
-    ],
-    [
-        1508.057394, 387.043210
-    ],
-    [
-        1481.577793, 404.168943
-    ],
-    [
-        1501.869985, 404.526392
-    ],
-    [
-        1511.144724, 390.658083
-    ],
-    [
-        1507.905923, 400.446443
-    ],
-    [
-        1481.611893, 390.418665
-    ],
-    [
-        1478.138983, 399.866556
-    ],
-    [
-        1486.608560, 406.730475
-    ],
-    [
-        1511.242292, 395.552494
-    ],
-    [
-        1474.643512, 395.241047
-    ],
-    [
-        1475.844096, 404.991278
-    ],
-    [
-        1490.125953, 410.333548
-    ],
-    [
-        1491.477164, 381.860700
-    ],
-    [
-        1500.505379, 380.859710
-    ],
-    [
-        1482.844529, 385.306712
-    ],
-    [
-        1509.313125, 382.626185
-    ],
-    [
-        1499.990018, 409.042379
-    ],
-    [
-        1515.029408, 386.552561
-    ],
-    [
-        1517.060381, 392.509303
-    ],
-    [
-        1508.892424, 404.933110
-    ],
-    [
-        1514.830023, 399.041821
-    ],
-    [
-        1476.270843, 389.837448
-    ],
-    [
-        1480.410533, 409.520063
-    ],
-    [
-        1471.739122, 400.641757
-    ],
-    [
-        1507.272154, 378.730023
-    ],
-    [
-        1486.566707, 413.295853
-    ],
-    [
-        1496.481163, 412.695932
-    ],
-    [
-        1470.252989, 393.863697
-    ],
-    [
-        1486.375266, 380.499047
-    ],
-    [
-        1472.841620, 408.097623
-    ],
-    [
-        1496.478675, 378.070533
-    ],
-    [
-        1476.679948, 385.357153
-    ],
-    [
-        1507.524535, 409.363883
-    ],
-    [
-        1520.895241, 387.553500
-    ],
-    [
-        1516.037223, 381.375942
-    ],
-    [
-        1521.270521, 395.384426
-    ],
-    [
-        1516.573080, 403.303039
-    ],
-    [
-        1467.744425, 402.426224
-    ],
-    [
-        1478.095549, 413.341348
-    ],
-    [
-        1504.851846, 375.798435
-    ],
-    [
-        1480.603931, 380.127478
-    ],
-    [
-        1501.433375, 414.274201
-    ],
-    [
-        1470.237321, 387.644105
-    ],
-    [
-        1465.179031, 395.861962
-    ],
-    [
-        1488.398944, 416.760981
-    ],
-    [
-        1493.203969, 375.568252
-    ],
-    [
-        1514.894627, 377.054901
-    ],
-    [
-        1469.493846, 411.276732
-    ],
-    [
-        1526.021612, 390.738552
-    ],
-    [
-        1523.232557, 382.585042
-    ],
-    [
-        1522.737653, 400.860663
-    ],
-    [
-        1464.396112, 405.197788
-    ],
-    [
-        1513.742854, 409.865456
-    ],
-    [
-        1475.980696, 416.721867
-    ],
-    [
-        1504.960305, 372.913902
-    ],
-    [
-        1486.650005, 375.116300
-    ],
-    [
-        1472.632072, 381.976218
-    ],
-    [
-        1501.678624, 416.952252
-    ],
-    [
-        1463.855171, 390.895069
-    ],
-    [
-        1460.737703, 400.806572
-    ],
-    [
-        1486.465802, 419.830243
-    ],
-    [
-        1521.143175, 376.483032
-    ],
-    [
-        1528.692299, 384.194535
-    ],
-    [
-        1529.505424, 394.361883
-    ],
-    [
-        1464.210886, 411.901466
-    ],
-    [
-        1523.632893, 405.299025
-    ],
-    [
-        1512.733616, 414.349534
-    ],
-    [
-        1495.138815, 371.308698
-    ],
-    [
-        1471.396974, 418.522760
-    ],
-    [
-        1477.679313, 376.307269
-    ],
-    [
-        1512.861144, 371.451149
-    ],
-    [
-        1457.925090, 405.852582
-    ],
-    [
-        1465.110499, 384.510779
-    ],
-    [
-        1458.112426, 395.445196
-    ],
-    [
-        1498.367562, 420.774951
-    ],
-    [
-        1527.458201, 376.626326
-    ],
-    [
-        1482.715981, 422.799932
-    ],
-    [
-        1533.818161, 386.170709
-    ],
-    [
-        1532.455372, 397.624605
-    ],
-    [
-        1523.735125, 409.774030
-    ],
-    [
-        1459.316228, 413.532140
-    ],
-    [
-        1485.065726, 371.198002
-    ],
-    [
-        1502.906933, 368.350298
-    ],
-    [
-        1468.221182, 420.772632
-    ],
-    [
-        1518.706823, 369.831750
-    ],
-    [
-        1469.125533, 378.041614
-    ],
-    [
-        1511.958150, 418.612870
-    ],
-    [
-        1457.697033, 388.928714
-    ],
-    [
-        1453.490031, 402.004560
-    ],
-    [
-        1534.049181, 378.323198
-    ],
-    [
-        1493.523107, 424.888161
-    ],
-    [
-        1533.154824, 403.136424
-    ],
-    [
-        1538.697513, 389.722853
-    ],
-    [
-        1475.929544, 425.591079
-    ],
-    [
-        1491.960499, 367.194399
-    ],
-    [
-        1459.851042, 419.773912
-    ],
-    [
-        1527.139658, 370.227994
-    ],
-    [
-        1451.846304, 409.913774
-    ],
-    [
-        1450.867813, 396.472237
-    ],
-    [
-        1474.026437, 372.189208
-    ],
-    [
-        1511.238949, 365.416381
-    ],
-    [
-        1525.250841, 413.670615
-    ],
-    [
-        1458.852091, 382.712378
-    ],
-    [
-        1506.416300, 424.032351
-    ],
-    [
-        1538.337051, 376.866942
-    ],
-    [
-        1486.325985, 428.605337
-    ],
-    [
-        1538.763656, 400.894531
-    ],
-    [
-        1466.368830, 426.365027
-    ],
-    [
-        1496.616001, 363.934905
-    ],
-    [
-        1526.676063, 366.436557
-    ],
-    [
-        1544.066201, 387.107611
-    ],
-    [
-        1452.558738, 418.974228
-    ],
-    [
-        1446.148726, 405.441192
-    ],
-    [
-        1460.859506, 377.089718
-    ],
-    [
-        1517.320501, 422.043423
-    ],
-    [
-        1478.140221, 367.412236
-    ],
-    [
-        1448.889935, 390.827865
-    ],
-    [
-        1534.488583, 410.826793
-    ],
-    [
-        1510.162462, 361.635668
-    ],
-    [
-        1498.028246, 429.880963
-    ],
-    [
-        1475.482158, 431.119542
-    ],
-    [
-        1540.016415, 371.951280
-    ],
-    [
-        1545.681122, 396.648855
-    ],
-    [
-        1490.389287, 361.557668
-    ],
-    [
-        1457.367364, 427.353003
-    ],
-    [
-        1444.357660, 414.512209
-    ],
-    [
-        1442.195860, 399.116052
-    ],
-    [
-        1450.919413, 381.712627
-    ],
-    [
-        1548.728861, 382.188016
-    ],
-    [
-        1525.961616, 362.034635
-    ],
-    [
-        1522.365208, 423.074730
-    ],
-    [
-        1468.438889, 368.361525
-    ],
-    [
-        1478.613833, 434.560935
-    ],
-    [
-        1501.902012, 432.459021
-    ],
-    [
-        1541.661259, 409.064815
-    ],
-    [
-        1506.835489, 357.643063
-    ],
-    [
-        1541.894492, 367.253109
-    ],
-    [
-        1552.421585, 393.224262
-    ],
-    [
-        1444.391996, 423.057314
-    ],
-    [
-        1483.261970, 359.873145
-    ],
-    [
-        1437.137745, 407.009590
-    ],
-    [
-        1441.622905, 388.262983
-    ],
-    [
-        1457.810657, 371.274047
-    ],
-    [
-        1460.575336, 433.873213
-    ],
-    [
-        1553.103080, 377.446220
-    ],
-    [
-        1534.475052, 419.689569
-    ],
-    [
-        1527.696024, 357.956779
-    ],
-    [
-        1484.924107, 438.253891
-    ],
-    [
-        1512.035280, 432.788566
-    ],
-    [
-        1552.517520, 404.228323
-    ],
-    [
-        1468.369984, 361.851741
-    ],
-    [
-        1500.694994, 353.713691
-    ],
-    [
-        1549.506370, 365.753171
-    ],
-    [
-        1444.371638, 377.935421
-    ],
-    [
-        1433.102215, 396.878235
-    ],
-    [
-        1433.717935, 416.226933
-    ],
-    [
-        1559.778602, 384.540838
-    ],
-    [
-        1445.099882, 431.371009
-    ],
-    [
-        1465.120275, 440.272908
-    ],
-    [
-        1539.197301, 421.666115
-    ],
-    [
-        1529.564586, 354.022612
-    ],
-    [
-        1489.791715, 442.241080
-    ],
-    [
-        1516.397197, 435.584583
-    ],
-    [
-        1480.071157, 353.318782
-    ],
-    [
-        1452.579203, 365.314265
-    ],
-    [
-        1563.021067, 372.283442
-    ],
-    [
-        1432.066517, 385.247332
-    ],
-    [
-        1565.086882, 392.348322
-    ],
-    [
-        1554.745347, 412.215200
-    ],
-    [
-        1425.241593, 404.911573
-    ],
-    [
-        1548.680661, 357.340218
-    ],
-    [
-        1512.185739, 348.411338
-    ],
-    [
-        1430.031891, 424.926865
-    ],
-    [
-        1446.515027, 439.768099
-    ],
-    [
-        1472.246352, 447.274119
-    ],
-    [
-        1502.897764, 444.693308
-    ],
-    [
-        1534.091077, 432.037888
-    ],
-    [
-        1433.873584, 372.785262
-    ],
-    [
-        1541.634153, 347.760361
-    ],
-    [
-        1575.038379, 379.882446
-    ],
-    [
-        1457.259634, 355.638373
-    ],
-    [
-        1570.857464, 402.405206
-    ],
-    [
-        1419.469950, 392.006362
-    ],
-    [
-        1566.295808, 360.233911
-    ],
-    [
-        1428.119487, 436.129683
-    ],
-    [
-        1484.786191, 345.744681
-    ],
-    [
-        1416.209130, 415.264866
-    ],
-    [
-        1553.355797, 425.698849
-    ],
-    [
-        1451.362196, 450.704926
-    ],
-    [
-        1515.847869, 341.917703
-    ],
-    [
-        1521.410004, 445.208376
-    ],
-    [
-        1484.483250, 454.709979
-    ],
-    [
-        1567.900045, 344.484843
-    ],
-    [
-        1421.461827, 367.051789
-    ],
-    [
-        1592.628135, 389.216990
-    ],
-    [
-        1589.288243, 363.527239
-    ],
-    [
-        1401.567103, 397.064150
-    ],
-    [
-        1494.772820, 333.504784
-    ],
-    [
-        1579.099823, 417.932105
-    ],
-    [
-        1538.919783, 333.496240
-    ],
-    [
-        1401.771293, 427.185087
-    ],
-    [
-        1546.929594, 445.521302
-    ],
-    [
-        1454.607367, 343.971370
-    ],
-    [
-        1421.455144, 452.613507
-    ],
-    [
-        1458.805325, 466.604587
-    ],
-    [
-        1504.650519, 464.070783
-    ]
-]
\ No newline at end of file
diff --git a/Metafor/models/bord01/createNumericalSA.m b/Metafor/models/bord01/createNumericalSA.m
deleted file mode 100644
index 5ce49892..00000000
--- a/Metafor/models/bord01/createNumericalSA.m
+++ /dev/null
@@ -1,85 +0,0 @@
-clear all
-close all
-clc
-
-format long
-
-%% old
-NRTolExpo = -5:-0.5:-8;
-NRTol = 10.^(NRTolExpo);
-penoExpo  =  5: 0.5: 8;
-peno = 10.^(penoExpo);
-nx = 20:5:60;
-ny =  4:2:16;
-
-length(NRTol)
-length(nx)
-length(ny)
-length(peno)
-i = 1;
-trainingPoints = zeros(length(NRTol)*length(nx)*length(ny)*length(peno),4);
-weights = ones(length(NRTol)*length(nx)*length(ny)*length(peno),1);
-for i_NR  = 1:length(NRTol)
-for i_nx  = 1:length(nx)
-for i_ny  = 1:length(ny)
-for i_peno= 1:length(peno)
-    trainingPoints(i,:) = [NRTol(i_NR), nx(i_nx), ny(i_ny), peno(i_peno)]; 
-    i = i+1;
-end
-end
-end
-end
-fid = fopen('numericalSATrainingPoints.ascii', 'wt');
-for i = 1:length(NRTol)*length(nx)*length(ny)*length(peno)
-    fprintf(fid,'%e ',trainingPoints(i,1));
-    fprintf(fid,'%d ',trainingPoints(i,2));
-    fprintf(fid,'%d ',trainingPoints(i,3));
-    fprintf(fid,'%e \n',trainingPoints(i,4));
-end
-fclose(fid)
-%save numericalSATrainingPoints.ascii trainingPoints -ASCII -DOUBLE;
-save numericalSAWeights.ascii weights -ASCII -DOUBLE;
-
-clear all
-close all
-
-
-%% new
-NRTolExpo = linspace(-4,-5,5);
-NRTol = 10.^(NRTolExpo);
-
-penoExpo  =  linspace(5,6,5);
-peno = 10.^(penoExpo);
-peta = peno/10;
-
-PEASExpo = linspace(-6,-7,5);
-PEAS = 10.^(PEASExpo);
-
-ny =  6:2:12;
-nx = ny*10;
-
-i = 1;
-trainingPoints = zeros(length(NRTol)*length(peno)*length(PEAS)*length(ny),6);
-weights = ones(length(NRTol)*length(peno)*length(PEAS)*length(ny),1);
-for i_NR  = 1:length(NRTol)
-for i_peno= 1:length(peno)
-for i_PEAS  = 1:length(PEAS)
-for i_ny  = 1:length(ny)
-    trainingPoints(i,:) = [NRTol(i_NR), peno(i_peno), peta(i_peno), PEAS(i_PEAS), nx(i_ny), ny(i_ny)]; 
-    i = i+1;
-end
-end
-end
-end
- fid = fopen('numericalSATrainingPoints2.ascii', 'wt');
- for i = 1:length(NRTol)*length(peno)*length(PEAS)*length(ny)
-     fprintf(fid,'%e ',trainingPoints(i,1));
-     fprintf(fid,'%e ',trainingPoints(i,2));
-     fprintf(fid,'%e ',trainingPoints(i,3));
-     fprintf(fid,'%e ',trainingPoints(i,4));
-     fprintf(fid,'%d ',trainingPoints(i,5));
-     fprintf(fid,'%d \n',trainingPoints(i,6));
- end
- fclose(fid)
-%save numericalSATrainingPoints2.ascii trainingPoints -ASCII -DOUBLE;
-save numericalSAWeights2.ascii weights -ASCII -DOUBLE;
\ No newline at end of file
diff --git a/Metafor/models/bord01/data.txt b/Metafor/models/bord01/data.txt
deleted file mode 100644
index 4a844daf..00000000
--- a/Metafor/models/bord01/data.txt
+++ /dev/null
@@ -1,3087 +0,0 @@
-1.000000e-05 20 4 1.000000e+05 
-1.000000e-05 20 4 3.162278e+05 
-1.000000e-05 20 4 1.000000e+06 
-1.000000e-05 20 4 3.162278e+06 
-1.000000e-05 20 4 1.000000e+07 
-1.000000e-05 20 4 3.162278e+07 
-1.000000e-05 20 4 1.000000e+08 
-1.000000e-05 20 6 1.000000e+05 
-1.000000e-05 20 6 3.162278e+05 
-1.000000e-05 20 6 1.000000e+06 
-1.000000e-05 20 6 3.162278e+06 
-1.000000e-05 20 6 1.000000e+07 
-1.000000e-05 20 6 3.162278e+07 
-1.000000e-05 20 6 1.000000e+08 
-1.000000e-05 20 8 1.000000e+05 
-1.000000e-05 20 8 3.162278e+05 
-1.000000e-05 20 8 1.000000e+06 
-1.000000e-05 20 8 3.162278e+06 
-1.000000e-05 20 8 1.000000e+07 
-1.000000e-05 20 8 3.162278e+07 
-1.000000e-05 20 8 1.000000e+08 
-1.000000e-05 20 10 1.000000e+05 
-1.000000e-05 20 10 3.162278e+05 
-1.000000e-05 20 10 1.000000e+06 
-1.000000e-05 20 10 3.162278e+06 
-1.000000e-05 20 10 1.000000e+07 
-1.000000e-05 20 10 3.162278e+07 
-1.000000e-05 20 10 1.000000e+08 
-1.000000e-05 20 12 1.000000e+05 
-1.000000e-05 20 12 3.162278e+05 
-1.000000e-05 20 12 1.000000e+06 
-1.000000e-05 20 12 3.162278e+06 
-1.000000e-05 20 12 1.000000e+07 
-1.000000e-05 20 12 3.162278e+07 
-1.000000e-05 20 12 1.000000e+08 
-1.000000e-05 20 14 1.000000e+05 
-1.000000e-05 20 14 3.162278e+05 
-1.000000e-05 20 14 1.000000e+06 
-1.000000e-05 20 14 3.162278e+06 
-1.000000e-05 20 14 1.000000e+07 
-1.000000e-05 20 14 3.162278e+07 
-1.000000e-05 20 14 1.000000e+08 
-1.000000e-05 20 16 1.000000e+05 
-1.000000e-05 20 16 3.162278e+05 
-1.000000e-05 20 16 1.000000e+06 
-1.000000e-05 20 16 3.162278e+06 
-1.000000e-05 20 16 1.000000e+07 
-1.000000e-05 20 16 3.162278e+07 
-1.000000e-05 20 16 1.000000e+08 
-1.000000e-05 25 4 1.000000e+05 
-1.000000e-05 25 4 3.162278e+05 
-1.000000e-05 25 4 1.000000e+06 
-1.000000e-05 25 4 3.162278e+06 
-1.000000e-05 25 4 1.000000e+07 
-1.000000e-05 25 4 3.162278e+07 
-1.000000e-05 25 4 1.000000e+08 
-1.000000e-05 25 6 1.000000e+05 
-1.000000e-05 25 6 3.162278e+05 
-1.000000e-05 25 6 1.000000e+06 
-1.000000e-05 25 6 3.162278e+06 
-1.000000e-05 25 6 1.000000e+07 
-1.000000e-05 25 6 3.162278e+07 
-1.000000e-05 25 6 1.000000e+08 
-1.000000e-05 25 8 1.000000e+05 
-1.000000e-05 25 8 3.162278e+05 
-1.000000e-05 25 8 1.000000e+06 
-1.000000e-05 25 8 3.162278e+06 
-1.000000e-05 25 8 1.000000e+07 
-1.000000e-05 25 8 3.162278e+07 
-1.000000e-05 25 8 1.000000e+08 
-1.000000e-05 25 10 1.000000e+05 
-1.000000e-05 25 10 3.162278e+05 
-1.000000e-05 25 10 1.000000e+06 
-1.000000e-05 25 10 3.162278e+06 
-1.000000e-05 25 10 1.000000e+07 
-1.000000e-05 25 10 3.162278e+07 
-1.000000e-05 25 10 1.000000e+08 
-1.000000e-05 25 12 1.000000e+05 
-1.000000e-05 25 12 3.162278e+05 
-1.000000e-05 25 12 1.000000e+06 
-1.000000e-05 25 12 3.162278e+06 
-1.000000e-05 25 12 1.000000e+07 
-1.000000e-05 25 12 3.162278e+07 
-1.000000e-05 25 12 1.000000e+08 
-1.000000e-05 25 14 1.000000e+05 
-1.000000e-05 25 14 3.162278e+05 
-1.000000e-05 25 14 1.000000e+06 
-1.000000e-05 25 14 3.162278e+06 
-1.000000e-05 25 14 1.000000e+07 
-1.000000e-05 25 14 3.162278e+07 
-1.000000e-05 25 14 1.000000e+08 
-1.000000e-05 25 16 1.000000e+05 
-1.000000e-05 25 16 3.162278e+05 
-1.000000e-05 25 16 1.000000e+06 
-1.000000e-05 25 16 3.162278e+06 
-1.000000e-05 25 16 1.000000e+07 
-1.000000e-05 25 16 3.162278e+07 
-1.000000e-05 25 16 1.000000e+08 
-1.000000e-05 30 4 1.000000e+05 
-1.000000e-05 30 4 3.162278e+05 
-1.000000e-05 30 4 1.000000e+06 
-1.000000e-05 30 4 3.162278e+06 
-1.000000e-05 30 4 1.000000e+07 
-1.000000e-05 30 4 3.162278e+07 
-1.000000e-05 30 4 1.000000e+08 
-1.000000e-05 30 6 1.000000e+05 
-1.000000e-05 30 6 3.162278e+05 
-1.000000e-05 30 6 1.000000e+06 
-1.000000e-05 30 6 3.162278e+06 
-1.000000e-05 30 6 1.000000e+07 
-1.000000e-05 30 6 3.162278e+07 
-1.000000e-05 30 6 1.000000e+08 
-1.000000e-05 30 8 1.000000e+05 
-1.000000e-05 30 8 3.162278e+05 
-1.000000e-05 30 8 1.000000e+06 
-1.000000e-05 30 8 3.162278e+06 
-1.000000e-05 30 8 1.000000e+07 
-1.000000e-05 30 8 3.162278e+07 
-1.000000e-05 30 8 1.000000e+08 
-1.000000e-05 30 10 1.000000e+05 
-1.000000e-05 30 10 3.162278e+05 
-1.000000e-05 30 10 1.000000e+06 
-1.000000e-05 30 10 3.162278e+06 
-1.000000e-05 30 10 1.000000e+07 
-1.000000e-05 30 10 3.162278e+07 
-1.000000e-05 30 10 1.000000e+08 
-1.000000e-05 30 12 1.000000e+05 
-1.000000e-05 30 12 3.162278e+05 
-1.000000e-05 30 12 1.000000e+06 
-1.000000e-05 30 12 3.162278e+06 
-1.000000e-05 30 12 1.000000e+07 
-1.000000e-05 30 12 3.162278e+07 
-1.000000e-05 30 12 1.000000e+08 
-1.000000e-05 30 14 1.000000e+05 
-1.000000e-05 30 14 3.162278e+05 
-1.000000e-05 30 14 1.000000e+06 
-1.000000e-05 30 14 3.162278e+06 
-1.000000e-05 30 14 1.000000e+07 
-1.000000e-05 30 14 3.162278e+07 
-1.000000e-05 30 14 1.000000e+08 
-1.000000e-05 30 16 1.000000e+05 
-1.000000e-05 30 16 3.162278e+05 
-1.000000e-05 30 16 1.000000e+06 
-1.000000e-05 30 16 3.162278e+06 
-1.000000e-05 30 16 1.000000e+07 
-1.000000e-05 30 16 3.162278e+07 
-1.000000e-05 30 16 1.000000e+08 
-1.000000e-05 35 4 1.000000e+05 
-1.000000e-05 35 4 3.162278e+05 
-1.000000e-05 35 4 1.000000e+06 
-1.000000e-05 35 4 3.162278e+06 
-1.000000e-05 35 4 1.000000e+07 
-1.000000e-05 35 4 3.162278e+07 
-1.000000e-05 35 4 1.000000e+08 
-1.000000e-05 35 6 1.000000e+05 
-1.000000e-05 35 6 3.162278e+05 
-1.000000e-05 35 6 1.000000e+06 
-1.000000e-05 35 6 3.162278e+06 
-1.000000e-05 35 6 1.000000e+07 
-1.000000e-05 35 6 3.162278e+07 
-1.000000e-05 35 6 1.000000e+08 
-1.000000e-05 35 8 1.000000e+05 
-1.000000e-05 35 8 3.162278e+05 
-1.000000e-05 35 8 1.000000e+06 
-1.000000e-05 35 8 3.162278e+06 
-1.000000e-05 35 8 1.000000e+07 
-1.000000e-05 35 8 3.162278e+07 
-1.000000e-05 35 8 1.000000e+08 
-1.000000e-05 35 10 1.000000e+05 
-1.000000e-05 35 10 3.162278e+05 
-1.000000e-05 35 10 1.000000e+06 
-1.000000e-05 35 10 3.162278e+06 
-1.000000e-05 35 10 1.000000e+07 
-1.000000e-05 35 10 3.162278e+07 
-1.000000e-05 35 10 1.000000e+08 
-1.000000e-05 35 12 1.000000e+05 
-1.000000e-05 35 12 3.162278e+05 
-1.000000e-05 35 12 1.000000e+06 
-1.000000e-05 35 12 3.162278e+06 
-1.000000e-05 35 12 1.000000e+07 
-1.000000e-05 35 12 3.162278e+07 
-1.000000e-05 35 12 1.000000e+08 
-1.000000e-05 35 14 1.000000e+05 
-1.000000e-05 35 14 3.162278e+05 
-1.000000e-05 35 14 1.000000e+06 
-1.000000e-05 35 14 3.162278e+06 
-1.000000e-05 35 14 1.000000e+07 
-1.000000e-05 35 14 3.162278e+07 
-1.000000e-05 35 14 1.000000e+08 
-1.000000e-05 35 16 1.000000e+05 
-1.000000e-05 35 16 3.162278e+05 
-1.000000e-05 35 16 1.000000e+06 
-1.000000e-05 35 16 3.162278e+06 
-1.000000e-05 35 16 1.000000e+07 
-1.000000e-05 35 16 3.162278e+07 
-1.000000e-05 35 16 1.000000e+08 
-1.000000e-05 40 4 1.000000e+05 
-1.000000e-05 40 4 3.162278e+05 
-1.000000e-05 40 4 1.000000e+06 
-1.000000e-05 40 4 3.162278e+06 
-1.000000e-05 40 4 1.000000e+07 
-1.000000e-05 40 4 3.162278e+07 
-1.000000e-05 40 4 1.000000e+08 
-1.000000e-05 40 6 1.000000e+05 
-1.000000e-05 40 6 3.162278e+05 
-1.000000e-05 40 6 1.000000e+06 
-1.000000e-05 40 6 3.162278e+06 
-1.000000e-05 40 6 1.000000e+07 
-1.000000e-05 40 6 3.162278e+07 
-1.000000e-05 40 6 1.000000e+08 
-1.000000e-05 40 8 1.000000e+05 
-1.000000e-05 40 8 3.162278e+05 
-1.000000e-05 40 8 1.000000e+06 
-1.000000e-05 40 8 3.162278e+06 
-1.000000e-05 40 8 1.000000e+07 
-1.000000e-05 40 8 3.162278e+07 
-1.000000e-05 40 8 1.000000e+08 
-1.000000e-05 40 10 1.000000e+05 
-1.000000e-05 40 10 3.162278e+05 
-1.000000e-05 40 10 1.000000e+06 
-1.000000e-05 40 10 3.162278e+06 
-1.000000e-05 40 10 1.000000e+07 
-1.000000e-05 40 10 3.162278e+07 
-1.000000e-05 40 10 1.000000e+08 
-1.000000e-05 40 12 1.000000e+05 
-1.000000e-05 40 12 3.162278e+05 
-1.000000e-05 40 12 1.000000e+06 
-1.000000e-05 40 12 3.162278e+06 
-1.000000e-05 40 12 1.000000e+07 
-1.000000e-05 40 12 3.162278e+07 
-1.000000e-05 40 12 1.000000e+08 
-1.000000e-05 40 14 1.000000e+05 
-1.000000e-05 40 14 3.162278e+05 
-1.000000e-05 40 14 1.000000e+06 
-1.000000e-05 40 14 3.162278e+06 
-1.000000e-05 40 14 1.000000e+07 
-1.000000e-05 40 14 3.162278e+07 
-1.000000e-05 40 14 1.000000e+08 
-1.000000e-05 40 16 1.000000e+05 
-1.000000e-05 40 16 3.162278e+05 
-1.000000e-05 40 16 1.000000e+06 
-1.000000e-05 40 16 3.162278e+06 
-1.000000e-05 40 16 1.000000e+07 
-1.000000e-05 40 16 3.162278e+07 
-1.000000e-05 40 16 1.000000e+08 
-1.000000e-05 45 4 1.000000e+05 
-1.000000e-05 45 4 3.162278e+05 
-1.000000e-05 45 4 1.000000e+06 
-1.000000e-05 45 4 3.162278e+06 
-1.000000e-05 45 4 1.000000e+07 
-1.000000e-05 45 4 3.162278e+07 
-1.000000e-05 45 4 1.000000e+08 
-1.000000e-05 45 6 1.000000e+05 
-1.000000e-05 45 6 3.162278e+05 
-1.000000e-05 45 6 1.000000e+06 
-1.000000e-05 45 6 3.162278e+06 
-1.000000e-05 45 6 1.000000e+07 
-1.000000e-05 45 6 3.162278e+07 
-1.000000e-05 45 6 1.000000e+08 
-1.000000e-05 45 8 1.000000e+05 
-1.000000e-05 45 8 3.162278e+05 
-1.000000e-05 45 8 1.000000e+06 
-1.000000e-05 45 8 3.162278e+06 
-1.000000e-05 45 8 1.000000e+07 
-1.000000e-05 45 8 3.162278e+07 
-1.000000e-05 45 8 1.000000e+08 
-1.000000e-05 45 10 1.000000e+05 
-1.000000e-05 45 10 3.162278e+05 
-1.000000e-05 45 10 1.000000e+06 
-1.000000e-05 45 10 3.162278e+06 
-1.000000e-05 45 10 1.000000e+07 
-1.000000e-05 45 10 3.162278e+07 
-1.000000e-05 45 10 1.000000e+08 
-1.000000e-05 45 12 1.000000e+05 
-1.000000e-05 45 12 3.162278e+05 
-1.000000e-05 45 12 1.000000e+06 
-1.000000e-05 45 12 3.162278e+06 
-1.000000e-05 45 12 1.000000e+07 
-1.000000e-05 45 12 3.162278e+07 
-1.000000e-05 45 12 1.000000e+08 
-1.000000e-05 45 14 1.000000e+05 
-1.000000e-05 45 14 3.162278e+05 
-1.000000e-05 45 14 1.000000e+06 
-1.000000e-05 45 14 3.162278e+06 
-1.000000e-05 45 14 1.000000e+07 
-1.000000e-05 45 14 3.162278e+07 
-1.000000e-05 45 14 1.000000e+08 
-1.000000e-05 45 16 1.000000e+05 
-1.000000e-05 45 16 3.162278e+05 
-1.000000e-05 45 16 1.000000e+06 
-1.000000e-05 45 16 3.162278e+06 
-1.000000e-05 45 16 1.000000e+07 
-1.000000e-05 45 16 3.162278e+07 
-1.000000e-05 45 16 1.000000e+08 
-1.000000e-05 50 4 1.000000e+05 
-1.000000e-05 50 4 3.162278e+05 
-1.000000e-05 50 4 1.000000e+06 
-1.000000e-05 50 4 3.162278e+06 
-1.000000e-05 50 4 1.000000e+07 
-1.000000e-05 50 4 3.162278e+07 
-1.000000e-05 50 4 1.000000e+08 
-1.000000e-05 50 6 1.000000e+05 
-1.000000e-05 50 6 3.162278e+05 
-1.000000e-05 50 6 1.000000e+06 
-1.000000e-05 50 6 3.162278e+06 
-1.000000e-05 50 6 1.000000e+07 
-1.000000e-05 50 6 3.162278e+07 
-1.000000e-05 50 6 1.000000e+08 
-1.000000e-05 50 8 1.000000e+05 
-1.000000e-05 50 8 3.162278e+05 
-1.000000e-05 50 8 1.000000e+06 
-1.000000e-05 50 8 3.162278e+06 
-1.000000e-05 50 8 1.000000e+07 
-1.000000e-05 50 8 3.162278e+07 
-1.000000e-05 50 8 1.000000e+08 
-1.000000e-05 50 10 1.000000e+05 
-1.000000e-05 50 10 3.162278e+05 
-1.000000e-05 50 10 1.000000e+06 
-1.000000e-05 50 10 3.162278e+06 
-1.000000e-05 50 10 1.000000e+07 
-1.000000e-05 50 10 3.162278e+07 
-1.000000e-05 50 10 1.000000e+08 
-1.000000e-05 50 12 1.000000e+05 
-1.000000e-05 50 12 3.162278e+05 
-1.000000e-05 50 12 1.000000e+06 
-1.000000e-05 50 12 3.162278e+06 
-1.000000e-05 50 12 1.000000e+07 
-1.000000e-05 50 12 3.162278e+07 
-1.000000e-05 50 12 1.000000e+08 
-1.000000e-05 50 14 1.000000e+05 
-1.000000e-05 50 14 3.162278e+05 
-1.000000e-05 50 14 1.000000e+06 
-1.000000e-05 50 14 3.162278e+06 
-1.000000e-05 50 14 1.000000e+07 
-1.000000e-05 50 14 3.162278e+07 
-1.000000e-05 50 14 1.000000e+08 
-1.000000e-05 50 16 1.000000e+05 
-1.000000e-05 50 16 3.162278e+05 
-1.000000e-05 50 16 1.000000e+06 
-1.000000e-05 50 16 3.162278e+06 
-1.000000e-05 50 16 1.000000e+07 
-1.000000e-05 50 16 3.162278e+07 
-1.000000e-05 50 16 1.000000e+08 
-1.000000e-05 55 4 1.000000e+05 
-1.000000e-05 55 4 3.162278e+05 
-1.000000e-05 55 4 1.000000e+06 
-1.000000e-05 55 4 3.162278e+06 
-1.000000e-05 55 4 1.000000e+07 
-1.000000e-05 55 4 3.162278e+07 
-1.000000e-05 55 4 1.000000e+08 
-1.000000e-05 55 6 1.000000e+05 
-1.000000e-05 55 6 3.162278e+05 
-1.000000e-05 55 6 1.000000e+06 
-1.000000e-05 55 6 3.162278e+06 
-1.000000e-05 55 6 1.000000e+07 
-1.000000e-05 55 6 3.162278e+07 
-1.000000e-05 55 6 1.000000e+08 
-1.000000e-05 55 8 1.000000e+05 
-1.000000e-05 55 8 3.162278e+05 
-1.000000e-05 55 8 1.000000e+06 
-1.000000e-05 55 8 3.162278e+06 
-1.000000e-05 55 8 1.000000e+07 
-1.000000e-05 55 8 3.162278e+07 
-1.000000e-05 55 8 1.000000e+08 
-1.000000e-05 55 10 1.000000e+05 
-1.000000e-05 55 10 3.162278e+05 
-1.000000e-05 55 10 1.000000e+06 
-1.000000e-05 55 10 3.162278e+06 
-1.000000e-05 55 10 1.000000e+07 
-1.000000e-05 55 10 3.162278e+07 
-1.000000e-05 55 10 1.000000e+08 
-1.000000e-05 55 12 1.000000e+05 
-1.000000e-05 55 12 3.162278e+05 
-1.000000e-05 55 12 1.000000e+06 
-1.000000e-05 55 12 3.162278e+06 
-1.000000e-05 55 12 1.000000e+07 
-1.000000e-05 55 12 3.162278e+07 
-1.000000e-05 55 12 1.000000e+08 
-1.000000e-05 55 14 1.000000e+05 
-1.000000e-05 55 14 3.162278e+05 
-1.000000e-05 55 14 1.000000e+06 
-1.000000e-05 55 14 3.162278e+06 
-1.000000e-05 55 14 1.000000e+07 
-1.000000e-05 55 14 3.162278e+07 
-1.000000e-05 55 14 1.000000e+08 
-1.000000e-05 55 16 1.000000e+05 
-1.000000e-05 55 16 3.162278e+05 
-1.000000e-05 55 16 1.000000e+06 
-1.000000e-05 55 16 3.162278e+06 
-1.000000e-05 55 16 1.000000e+07 
-1.000000e-05 55 16 3.162278e+07 
-1.000000e-05 55 16 1.000000e+08 
-1.000000e-05 60 4 1.000000e+05 
-1.000000e-05 60 4 3.162278e+05 
-1.000000e-05 60 4 1.000000e+06 
-1.000000e-05 60 4 3.162278e+06 
-1.000000e-05 60 4 1.000000e+07 
-1.000000e-05 60 4 3.162278e+07 
-1.000000e-05 60 4 1.000000e+08 
-1.000000e-05 60 6 1.000000e+05 
-1.000000e-05 60 6 3.162278e+05 
-1.000000e-05 60 6 1.000000e+06 
-1.000000e-05 60 6 3.162278e+06 
-1.000000e-05 60 6 1.000000e+07 
-1.000000e-05 60 6 3.162278e+07 
-1.000000e-05 60 6 1.000000e+08 
-1.000000e-05 60 8 1.000000e+05 
-1.000000e-05 60 8 3.162278e+05 
-1.000000e-05 60 8 1.000000e+06 
-1.000000e-05 60 8 3.162278e+06 
-1.000000e-05 60 8 1.000000e+07 
-1.000000e-05 60 8 3.162278e+07 
-1.000000e-05 60 8 1.000000e+08 
-1.000000e-05 60 10 1.000000e+05 
-1.000000e-05 60 10 3.162278e+05 
-1.000000e-05 60 10 1.000000e+06 
-1.000000e-05 60 10 3.162278e+06 
-1.000000e-05 60 10 1.000000e+07 
-1.000000e-05 60 10 3.162278e+07 
-1.000000e-05 60 10 1.000000e+08 
-1.000000e-05 60 12 1.000000e+05 
-1.000000e-05 60 12 3.162278e+05 
-1.000000e-05 60 12 1.000000e+06 
-1.000000e-05 60 12 3.162278e+06 
-1.000000e-05 60 12 1.000000e+07 
-1.000000e-05 60 12 3.162278e+07 
-1.000000e-05 60 12 1.000000e+08 
-1.000000e-05 60 14 1.000000e+05 
-1.000000e-05 60 14 3.162278e+05 
-1.000000e-05 60 14 1.000000e+06 
-1.000000e-05 60 14 3.162278e+06 
-1.000000e-05 60 14 1.000000e+07 
-1.000000e-05 60 14 3.162278e+07 
-1.000000e-05 60 14 1.000000e+08 
-1.000000e-05 60 16 1.000000e+05 
-1.000000e-05 60 16 3.162278e+05 
-1.000000e-05 60 16 1.000000e+06 
-1.000000e-05 60 16 3.162278e+06 
-1.000000e-05 60 16 1.000000e+07 
-1.000000e-05 60 16 3.162278e+07 
-1.000000e-05 60 16 1.000000e+08 
-3.162278e-06 20 4 1.000000e+05 
-3.162278e-06 20 4 3.162278e+05 
-3.162278e-06 20 4 1.000000e+06 
-3.162278e-06 20 4 3.162278e+06 
-3.162278e-06 20 4 1.000000e+07 
-3.162278e-06 20 4 3.162278e+07 
-3.162278e-06 20 4 1.000000e+08 
-3.162278e-06 20 6 1.000000e+05 
-3.162278e-06 20 6 3.162278e+05 
-3.162278e-06 20 6 1.000000e+06 
-3.162278e-06 20 6 3.162278e+06 
-3.162278e-06 20 6 1.000000e+07 
-3.162278e-06 20 6 3.162278e+07 
-3.162278e-06 20 6 1.000000e+08 
-3.162278e-06 20 8 1.000000e+05 
-3.162278e-06 20 8 3.162278e+05 
-3.162278e-06 20 8 1.000000e+06 
-3.162278e-06 20 8 3.162278e+06 
-3.162278e-06 20 8 1.000000e+07 
-3.162278e-06 20 8 3.162278e+07 
-3.162278e-06 20 8 1.000000e+08 
-3.162278e-06 20 10 1.000000e+05 
-3.162278e-06 20 10 3.162278e+05 
-3.162278e-06 20 10 1.000000e+06 
-3.162278e-06 20 10 3.162278e+06 
-3.162278e-06 20 10 1.000000e+07 
-3.162278e-06 20 10 3.162278e+07 
-3.162278e-06 20 10 1.000000e+08 
-3.162278e-06 20 12 1.000000e+05 
-3.162278e-06 20 12 3.162278e+05 
-3.162278e-06 20 12 1.000000e+06 
-3.162278e-06 20 12 3.162278e+06 
-3.162278e-06 20 12 1.000000e+07 
-3.162278e-06 20 12 3.162278e+07 
-3.162278e-06 20 12 1.000000e+08 
-3.162278e-06 20 14 1.000000e+05 
-3.162278e-06 20 14 3.162278e+05 
-3.162278e-06 20 14 1.000000e+06 
-3.162278e-06 20 14 3.162278e+06 
-3.162278e-06 20 14 1.000000e+07 
-3.162278e-06 20 14 3.162278e+07 
-3.162278e-06 20 14 1.000000e+08 
-3.162278e-06 20 16 1.000000e+05 
-3.162278e-06 20 16 3.162278e+05 
-3.162278e-06 20 16 1.000000e+06 
-3.162278e-06 20 16 3.162278e+06 
-3.162278e-06 20 16 1.000000e+07 
-3.162278e-06 20 16 3.162278e+07 
-3.162278e-06 20 16 1.000000e+08 
-3.162278e-06 25 4 1.000000e+05 
-3.162278e-06 25 4 3.162278e+05 
-3.162278e-06 25 4 1.000000e+06 
-3.162278e-06 25 4 3.162278e+06 
-3.162278e-06 25 4 1.000000e+07 
-3.162278e-06 25 4 3.162278e+07 
-3.162278e-06 25 4 1.000000e+08 
-3.162278e-06 25 6 1.000000e+05 
-3.162278e-06 25 6 3.162278e+05 
-3.162278e-06 25 6 1.000000e+06 
-3.162278e-06 25 6 3.162278e+06 
-3.162278e-06 25 6 1.000000e+07 
-3.162278e-06 25 6 3.162278e+07 
-3.162278e-06 25 6 1.000000e+08 
-3.162278e-06 25 8 1.000000e+05 
-3.162278e-06 25 8 3.162278e+05 
-3.162278e-06 25 8 1.000000e+06 
-3.162278e-06 25 8 3.162278e+06 
-3.162278e-06 25 8 1.000000e+07 
-3.162278e-06 25 8 3.162278e+07 
-3.162278e-06 25 8 1.000000e+08 
-3.162278e-06 25 10 1.000000e+05 
-3.162278e-06 25 10 3.162278e+05 
-3.162278e-06 25 10 1.000000e+06 
-3.162278e-06 25 10 3.162278e+06 
-3.162278e-06 25 10 1.000000e+07 
-3.162278e-06 25 10 3.162278e+07 
-3.162278e-06 25 10 1.000000e+08 
-3.162278e-06 25 12 1.000000e+05 
-3.162278e-06 25 12 3.162278e+05 
-3.162278e-06 25 12 1.000000e+06 
-3.162278e-06 25 12 3.162278e+06 
-3.162278e-06 25 12 1.000000e+07 
-3.162278e-06 25 12 3.162278e+07 
-3.162278e-06 25 12 1.000000e+08 
-3.162278e-06 25 14 1.000000e+05 
-3.162278e-06 25 14 3.162278e+05 
-3.162278e-06 25 14 1.000000e+06 
-3.162278e-06 25 14 3.162278e+06 
-3.162278e-06 25 14 1.000000e+07 
-3.162278e-06 25 14 3.162278e+07 
-3.162278e-06 25 14 1.000000e+08 
-3.162278e-06 25 16 1.000000e+05 
-3.162278e-06 25 16 3.162278e+05 
-3.162278e-06 25 16 1.000000e+06 
-3.162278e-06 25 16 3.162278e+06 
-3.162278e-06 25 16 1.000000e+07 
-3.162278e-06 25 16 3.162278e+07 
-3.162278e-06 25 16 1.000000e+08 
-3.162278e-06 30 4 1.000000e+05 
-3.162278e-06 30 4 3.162278e+05 
-3.162278e-06 30 4 1.000000e+06 
-3.162278e-06 30 4 3.162278e+06 
-3.162278e-06 30 4 1.000000e+07 
-3.162278e-06 30 4 3.162278e+07 
-3.162278e-06 30 4 1.000000e+08 
-3.162278e-06 30 6 1.000000e+05 
-3.162278e-06 30 6 3.162278e+05 
-3.162278e-06 30 6 1.000000e+06 
-3.162278e-06 30 6 3.162278e+06 
-3.162278e-06 30 6 1.000000e+07 
-3.162278e-06 30 6 3.162278e+07 
-3.162278e-06 30 6 1.000000e+08 
-3.162278e-06 30 8 1.000000e+05 
-3.162278e-06 30 8 3.162278e+05 
-3.162278e-06 30 8 1.000000e+06 
-3.162278e-06 30 8 3.162278e+06 
-3.162278e-06 30 8 1.000000e+07 
-3.162278e-06 30 8 3.162278e+07 
-3.162278e-06 30 8 1.000000e+08 
-3.162278e-06 30 10 1.000000e+05 
-3.162278e-06 30 10 3.162278e+05 
-3.162278e-06 30 10 1.000000e+06 
-3.162278e-06 30 10 3.162278e+06 
-3.162278e-06 30 10 1.000000e+07 
-3.162278e-06 30 10 3.162278e+07 
-3.162278e-06 30 10 1.000000e+08 
-3.162278e-06 30 12 1.000000e+05 
-3.162278e-06 30 12 3.162278e+05 
-3.162278e-06 30 12 1.000000e+06 
-3.162278e-06 30 12 3.162278e+06 
-3.162278e-06 30 12 1.000000e+07 
-3.162278e-06 30 12 3.162278e+07 
-3.162278e-06 30 12 1.000000e+08 
-3.162278e-06 30 14 1.000000e+05 
-3.162278e-06 30 14 3.162278e+05 
-3.162278e-06 30 14 1.000000e+06 
-3.162278e-06 30 14 3.162278e+06 
-3.162278e-06 30 14 1.000000e+07 
-3.162278e-06 30 14 3.162278e+07 
-3.162278e-06 30 14 1.000000e+08 
-3.162278e-06 30 16 1.000000e+05 
-3.162278e-06 30 16 3.162278e+05 
-3.162278e-06 30 16 1.000000e+06 
-3.162278e-06 30 16 3.162278e+06 
-3.162278e-06 30 16 1.000000e+07 
-3.162278e-06 30 16 3.162278e+07 
-3.162278e-06 30 16 1.000000e+08 
-3.162278e-06 35 4 1.000000e+05 
-3.162278e-06 35 4 3.162278e+05 
-3.162278e-06 35 4 1.000000e+06 
-3.162278e-06 35 4 3.162278e+06 
-3.162278e-06 35 4 1.000000e+07 
-3.162278e-06 35 4 3.162278e+07 
-3.162278e-06 35 4 1.000000e+08 
-3.162278e-06 35 6 1.000000e+05 
-3.162278e-06 35 6 3.162278e+05 
-3.162278e-06 35 6 1.000000e+06 
-3.162278e-06 35 6 3.162278e+06 
-3.162278e-06 35 6 1.000000e+07 
-3.162278e-06 35 6 3.162278e+07 
-3.162278e-06 35 6 1.000000e+08 
-3.162278e-06 35 8 1.000000e+05 
-3.162278e-06 35 8 3.162278e+05 
-3.162278e-06 35 8 1.000000e+06 
-3.162278e-06 35 8 3.162278e+06 
-3.162278e-06 35 8 1.000000e+07 
-3.162278e-06 35 8 3.162278e+07 
-3.162278e-06 35 8 1.000000e+08 
-3.162278e-06 35 10 1.000000e+05 
-3.162278e-06 35 10 3.162278e+05 
-3.162278e-06 35 10 1.000000e+06 
-3.162278e-06 35 10 3.162278e+06 
-3.162278e-06 35 10 1.000000e+07 
-3.162278e-06 35 10 3.162278e+07 
-3.162278e-06 35 10 1.000000e+08 
-3.162278e-06 35 12 1.000000e+05 
-3.162278e-06 35 12 3.162278e+05 
-3.162278e-06 35 12 1.000000e+06 
-3.162278e-06 35 12 3.162278e+06 
-3.162278e-06 35 12 1.000000e+07 
-3.162278e-06 35 12 3.162278e+07 
-3.162278e-06 35 12 1.000000e+08 
-3.162278e-06 35 14 1.000000e+05 
-3.162278e-06 35 14 3.162278e+05 
-3.162278e-06 35 14 1.000000e+06 
-3.162278e-06 35 14 3.162278e+06 
-3.162278e-06 35 14 1.000000e+07 
-3.162278e-06 35 14 3.162278e+07 
-3.162278e-06 35 14 1.000000e+08 
-3.162278e-06 35 16 1.000000e+05 
-3.162278e-06 35 16 3.162278e+05 
-3.162278e-06 35 16 1.000000e+06 
-3.162278e-06 35 16 3.162278e+06 
-3.162278e-06 35 16 1.000000e+07 
-3.162278e-06 35 16 3.162278e+07 
-3.162278e-06 35 16 1.000000e+08 
-3.162278e-06 40 4 1.000000e+05 
-3.162278e-06 40 4 3.162278e+05 
-3.162278e-06 40 4 1.000000e+06 
-3.162278e-06 40 4 3.162278e+06 
-3.162278e-06 40 4 1.000000e+07 
-3.162278e-06 40 4 3.162278e+07 
-3.162278e-06 40 4 1.000000e+08 
-3.162278e-06 40 6 1.000000e+05 
-3.162278e-06 40 6 3.162278e+05 
-3.162278e-06 40 6 1.000000e+06 
-3.162278e-06 40 6 3.162278e+06 
-3.162278e-06 40 6 1.000000e+07 
-3.162278e-06 40 6 3.162278e+07 
-3.162278e-06 40 6 1.000000e+08 
-3.162278e-06 40 8 1.000000e+05 
-3.162278e-06 40 8 3.162278e+05 
-3.162278e-06 40 8 1.000000e+06 
-3.162278e-06 40 8 3.162278e+06 
-3.162278e-06 40 8 1.000000e+07 
-3.162278e-06 40 8 3.162278e+07 
-3.162278e-06 40 8 1.000000e+08 
-3.162278e-06 40 10 1.000000e+05 
-3.162278e-06 40 10 3.162278e+05 
-3.162278e-06 40 10 1.000000e+06 
-3.162278e-06 40 10 3.162278e+06 
-3.162278e-06 40 10 1.000000e+07 
-3.162278e-06 40 10 3.162278e+07 
-3.162278e-06 40 10 1.000000e+08 
-3.162278e-06 40 12 1.000000e+05 
-3.162278e-06 40 12 3.162278e+05 
-3.162278e-06 40 12 1.000000e+06 
-3.162278e-06 40 12 3.162278e+06 
-3.162278e-06 40 12 1.000000e+07 
-3.162278e-06 40 12 3.162278e+07 
-3.162278e-06 40 12 1.000000e+08 
-3.162278e-06 40 14 1.000000e+05 
-3.162278e-06 40 14 3.162278e+05 
-3.162278e-06 40 14 1.000000e+06 
-3.162278e-06 40 14 3.162278e+06 
-3.162278e-06 40 14 1.000000e+07 
-3.162278e-06 40 14 3.162278e+07 
-3.162278e-06 40 14 1.000000e+08 
-3.162278e-06 40 16 1.000000e+05 
-3.162278e-06 40 16 3.162278e+05 
-3.162278e-06 40 16 1.000000e+06 
-3.162278e-06 40 16 3.162278e+06 
-3.162278e-06 40 16 1.000000e+07 
-3.162278e-06 40 16 3.162278e+07 
-3.162278e-06 40 16 1.000000e+08 
-3.162278e-06 45 4 1.000000e+05 
-3.162278e-06 45 4 3.162278e+05 
-3.162278e-06 45 4 1.000000e+06 
-3.162278e-06 45 4 3.162278e+06 
-3.162278e-06 45 4 1.000000e+07 
-3.162278e-06 45 4 3.162278e+07 
-3.162278e-06 45 4 1.000000e+08 
-3.162278e-06 45 6 1.000000e+05 
-3.162278e-06 45 6 3.162278e+05 
-3.162278e-06 45 6 1.000000e+06 
-3.162278e-06 45 6 3.162278e+06 
-3.162278e-06 45 6 1.000000e+07 
-3.162278e-06 45 6 3.162278e+07 
-3.162278e-06 45 6 1.000000e+08 
-3.162278e-06 45 8 1.000000e+05 
-3.162278e-06 45 8 3.162278e+05 
-3.162278e-06 45 8 1.000000e+06 
-3.162278e-06 45 8 3.162278e+06 
-3.162278e-06 45 8 1.000000e+07 
-3.162278e-06 45 8 3.162278e+07 
-3.162278e-06 45 8 1.000000e+08 
-3.162278e-06 45 10 1.000000e+05 
-3.162278e-06 45 10 3.162278e+05 
-3.162278e-06 45 10 1.000000e+06 
-3.162278e-06 45 10 3.162278e+06 
-3.162278e-06 45 10 1.000000e+07 
-3.162278e-06 45 10 3.162278e+07 
-3.162278e-06 45 10 1.000000e+08 
-3.162278e-06 45 12 1.000000e+05 
-3.162278e-06 45 12 3.162278e+05 
-3.162278e-06 45 12 1.000000e+06 
-3.162278e-06 45 12 3.162278e+06 
-3.162278e-06 45 12 1.000000e+07 
-3.162278e-06 45 12 3.162278e+07 
-3.162278e-06 45 12 1.000000e+08 
-3.162278e-06 45 14 1.000000e+05 
-3.162278e-06 45 14 3.162278e+05 
-3.162278e-06 45 14 1.000000e+06 
-3.162278e-06 45 14 3.162278e+06 
-3.162278e-06 45 14 1.000000e+07 
-3.162278e-06 45 14 3.162278e+07 
-3.162278e-06 45 14 1.000000e+08 
-3.162278e-06 45 16 1.000000e+05 
-3.162278e-06 45 16 3.162278e+05 
-3.162278e-06 45 16 1.000000e+06 
-3.162278e-06 45 16 3.162278e+06 
-3.162278e-06 45 16 1.000000e+07 
-3.162278e-06 45 16 3.162278e+07 
-3.162278e-06 45 16 1.000000e+08 
-3.162278e-06 50 4 1.000000e+05 
-3.162278e-06 50 4 3.162278e+05 
-3.162278e-06 50 4 1.000000e+06 
-3.162278e-06 50 4 3.162278e+06 
-3.162278e-06 50 4 1.000000e+07 
-3.162278e-06 50 4 3.162278e+07 
-3.162278e-06 50 4 1.000000e+08 
-3.162278e-06 50 6 1.000000e+05 
-3.162278e-06 50 6 3.162278e+05 
-3.162278e-06 50 6 1.000000e+06 
-3.162278e-06 50 6 3.162278e+06 
-3.162278e-06 50 6 1.000000e+07 
-3.162278e-06 50 6 3.162278e+07 
-3.162278e-06 50 6 1.000000e+08 
-3.162278e-06 50 8 1.000000e+05 
-3.162278e-06 50 8 3.162278e+05 
-3.162278e-06 50 8 1.000000e+06 
-3.162278e-06 50 8 3.162278e+06 
-3.162278e-06 50 8 1.000000e+07 
-3.162278e-06 50 8 3.162278e+07 
-3.162278e-06 50 8 1.000000e+08 
-3.162278e-06 50 10 1.000000e+05 
-3.162278e-06 50 10 3.162278e+05 
-3.162278e-06 50 10 1.000000e+06 
-3.162278e-06 50 10 3.162278e+06 
-3.162278e-06 50 10 1.000000e+07 
-3.162278e-06 50 10 3.162278e+07 
-3.162278e-06 50 10 1.000000e+08 
-3.162278e-06 50 12 1.000000e+05 
-3.162278e-06 50 12 3.162278e+05 
-3.162278e-06 50 12 1.000000e+06 
-3.162278e-06 50 12 3.162278e+06 
-3.162278e-06 50 12 1.000000e+07 
-3.162278e-06 50 12 3.162278e+07 
-3.162278e-06 50 12 1.000000e+08 
-3.162278e-06 50 14 1.000000e+05 
-3.162278e-06 50 14 3.162278e+05 
-3.162278e-06 50 14 1.000000e+06 
-3.162278e-06 50 14 3.162278e+06 
-3.162278e-06 50 14 1.000000e+07 
-3.162278e-06 50 14 3.162278e+07 
-3.162278e-06 50 14 1.000000e+08 
-3.162278e-06 50 16 1.000000e+05 
-3.162278e-06 50 16 3.162278e+05 
-3.162278e-06 50 16 1.000000e+06 
-3.162278e-06 50 16 3.162278e+06 
-3.162278e-06 50 16 1.000000e+07 
-3.162278e-06 50 16 3.162278e+07 
-3.162278e-06 50 16 1.000000e+08 
-3.162278e-06 55 4 1.000000e+05 
-3.162278e-06 55 4 3.162278e+05 
-3.162278e-06 55 4 1.000000e+06 
-3.162278e-06 55 4 3.162278e+06 
-3.162278e-06 55 4 1.000000e+07 
-3.162278e-06 55 4 3.162278e+07 
-3.162278e-06 55 4 1.000000e+08 
-3.162278e-06 55 6 1.000000e+05 
-3.162278e-06 55 6 3.162278e+05 
-3.162278e-06 55 6 1.000000e+06 
-3.162278e-06 55 6 3.162278e+06 
-3.162278e-06 55 6 1.000000e+07 
-3.162278e-06 55 6 3.162278e+07 
-3.162278e-06 55 6 1.000000e+08 
-3.162278e-06 55 8 1.000000e+05 
-3.162278e-06 55 8 3.162278e+05 
-3.162278e-06 55 8 1.000000e+06 
-3.162278e-06 55 8 3.162278e+06 
-3.162278e-06 55 8 1.000000e+07 
-3.162278e-06 55 8 3.162278e+07 
-3.162278e-06 55 8 1.000000e+08 
-3.162278e-06 55 10 1.000000e+05 
-3.162278e-06 55 10 3.162278e+05 
-3.162278e-06 55 10 1.000000e+06 
-3.162278e-06 55 10 3.162278e+06 
-3.162278e-06 55 10 1.000000e+07 
-3.162278e-06 55 10 3.162278e+07 
-3.162278e-06 55 10 1.000000e+08 
-3.162278e-06 55 12 1.000000e+05 
-3.162278e-06 55 12 3.162278e+05 
-3.162278e-06 55 12 1.000000e+06 
-3.162278e-06 55 12 3.162278e+06 
-3.162278e-06 55 12 1.000000e+07 
-3.162278e-06 55 12 3.162278e+07 
-3.162278e-06 55 12 1.000000e+08 
-3.162278e-06 55 14 1.000000e+05 
-3.162278e-06 55 14 3.162278e+05 
-3.162278e-06 55 14 1.000000e+06 
-3.162278e-06 55 14 3.162278e+06 
-3.162278e-06 55 14 1.000000e+07 
-3.162278e-06 55 14 3.162278e+07 
-3.162278e-06 55 14 1.000000e+08 
-3.162278e-06 55 16 1.000000e+05 
-3.162278e-06 55 16 3.162278e+05 
-3.162278e-06 55 16 1.000000e+06 
-3.162278e-06 55 16 3.162278e+06 
-3.162278e-06 55 16 1.000000e+07 
-3.162278e-06 55 16 3.162278e+07 
-3.162278e-06 55 16 1.000000e+08 
-3.162278e-06 60 4 1.000000e+05 
-3.162278e-06 60 4 3.162278e+05 
-3.162278e-06 60 4 1.000000e+06 
-3.162278e-06 60 4 3.162278e+06 
-3.162278e-06 60 4 1.000000e+07 
-3.162278e-06 60 4 3.162278e+07 
-3.162278e-06 60 4 1.000000e+08 
-3.162278e-06 60 6 1.000000e+05 
-3.162278e-06 60 6 3.162278e+05 
-3.162278e-06 60 6 1.000000e+06 
-3.162278e-06 60 6 3.162278e+06 
-3.162278e-06 60 6 1.000000e+07 
-3.162278e-06 60 6 3.162278e+07 
-3.162278e-06 60 6 1.000000e+08 
-3.162278e-06 60 8 1.000000e+05 
-3.162278e-06 60 8 3.162278e+05 
-3.162278e-06 60 8 1.000000e+06 
-3.162278e-06 60 8 3.162278e+06 
-3.162278e-06 60 8 1.000000e+07 
-3.162278e-06 60 8 3.162278e+07 
-3.162278e-06 60 8 1.000000e+08 
-3.162278e-06 60 10 1.000000e+05 
-3.162278e-06 60 10 3.162278e+05 
-3.162278e-06 60 10 1.000000e+06 
-3.162278e-06 60 10 3.162278e+06 
-3.162278e-06 60 10 1.000000e+07 
-3.162278e-06 60 10 3.162278e+07 
-3.162278e-06 60 10 1.000000e+08 
-3.162278e-06 60 12 1.000000e+05 
-3.162278e-06 60 12 3.162278e+05 
-3.162278e-06 60 12 1.000000e+06 
-3.162278e-06 60 12 3.162278e+06 
-3.162278e-06 60 12 1.000000e+07 
-3.162278e-06 60 12 3.162278e+07 
-3.162278e-06 60 12 1.000000e+08 
-3.162278e-06 60 14 1.000000e+05 
-3.162278e-06 60 14 3.162278e+05 
-3.162278e-06 60 14 1.000000e+06 
-3.162278e-06 60 14 3.162278e+06 
-3.162278e-06 60 14 1.000000e+07 
-3.162278e-06 60 14 3.162278e+07 
-3.162278e-06 60 14 1.000000e+08 
-3.162278e-06 60 16 1.000000e+05 
-3.162278e-06 60 16 3.162278e+05 
-3.162278e-06 60 16 1.000000e+06 
-3.162278e-06 60 16 3.162278e+06 
-3.162278e-06 60 16 1.000000e+07 
-3.162278e-06 60 16 3.162278e+07 
-3.162278e-06 60 16 1.000000e+08 
-1.000000e-06 20 4 1.000000e+05 
-1.000000e-06 20 4 3.162278e+05 
-1.000000e-06 20 4 1.000000e+06 
-1.000000e-06 20 4 3.162278e+06 
-1.000000e-06 20 4 1.000000e+07 
-1.000000e-06 20 4 3.162278e+07 
-1.000000e-06 20 4 1.000000e+08 
-1.000000e-06 20 6 1.000000e+05 
-1.000000e-06 20 6 3.162278e+05 
-1.000000e-06 20 6 1.000000e+06 
-1.000000e-06 20 6 3.162278e+06 
-1.000000e-06 20 6 1.000000e+07 
-1.000000e-06 20 6 3.162278e+07 
-1.000000e-06 20 6 1.000000e+08 
-1.000000e-06 20 8 1.000000e+05 
-1.000000e-06 20 8 3.162278e+05 
-1.000000e-06 20 8 1.000000e+06 
-1.000000e-06 20 8 3.162278e+06 
-1.000000e-06 20 8 1.000000e+07 
-1.000000e-06 20 8 3.162278e+07 
-1.000000e-06 20 8 1.000000e+08 
-1.000000e-06 20 10 1.000000e+05 
-1.000000e-06 20 10 3.162278e+05 
-1.000000e-06 20 10 1.000000e+06 
-1.000000e-06 20 10 3.162278e+06 
-1.000000e-06 20 10 1.000000e+07 
-1.000000e-06 20 10 3.162278e+07 
-1.000000e-06 20 10 1.000000e+08 
-1.000000e-06 20 12 1.000000e+05 
-1.000000e-06 20 12 3.162278e+05 
-1.000000e-06 20 12 1.000000e+06 
-1.000000e-06 20 12 3.162278e+06 
-1.000000e-06 20 12 1.000000e+07 
-1.000000e-06 20 12 3.162278e+07 
-1.000000e-06 20 12 1.000000e+08 
-1.000000e-06 20 14 1.000000e+05 
-1.000000e-06 20 14 3.162278e+05 
-1.000000e-06 20 14 1.000000e+06 
-1.000000e-06 20 14 3.162278e+06 
-1.000000e-06 20 14 1.000000e+07 
-1.000000e-06 20 14 3.162278e+07 
-1.000000e-06 20 14 1.000000e+08 
-1.000000e-06 20 16 1.000000e+05 
-1.000000e-06 20 16 3.162278e+05 
-1.000000e-06 20 16 1.000000e+06 
-1.000000e-06 20 16 3.162278e+06 
-1.000000e-06 20 16 1.000000e+07 
-1.000000e-06 20 16 3.162278e+07 
-1.000000e-06 20 16 1.000000e+08 
-1.000000e-06 25 4 1.000000e+05 
-1.000000e-06 25 4 3.162278e+05 
-1.000000e-06 25 4 1.000000e+06 
-1.000000e-06 25 4 3.162278e+06 
-1.000000e-06 25 4 1.000000e+07 
-1.000000e-06 25 4 3.162278e+07 
-1.000000e-06 25 4 1.000000e+08 
-1.000000e-06 25 6 1.000000e+05 
-1.000000e-06 25 6 3.162278e+05 
-1.000000e-06 25 6 1.000000e+06 
-1.000000e-06 25 6 3.162278e+06 
-1.000000e-06 25 6 1.000000e+07 
-1.000000e-06 25 6 3.162278e+07 
-1.000000e-06 25 6 1.000000e+08 
-1.000000e-06 25 8 1.000000e+05 
-1.000000e-06 25 8 3.162278e+05 
-1.000000e-06 25 8 1.000000e+06 
-1.000000e-06 25 8 3.162278e+06 
-1.000000e-06 25 8 1.000000e+07 
-1.000000e-06 25 8 3.162278e+07 
-1.000000e-06 25 8 1.000000e+08 
-1.000000e-06 25 10 1.000000e+05 
-1.000000e-06 25 10 3.162278e+05 
-1.000000e-06 25 10 1.000000e+06 
-1.000000e-06 25 10 3.162278e+06 
-1.000000e-06 25 10 1.000000e+07 
-1.000000e-06 25 10 3.162278e+07 
-1.000000e-06 25 10 1.000000e+08 
-1.000000e-06 25 12 1.000000e+05 
-1.000000e-06 25 12 3.162278e+05 
-1.000000e-06 25 12 1.000000e+06 
-1.000000e-06 25 12 3.162278e+06 
-1.000000e-06 25 12 1.000000e+07 
-1.000000e-06 25 12 3.162278e+07 
-1.000000e-06 25 12 1.000000e+08 
-1.000000e-06 25 14 1.000000e+05 
-1.000000e-06 25 14 3.162278e+05 
-1.000000e-06 25 14 1.000000e+06 
-1.000000e-06 25 14 3.162278e+06 
-1.000000e-06 25 14 1.000000e+07 
-1.000000e-06 25 14 3.162278e+07 
-1.000000e-06 25 14 1.000000e+08 
-1.000000e-06 25 16 1.000000e+05 
-1.000000e-06 25 16 3.162278e+05 
-1.000000e-06 25 16 1.000000e+06 
-1.000000e-06 25 16 3.162278e+06 
-1.000000e-06 25 16 1.000000e+07 
-1.000000e-06 25 16 3.162278e+07 
-1.000000e-06 25 16 1.000000e+08 
-1.000000e-06 30 4 1.000000e+05 
-1.000000e-06 30 4 3.162278e+05 
-1.000000e-06 30 4 1.000000e+06 
-1.000000e-06 30 4 3.162278e+06 
-1.000000e-06 30 4 1.000000e+07 
-1.000000e-06 30 4 3.162278e+07 
-1.000000e-06 30 4 1.000000e+08 
-1.000000e-06 30 6 1.000000e+05 
-1.000000e-06 30 6 3.162278e+05 
-1.000000e-06 30 6 1.000000e+06 
-1.000000e-06 30 6 3.162278e+06 
-1.000000e-06 30 6 1.000000e+07 
-1.000000e-06 30 6 3.162278e+07 
-1.000000e-06 30 6 1.000000e+08 
-1.000000e-06 30 8 1.000000e+05 
-1.000000e-06 30 8 3.162278e+05 
-1.000000e-06 30 8 1.000000e+06 
-1.000000e-06 30 8 3.162278e+06 
-1.000000e-06 30 8 1.000000e+07 
-1.000000e-06 30 8 3.162278e+07 
-1.000000e-06 30 8 1.000000e+08 
-1.000000e-06 30 10 1.000000e+05 
-1.000000e-06 30 10 3.162278e+05 
-1.000000e-06 30 10 1.000000e+06 
-1.000000e-06 30 10 3.162278e+06 
-1.000000e-06 30 10 1.000000e+07 
-1.000000e-06 30 10 3.162278e+07 
-1.000000e-06 30 10 1.000000e+08 
-1.000000e-06 30 12 1.000000e+05 
-1.000000e-06 30 12 3.162278e+05 
-1.000000e-06 30 12 1.000000e+06 
-1.000000e-06 30 12 3.162278e+06 
-1.000000e-06 30 12 1.000000e+07 
-1.000000e-06 30 12 3.162278e+07 
-1.000000e-06 30 12 1.000000e+08 
-1.000000e-06 30 14 1.000000e+05 
-1.000000e-06 30 14 3.162278e+05 
-1.000000e-06 30 14 1.000000e+06 
-1.000000e-06 30 14 3.162278e+06 
-1.000000e-06 30 14 1.000000e+07 
-1.000000e-06 30 14 3.162278e+07 
-1.000000e-06 30 14 1.000000e+08 
-1.000000e-06 30 16 1.000000e+05 
-1.000000e-06 30 16 3.162278e+05 
-1.000000e-06 30 16 1.000000e+06 
-1.000000e-06 30 16 3.162278e+06 
-1.000000e-06 30 16 1.000000e+07 
-1.000000e-06 30 16 3.162278e+07 
-1.000000e-06 30 16 1.000000e+08 
-1.000000e-06 35 4 1.000000e+05 
-1.000000e-06 35 4 3.162278e+05 
-1.000000e-06 35 4 1.000000e+06 
-1.000000e-06 35 4 3.162278e+06 
-1.000000e-06 35 4 1.000000e+07 
-1.000000e-06 35 4 3.162278e+07 
-1.000000e-06 35 4 1.000000e+08 
-1.000000e-06 35 6 1.000000e+05 
-1.000000e-06 35 6 3.162278e+05 
-1.000000e-06 35 6 1.000000e+06 
-1.000000e-06 35 6 3.162278e+06 
-1.000000e-06 35 6 1.000000e+07 
-1.000000e-06 35 6 3.162278e+07 
-1.000000e-06 35 6 1.000000e+08 
-1.000000e-06 35 8 1.000000e+05 
-1.000000e-06 35 8 3.162278e+05 
-1.000000e-06 35 8 1.000000e+06 
-1.000000e-06 35 8 3.162278e+06 
-1.000000e-06 35 8 1.000000e+07 
-1.000000e-06 35 8 3.162278e+07 
-1.000000e-06 35 8 1.000000e+08 
-1.000000e-06 35 10 1.000000e+05 
-1.000000e-06 35 10 3.162278e+05 
-1.000000e-06 35 10 1.000000e+06 
-1.000000e-06 35 10 3.162278e+06 
-1.000000e-06 35 10 1.000000e+07 
-1.000000e-06 35 10 3.162278e+07 
-1.000000e-06 35 10 1.000000e+08 
-1.000000e-06 35 12 1.000000e+05 
-1.000000e-06 35 12 3.162278e+05 
-1.000000e-06 35 12 1.000000e+06 
-1.000000e-06 35 12 3.162278e+06 
-1.000000e-06 35 12 1.000000e+07 
-1.000000e-06 35 12 3.162278e+07 
-1.000000e-06 35 12 1.000000e+08 
-1.000000e-06 35 14 1.000000e+05 
-1.000000e-06 35 14 3.162278e+05 
-1.000000e-06 35 14 1.000000e+06 
-1.000000e-06 35 14 3.162278e+06 
-1.000000e-06 35 14 1.000000e+07 
-1.000000e-06 35 14 3.162278e+07 
-1.000000e-06 35 14 1.000000e+08 
-1.000000e-06 35 16 1.000000e+05 
-1.000000e-06 35 16 3.162278e+05 
-1.000000e-06 35 16 1.000000e+06 
-1.000000e-06 35 16 3.162278e+06 
-1.000000e-06 35 16 1.000000e+07 
-1.000000e-06 35 16 3.162278e+07 
-1.000000e-06 35 16 1.000000e+08 
-1.000000e-06 40 4 1.000000e+05 
-1.000000e-06 40 4 3.162278e+05 
-1.000000e-06 40 4 1.000000e+06 
-1.000000e-06 40 4 3.162278e+06 
-1.000000e-06 40 4 1.000000e+07 
-1.000000e-06 40 4 3.162278e+07 
-1.000000e-06 40 4 1.000000e+08 
-1.000000e-06 40 6 1.000000e+05 
-1.000000e-06 40 6 3.162278e+05 
-1.000000e-06 40 6 1.000000e+06 
-1.000000e-06 40 6 3.162278e+06 
-1.000000e-06 40 6 1.000000e+07 
-1.000000e-06 40 6 3.162278e+07 
-1.000000e-06 40 6 1.000000e+08 
-1.000000e-06 40 8 1.000000e+05 
-1.000000e-06 40 8 3.162278e+05 
-1.000000e-06 40 8 1.000000e+06 
-1.000000e-06 40 8 3.162278e+06 
-1.000000e-06 40 8 1.000000e+07 
-1.000000e-06 40 8 3.162278e+07 
-1.000000e-06 40 8 1.000000e+08 
-1.000000e-06 40 10 1.000000e+05 
-1.000000e-06 40 10 3.162278e+05 
-1.000000e-06 40 10 1.000000e+06 
-1.000000e-06 40 10 3.162278e+06 
-1.000000e-06 40 10 1.000000e+07 
-1.000000e-06 40 10 3.162278e+07 
-1.000000e-06 40 10 1.000000e+08 
-1.000000e-06 40 12 1.000000e+05 
-1.000000e-06 40 12 3.162278e+05 
-1.000000e-06 40 12 1.000000e+06 
-1.000000e-06 40 12 3.162278e+06 
-1.000000e-06 40 12 1.000000e+07 
-1.000000e-06 40 12 3.162278e+07 
-1.000000e-06 40 12 1.000000e+08 
-1.000000e-06 40 14 1.000000e+05 
-1.000000e-06 40 14 3.162278e+05 
-1.000000e-06 40 14 1.000000e+06 
-1.000000e-06 40 14 3.162278e+06 
-1.000000e-06 40 14 1.000000e+07 
-1.000000e-06 40 14 3.162278e+07 
-1.000000e-06 40 14 1.000000e+08 
-1.000000e-06 40 16 1.000000e+05 
-1.000000e-06 40 16 3.162278e+05 
-1.000000e-06 40 16 1.000000e+06 
-1.000000e-06 40 16 3.162278e+06 
-1.000000e-06 40 16 1.000000e+07 
-1.000000e-06 40 16 3.162278e+07 
-1.000000e-06 40 16 1.000000e+08 
-1.000000e-06 45 4 1.000000e+05 
-1.000000e-06 45 4 3.162278e+05 
-1.000000e-06 45 4 1.000000e+06 
-1.000000e-06 45 4 3.162278e+06 
-1.000000e-06 45 4 1.000000e+07 
-1.000000e-06 45 4 3.162278e+07 
-1.000000e-06 45 4 1.000000e+08 
-1.000000e-06 45 6 1.000000e+05 
-1.000000e-06 45 6 3.162278e+05 
-1.000000e-06 45 6 1.000000e+06 
-1.000000e-06 45 6 3.162278e+06 
-1.000000e-06 45 6 1.000000e+07 
-1.000000e-06 45 6 3.162278e+07 
-1.000000e-06 45 6 1.000000e+08 
-1.000000e-06 45 8 1.000000e+05 
-1.000000e-06 45 8 3.162278e+05 
-1.000000e-06 45 8 1.000000e+06 
-1.000000e-06 45 8 3.162278e+06 
-1.000000e-06 45 8 1.000000e+07 
-1.000000e-06 45 8 3.162278e+07 
-1.000000e-06 45 8 1.000000e+08 
-1.000000e-06 45 10 1.000000e+05 
-1.000000e-06 45 10 3.162278e+05 
-1.000000e-06 45 10 1.000000e+06 
-1.000000e-06 45 10 3.162278e+06 
-1.000000e-06 45 10 1.000000e+07 
-1.000000e-06 45 10 3.162278e+07 
-1.000000e-06 45 10 1.000000e+08 
-1.000000e-06 45 12 1.000000e+05 
-1.000000e-06 45 12 3.162278e+05 
-1.000000e-06 45 12 1.000000e+06 
-1.000000e-06 45 12 3.162278e+06 
-1.000000e-06 45 12 1.000000e+07 
-1.000000e-06 45 12 3.162278e+07 
-1.000000e-06 45 12 1.000000e+08 
-1.000000e-06 45 14 1.000000e+05 
-1.000000e-06 45 14 3.162278e+05 
-1.000000e-06 45 14 1.000000e+06 
-1.000000e-06 45 14 3.162278e+06 
-1.000000e-06 45 14 1.000000e+07 
-1.000000e-06 45 14 3.162278e+07 
-1.000000e-06 45 14 1.000000e+08 
-1.000000e-06 45 16 1.000000e+05 
-1.000000e-06 45 16 3.162278e+05 
-1.000000e-06 45 16 1.000000e+06 
-1.000000e-06 45 16 3.162278e+06 
-1.000000e-06 45 16 1.000000e+07 
-1.000000e-06 45 16 3.162278e+07 
-1.000000e-06 45 16 1.000000e+08 
-1.000000e-06 50 4 1.000000e+05 
-1.000000e-06 50 4 3.162278e+05 
-1.000000e-06 50 4 1.000000e+06 
-1.000000e-06 50 4 3.162278e+06 
-1.000000e-06 50 4 1.000000e+07 
-1.000000e-06 50 4 3.162278e+07 
-1.000000e-06 50 4 1.000000e+08 
-1.000000e-06 50 6 1.000000e+05 
-1.000000e-06 50 6 3.162278e+05 
-1.000000e-06 50 6 1.000000e+06 
-1.000000e-06 50 6 3.162278e+06 
-1.000000e-06 50 6 1.000000e+07 
-1.000000e-06 50 6 3.162278e+07 
-1.000000e-06 50 6 1.000000e+08 
-1.000000e-06 50 8 1.000000e+05 
-1.000000e-06 50 8 3.162278e+05 
-1.000000e-06 50 8 1.000000e+06 
-1.000000e-06 50 8 3.162278e+06 
-1.000000e-06 50 8 1.000000e+07 
-1.000000e-06 50 8 3.162278e+07 
-1.000000e-06 50 8 1.000000e+08 
-1.000000e-06 50 10 1.000000e+05 
-1.000000e-06 50 10 3.162278e+05 
-1.000000e-06 50 10 1.000000e+06 
-1.000000e-06 50 10 3.162278e+06 
-1.000000e-06 50 10 1.000000e+07 
-1.000000e-06 50 10 3.162278e+07 
-1.000000e-06 50 10 1.000000e+08 
-1.000000e-06 50 12 1.000000e+05 
-1.000000e-06 50 12 3.162278e+05 
-1.000000e-06 50 12 1.000000e+06 
-1.000000e-06 50 12 3.162278e+06 
-1.000000e-06 50 12 1.000000e+07 
-1.000000e-06 50 12 3.162278e+07 
-1.000000e-06 50 12 1.000000e+08 
-1.000000e-06 50 14 1.000000e+05 
-1.000000e-06 50 14 3.162278e+05 
-1.000000e-06 50 14 1.000000e+06 
-1.000000e-06 50 14 3.162278e+06 
-1.000000e-06 50 14 1.000000e+07 
-1.000000e-06 50 14 3.162278e+07 
-1.000000e-06 50 14 1.000000e+08 
-1.000000e-06 50 16 1.000000e+05 
-1.000000e-06 50 16 3.162278e+05 
-1.000000e-06 50 16 1.000000e+06 
-1.000000e-06 50 16 3.162278e+06 
-1.000000e-06 50 16 1.000000e+07 
-1.000000e-06 50 16 3.162278e+07 
-1.000000e-06 50 16 1.000000e+08 
-1.000000e-06 55 4 1.000000e+05 
-1.000000e-06 55 4 3.162278e+05 
-1.000000e-06 55 4 1.000000e+06 
-1.000000e-06 55 4 3.162278e+06 
-1.000000e-06 55 4 1.000000e+07 
-1.000000e-06 55 4 3.162278e+07 
-1.000000e-06 55 4 1.000000e+08 
-1.000000e-06 55 6 1.000000e+05 
-1.000000e-06 55 6 3.162278e+05 
-1.000000e-06 55 6 1.000000e+06 
-1.000000e-06 55 6 3.162278e+06 
-1.000000e-06 55 6 1.000000e+07 
-1.000000e-06 55 6 3.162278e+07 
-1.000000e-06 55 6 1.000000e+08 
-1.000000e-06 55 8 1.000000e+05 
-1.000000e-06 55 8 3.162278e+05 
-1.000000e-06 55 8 1.000000e+06 
-1.000000e-06 55 8 3.162278e+06 
-1.000000e-06 55 8 1.000000e+07 
-1.000000e-06 55 8 3.162278e+07 
-1.000000e-06 55 8 1.000000e+08 
-1.000000e-06 55 10 1.000000e+05 
-1.000000e-06 55 10 3.162278e+05 
-1.000000e-06 55 10 1.000000e+06 
-1.000000e-06 55 10 3.162278e+06 
-1.000000e-06 55 10 1.000000e+07 
-1.000000e-06 55 10 3.162278e+07 
-1.000000e-06 55 10 1.000000e+08 
-1.000000e-06 55 12 1.000000e+05 
-1.000000e-06 55 12 3.162278e+05 
-1.000000e-06 55 12 1.000000e+06 
-1.000000e-06 55 12 3.162278e+06 
-1.000000e-06 55 12 1.000000e+07 
-1.000000e-06 55 12 3.162278e+07 
-1.000000e-06 55 12 1.000000e+08 
-1.000000e-06 55 14 1.000000e+05 
-1.000000e-06 55 14 3.162278e+05 
-1.000000e-06 55 14 1.000000e+06 
-1.000000e-06 55 14 3.162278e+06 
-1.000000e-06 55 14 1.000000e+07 
-1.000000e-06 55 14 3.162278e+07 
-1.000000e-06 55 14 1.000000e+08 
-1.000000e-06 55 16 1.000000e+05 
-1.000000e-06 55 16 3.162278e+05 
-1.000000e-06 55 16 1.000000e+06 
-1.000000e-06 55 16 3.162278e+06 
-1.000000e-06 55 16 1.000000e+07 
-1.000000e-06 55 16 3.162278e+07 
-1.000000e-06 55 16 1.000000e+08 
-1.000000e-06 60 4 1.000000e+05 
-1.000000e-06 60 4 3.162278e+05 
-1.000000e-06 60 4 1.000000e+06 
-1.000000e-06 60 4 3.162278e+06 
-1.000000e-06 60 4 1.000000e+07 
-1.000000e-06 60 4 3.162278e+07 
-1.000000e-06 60 4 1.000000e+08 
-1.000000e-06 60 6 1.000000e+05 
-1.000000e-06 60 6 3.162278e+05 
-1.000000e-06 60 6 1.000000e+06 
-1.000000e-06 60 6 3.162278e+06 
-1.000000e-06 60 6 1.000000e+07 
-1.000000e-06 60 6 3.162278e+07 
-1.000000e-06 60 6 1.000000e+08 
-1.000000e-06 60 8 1.000000e+05 
-1.000000e-06 60 8 3.162278e+05 
-1.000000e-06 60 8 1.000000e+06 
-1.000000e-06 60 8 3.162278e+06 
-1.000000e-06 60 8 1.000000e+07 
-1.000000e-06 60 8 3.162278e+07 
-1.000000e-06 60 8 1.000000e+08 
-1.000000e-06 60 10 1.000000e+05 
-1.000000e-06 60 10 3.162278e+05 
-1.000000e-06 60 10 1.000000e+06 
-1.000000e-06 60 10 3.162278e+06 
-1.000000e-06 60 10 1.000000e+07 
-1.000000e-06 60 10 3.162278e+07 
-1.000000e-06 60 10 1.000000e+08 
-1.000000e-06 60 12 1.000000e+05 
-1.000000e-06 60 12 3.162278e+05 
-1.000000e-06 60 12 1.000000e+06 
-1.000000e-06 60 12 3.162278e+06 
-1.000000e-06 60 12 1.000000e+07 
-1.000000e-06 60 12 3.162278e+07 
-1.000000e-06 60 12 1.000000e+08 
-1.000000e-06 60 14 1.000000e+05 
-1.000000e-06 60 14 3.162278e+05 
-1.000000e-06 60 14 1.000000e+06 
-1.000000e-06 60 14 3.162278e+06 
-1.000000e-06 60 14 1.000000e+07 
-1.000000e-06 60 14 3.162278e+07 
-1.000000e-06 60 14 1.000000e+08 
-1.000000e-06 60 16 1.000000e+05 
-1.000000e-06 60 16 3.162278e+05 
-1.000000e-06 60 16 1.000000e+06 
-1.000000e-06 60 16 3.162278e+06 
-1.000000e-06 60 16 1.000000e+07 
-1.000000e-06 60 16 3.162278e+07 
-1.000000e-06 60 16 1.000000e+08 
-3.162278e-07 20 4 1.000000e+05 
-3.162278e-07 20 4 3.162278e+05 
-3.162278e-07 20 4 1.000000e+06 
-3.162278e-07 20 4 3.162278e+06 
-3.162278e-07 20 4 1.000000e+07 
-3.162278e-07 20 4 3.162278e+07 
-3.162278e-07 20 4 1.000000e+08 
-3.162278e-07 20 6 1.000000e+05 
-3.162278e-07 20 6 3.162278e+05 
-3.162278e-07 20 6 1.000000e+06 
-3.162278e-07 20 6 3.162278e+06 
-3.162278e-07 20 6 1.000000e+07 
-3.162278e-07 20 6 3.162278e+07 
-3.162278e-07 20 6 1.000000e+08 
-3.162278e-07 20 8 1.000000e+05 
-3.162278e-07 20 8 3.162278e+05 
-3.162278e-07 20 8 1.000000e+06 
-3.162278e-07 20 8 3.162278e+06 
-3.162278e-07 20 8 1.000000e+07 
-3.162278e-07 20 8 3.162278e+07 
-3.162278e-07 20 8 1.000000e+08 
-3.162278e-07 20 10 1.000000e+05 
-3.162278e-07 20 10 3.162278e+05 
-3.162278e-07 20 10 1.000000e+06 
-3.162278e-07 20 10 3.162278e+06 
-3.162278e-07 20 10 1.000000e+07 
-3.162278e-07 20 10 3.162278e+07 
-3.162278e-07 20 10 1.000000e+08 
-3.162278e-07 20 12 1.000000e+05 
-3.162278e-07 20 12 3.162278e+05 
-3.162278e-07 20 12 1.000000e+06 
-3.162278e-07 20 12 3.162278e+06 
-3.162278e-07 20 12 1.000000e+07 
-3.162278e-07 20 12 3.162278e+07 
-3.162278e-07 20 12 1.000000e+08 
-3.162278e-07 20 14 1.000000e+05 
-3.162278e-07 20 14 3.162278e+05 
-3.162278e-07 20 14 1.000000e+06 
-3.162278e-07 20 14 3.162278e+06 
-3.162278e-07 20 14 1.000000e+07 
-3.162278e-07 20 14 3.162278e+07 
-3.162278e-07 20 14 1.000000e+08 
-3.162278e-07 20 16 1.000000e+05 
-3.162278e-07 20 16 3.162278e+05 
-3.162278e-07 20 16 1.000000e+06 
-3.162278e-07 20 16 3.162278e+06 
-3.162278e-07 20 16 1.000000e+07 
-3.162278e-07 20 16 3.162278e+07 
-3.162278e-07 20 16 1.000000e+08 
-3.162278e-07 25 4 1.000000e+05 
-3.162278e-07 25 4 3.162278e+05 
-3.162278e-07 25 4 1.000000e+06 
-3.162278e-07 25 4 3.162278e+06 
-3.162278e-07 25 4 1.000000e+07 
-3.162278e-07 25 4 3.162278e+07 
-3.162278e-07 25 4 1.000000e+08 
-3.162278e-07 25 6 1.000000e+05 
-3.162278e-07 25 6 3.162278e+05 
-3.162278e-07 25 6 1.000000e+06 
-3.162278e-07 25 6 3.162278e+06 
-3.162278e-07 25 6 1.000000e+07 
-3.162278e-07 25 6 3.162278e+07 
-3.162278e-07 25 6 1.000000e+08 
-3.162278e-07 25 8 1.000000e+05 
-3.162278e-07 25 8 3.162278e+05 
-3.162278e-07 25 8 1.000000e+06 
-3.162278e-07 25 8 3.162278e+06 
-3.162278e-07 25 8 1.000000e+07 
-3.162278e-07 25 8 3.162278e+07 
-3.162278e-07 25 8 1.000000e+08 
-3.162278e-07 25 10 1.000000e+05 
-3.162278e-07 25 10 3.162278e+05 
-3.162278e-07 25 10 1.000000e+06 
-3.162278e-07 25 10 3.162278e+06 
-3.162278e-07 25 10 1.000000e+07 
-3.162278e-07 25 10 3.162278e+07 
-3.162278e-07 25 10 1.000000e+08 
-3.162278e-07 25 12 1.000000e+05 
-3.162278e-07 25 12 3.162278e+05 
-3.162278e-07 25 12 1.000000e+06 
-3.162278e-07 25 12 3.162278e+06 
-3.162278e-07 25 12 1.000000e+07 
-3.162278e-07 25 12 3.162278e+07 
-3.162278e-07 25 12 1.000000e+08 
-3.162278e-07 25 14 1.000000e+05 
-3.162278e-07 25 14 3.162278e+05 
-3.162278e-07 25 14 1.000000e+06 
-3.162278e-07 25 14 3.162278e+06 
-3.162278e-07 25 14 1.000000e+07 
-3.162278e-07 25 14 3.162278e+07 
-3.162278e-07 25 14 1.000000e+08 
-3.162278e-07 25 16 1.000000e+05 
-3.162278e-07 25 16 3.162278e+05 
-3.162278e-07 25 16 1.000000e+06 
-3.162278e-07 25 16 3.162278e+06 
-3.162278e-07 25 16 1.000000e+07 
-3.162278e-07 25 16 3.162278e+07 
-3.162278e-07 25 16 1.000000e+08 
-3.162278e-07 30 4 1.000000e+05 
-3.162278e-07 30 4 3.162278e+05 
-3.162278e-07 30 4 1.000000e+06 
-3.162278e-07 30 4 3.162278e+06 
-3.162278e-07 30 4 1.000000e+07 
-3.162278e-07 30 4 3.162278e+07 
-3.162278e-07 30 4 1.000000e+08 
-3.162278e-07 30 6 1.000000e+05 
-3.162278e-07 30 6 3.162278e+05 
-3.162278e-07 30 6 1.000000e+06 
-3.162278e-07 30 6 3.162278e+06 
-3.162278e-07 30 6 1.000000e+07 
-3.162278e-07 30 6 3.162278e+07 
-3.162278e-07 30 6 1.000000e+08 
-3.162278e-07 30 8 1.000000e+05 
-3.162278e-07 30 8 3.162278e+05 
-3.162278e-07 30 8 1.000000e+06 
-3.162278e-07 30 8 3.162278e+06 
-3.162278e-07 30 8 1.000000e+07 
-3.162278e-07 30 8 3.162278e+07 
-3.162278e-07 30 8 1.000000e+08 
-3.162278e-07 30 10 1.000000e+05 
-3.162278e-07 30 10 3.162278e+05 
-3.162278e-07 30 10 1.000000e+06 
-3.162278e-07 30 10 3.162278e+06 
-3.162278e-07 30 10 1.000000e+07 
-3.162278e-07 30 10 3.162278e+07 
-3.162278e-07 30 10 1.000000e+08 
-3.162278e-07 30 12 1.000000e+05 
-3.162278e-07 30 12 3.162278e+05 
-3.162278e-07 30 12 1.000000e+06 
-3.162278e-07 30 12 3.162278e+06 
-3.162278e-07 30 12 1.000000e+07 
-3.162278e-07 30 12 3.162278e+07 
-3.162278e-07 30 12 1.000000e+08 
-3.162278e-07 30 14 1.000000e+05 
-3.162278e-07 30 14 3.162278e+05 
-3.162278e-07 30 14 1.000000e+06 
-3.162278e-07 30 14 3.162278e+06 
-3.162278e-07 30 14 1.000000e+07 
-3.162278e-07 30 14 3.162278e+07 
-3.162278e-07 30 14 1.000000e+08 
-3.162278e-07 30 16 1.000000e+05 
-3.162278e-07 30 16 3.162278e+05 
-3.162278e-07 30 16 1.000000e+06 
-3.162278e-07 30 16 3.162278e+06 
-3.162278e-07 30 16 1.000000e+07 
-3.162278e-07 30 16 3.162278e+07 
-3.162278e-07 30 16 1.000000e+08 
-3.162278e-07 35 4 1.000000e+05 
-3.162278e-07 35 4 3.162278e+05 
-3.162278e-07 35 4 1.000000e+06 
-3.162278e-07 35 4 3.162278e+06 
-3.162278e-07 35 4 1.000000e+07 
-3.162278e-07 35 4 3.162278e+07 
-3.162278e-07 35 4 1.000000e+08 
-3.162278e-07 35 6 1.000000e+05 
-3.162278e-07 35 6 3.162278e+05 
-3.162278e-07 35 6 1.000000e+06 
-3.162278e-07 35 6 3.162278e+06 
-3.162278e-07 35 6 1.000000e+07 
-3.162278e-07 35 6 3.162278e+07 
-3.162278e-07 35 6 1.000000e+08 
-3.162278e-07 35 8 1.000000e+05 
-3.162278e-07 35 8 3.162278e+05 
-3.162278e-07 35 8 1.000000e+06 
-3.162278e-07 35 8 3.162278e+06 
-3.162278e-07 35 8 1.000000e+07 
-3.162278e-07 35 8 3.162278e+07 
-3.162278e-07 35 8 1.000000e+08 
-3.162278e-07 35 10 1.000000e+05 
-3.162278e-07 35 10 3.162278e+05 
-3.162278e-07 35 10 1.000000e+06 
-3.162278e-07 35 10 3.162278e+06 
-3.162278e-07 35 10 1.000000e+07 
-3.162278e-07 35 10 3.162278e+07 
-3.162278e-07 35 10 1.000000e+08 
-3.162278e-07 35 12 1.000000e+05 
-3.162278e-07 35 12 3.162278e+05 
-3.162278e-07 35 12 1.000000e+06 
-3.162278e-07 35 12 3.162278e+06 
-3.162278e-07 35 12 1.000000e+07 
-3.162278e-07 35 12 3.162278e+07 
-3.162278e-07 35 12 1.000000e+08 
-3.162278e-07 35 14 1.000000e+05 
-3.162278e-07 35 14 3.162278e+05 
-3.162278e-07 35 14 1.000000e+06 
-3.162278e-07 35 14 3.162278e+06 
-3.162278e-07 35 14 1.000000e+07 
-3.162278e-07 35 14 3.162278e+07 
-3.162278e-07 35 14 1.000000e+08 
-3.162278e-07 35 16 1.000000e+05 
-3.162278e-07 35 16 3.162278e+05 
-3.162278e-07 35 16 1.000000e+06 
-3.162278e-07 35 16 3.162278e+06 
-3.162278e-07 35 16 1.000000e+07 
-3.162278e-07 35 16 3.162278e+07 
-3.162278e-07 35 16 1.000000e+08 
-3.162278e-07 40 4 1.000000e+05 
-3.162278e-07 40 4 3.162278e+05 
-3.162278e-07 40 4 1.000000e+06 
-3.162278e-07 40 4 3.162278e+06 
-3.162278e-07 40 4 1.000000e+07 
-3.162278e-07 40 4 3.162278e+07 
-3.162278e-07 40 4 1.000000e+08 
-3.162278e-07 40 6 1.000000e+05 
-3.162278e-07 40 6 3.162278e+05 
-3.162278e-07 40 6 1.000000e+06 
-3.162278e-07 40 6 3.162278e+06 
-3.162278e-07 40 6 1.000000e+07 
-3.162278e-07 40 6 3.162278e+07 
-3.162278e-07 40 6 1.000000e+08 
-3.162278e-07 40 8 1.000000e+05 
-3.162278e-07 40 8 3.162278e+05 
-3.162278e-07 40 8 1.000000e+06 
-3.162278e-07 40 8 3.162278e+06 
-3.162278e-07 40 8 1.000000e+07 
-3.162278e-07 40 8 3.162278e+07 
-3.162278e-07 40 8 1.000000e+08 
-3.162278e-07 40 10 1.000000e+05 
-3.162278e-07 40 10 3.162278e+05 
-3.162278e-07 40 10 1.000000e+06 
-3.162278e-07 40 10 3.162278e+06 
-3.162278e-07 40 10 1.000000e+07 
-3.162278e-07 40 10 3.162278e+07 
-3.162278e-07 40 10 1.000000e+08 
-3.162278e-07 40 12 1.000000e+05 
-3.162278e-07 40 12 3.162278e+05 
-3.162278e-07 40 12 1.000000e+06 
-3.162278e-07 40 12 3.162278e+06 
-3.162278e-07 40 12 1.000000e+07 
-3.162278e-07 40 12 3.162278e+07 
-3.162278e-07 40 12 1.000000e+08 
-3.162278e-07 40 14 1.000000e+05 
-3.162278e-07 40 14 3.162278e+05 
-3.162278e-07 40 14 1.000000e+06 
-3.162278e-07 40 14 3.162278e+06 
-3.162278e-07 40 14 1.000000e+07 
-3.162278e-07 40 14 3.162278e+07 
-3.162278e-07 40 14 1.000000e+08 
-3.162278e-07 40 16 1.000000e+05 
-3.162278e-07 40 16 3.162278e+05 
-3.162278e-07 40 16 1.000000e+06 
-3.162278e-07 40 16 3.162278e+06 
-3.162278e-07 40 16 1.000000e+07 
-3.162278e-07 40 16 3.162278e+07 
-3.162278e-07 40 16 1.000000e+08 
-3.162278e-07 45 4 1.000000e+05 
-3.162278e-07 45 4 3.162278e+05 
-3.162278e-07 45 4 1.000000e+06 
-3.162278e-07 45 4 3.162278e+06 
-3.162278e-07 45 4 1.000000e+07 
-3.162278e-07 45 4 3.162278e+07 
-3.162278e-07 45 4 1.000000e+08 
-3.162278e-07 45 6 1.000000e+05 
-3.162278e-07 45 6 3.162278e+05 
-3.162278e-07 45 6 1.000000e+06 
-3.162278e-07 45 6 3.162278e+06 
-3.162278e-07 45 6 1.000000e+07 
-3.162278e-07 45 6 3.162278e+07 
-3.162278e-07 45 6 1.000000e+08 
-3.162278e-07 45 8 1.000000e+05 
-3.162278e-07 45 8 3.162278e+05 
-3.162278e-07 45 8 1.000000e+06 
-3.162278e-07 45 8 3.162278e+06 
-3.162278e-07 45 8 1.000000e+07 
-3.162278e-07 45 8 3.162278e+07 
-3.162278e-07 45 8 1.000000e+08 
-3.162278e-07 45 10 1.000000e+05 
-3.162278e-07 45 10 3.162278e+05 
-3.162278e-07 45 10 1.000000e+06 
-3.162278e-07 45 10 3.162278e+06 
-3.162278e-07 45 10 1.000000e+07 
-3.162278e-07 45 10 3.162278e+07 
-3.162278e-07 45 10 1.000000e+08 
-3.162278e-07 45 12 1.000000e+05 
-3.162278e-07 45 12 3.162278e+05 
-3.162278e-07 45 12 1.000000e+06 
-3.162278e-07 45 12 3.162278e+06 
-3.162278e-07 45 12 1.000000e+07 
-3.162278e-07 45 12 3.162278e+07 
-3.162278e-07 45 12 1.000000e+08 
-3.162278e-07 45 14 1.000000e+05 
-3.162278e-07 45 14 3.162278e+05 
-3.162278e-07 45 14 1.000000e+06 
-3.162278e-07 45 14 3.162278e+06 
-3.162278e-07 45 14 1.000000e+07 
-3.162278e-07 45 14 3.162278e+07 
-3.162278e-07 45 14 1.000000e+08 
-3.162278e-07 45 16 1.000000e+05 
-3.162278e-07 45 16 3.162278e+05 
-3.162278e-07 45 16 1.000000e+06 
-3.162278e-07 45 16 3.162278e+06 
-3.162278e-07 45 16 1.000000e+07 
-3.162278e-07 45 16 3.162278e+07 
-3.162278e-07 45 16 1.000000e+08 
-3.162278e-07 50 4 1.000000e+05 
-3.162278e-07 50 4 3.162278e+05 
-3.162278e-07 50 4 1.000000e+06 
-3.162278e-07 50 4 3.162278e+06 
-3.162278e-07 50 4 1.000000e+07 
-3.162278e-07 50 4 3.162278e+07 
-3.162278e-07 50 4 1.000000e+08 
-3.162278e-07 50 6 1.000000e+05 
-3.162278e-07 50 6 3.162278e+05 
-3.162278e-07 50 6 1.000000e+06 
-3.162278e-07 50 6 3.162278e+06 
-3.162278e-07 50 6 1.000000e+07 
-3.162278e-07 50 6 3.162278e+07 
-3.162278e-07 50 6 1.000000e+08 
-3.162278e-07 50 8 1.000000e+05 
-3.162278e-07 50 8 3.162278e+05 
-3.162278e-07 50 8 1.000000e+06 
-3.162278e-07 50 8 3.162278e+06 
-3.162278e-07 50 8 1.000000e+07 
-3.162278e-07 50 8 3.162278e+07 
-3.162278e-07 50 8 1.000000e+08 
-3.162278e-07 50 10 1.000000e+05 
-3.162278e-07 50 10 3.162278e+05 
-3.162278e-07 50 10 1.000000e+06 
-3.162278e-07 50 10 3.162278e+06 
-3.162278e-07 50 10 1.000000e+07 
-3.162278e-07 50 10 3.162278e+07 
-3.162278e-07 50 10 1.000000e+08 
-3.162278e-07 50 12 1.000000e+05 
-3.162278e-07 50 12 3.162278e+05 
-3.162278e-07 50 12 1.000000e+06 
-3.162278e-07 50 12 3.162278e+06 
-3.162278e-07 50 12 1.000000e+07 
-3.162278e-07 50 12 3.162278e+07 
-3.162278e-07 50 12 1.000000e+08 
-3.162278e-07 50 14 1.000000e+05 
-3.162278e-07 50 14 3.162278e+05 
-3.162278e-07 50 14 1.000000e+06 
-3.162278e-07 50 14 3.162278e+06 
-3.162278e-07 50 14 1.000000e+07 
-3.162278e-07 50 14 3.162278e+07 
-3.162278e-07 50 14 1.000000e+08 
-3.162278e-07 50 16 1.000000e+05 
-3.162278e-07 50 16 3.162278e+05 
-3.162278e-07 50 16 1.000000e+06 
-3.162278e-07 50 16 3.162278e+06 
-3.162278e-07 50 16 1.000000e+07 
-3.162278e-07 50 16 3.162278e+07 
-3.162278e-07 50 16 1.000000e+08 
-3.162278e-07 55 4 1.000000e+05 
-3.162278e-07 55 4 3.162278e+05 
-3.162278e-07 55 4 1.000000e+06 
-3.162278e-07 55 4 3.162278e+06 
-3.162278e-07 55 4 1.000000e+07 
-3.162278e-07 55 4 3.162278e+07 
-3.162278e-07 55 4 1.000000e+08 
-3.162278e-07 55 6 1.000000e+05 
-3.162278e-07 55 6 3.162278e+05 
-3.162278e-07 55 6 1.000000e+06 
-3.162278e-07 55 6 3.162278e+06 
-3.162278e-07 55 6 1.000000e+07 
-3.162278e-07 55 6 3.162278e+07 
-3.162278e-07 55 6 1.000000e+08 
-3.162278e-07 55 8 1.000000e+05 
-3.162278e-07 55 8 3.162278e+05 
-3.162278e-07 55 8 1.000000e+06 
-3.162278e-07 55 8 3.162278e+06 
-3.162278e-07 55 8 1.000000e+07 
-3.162278e-07 55 8 3.162278e+07 
-3.162278e-07 55 8 1.000000e+08 
-3.162278e-07 55 10 1.000000e+05 
-3.162278e-07 55 10 3.162278e+05 
-3.162278e-07 55 10 1.000000e+06 
-3.162278e-07 55 10 3.162278e+06 
-3.162278e-07 55 10 1.000000e+07 
-3.162278e-07 55 10 3.162278e+07 
-3.162278e-07 55 10 1.000000e+08 
-3.162278e-07 55 12 1.000000e+05 
-3.162278e-07 55 12 3.162278e+05 
-3.162278e-07 55 12 1.000000e+06 
-3.162278e-07 55 12 3.162278e+06 
-3.162278e-07 55 12 1.000000e+07 
-3.162278e-07 55 12 3.162278e+07 
-3.162278e-07 55 12 1.000000e+08 
-3.162278e-07 55 14 1.000000e+05 
-3.162278e-07 55 14 3.162278e+05 
-3.162278e-07 55 14 1.000000e+06 
-3.162278e-07 55 14 3.162278e+06 
-3.162278e-07 55 14 1.000000e+07 
-3.162278e-07 55 14 3.162278e+07 
-3.162278e-07 55 14 1.000000e+08 
-3.162278e-07 55 16 1.000000e+05 
-3.162278e-07 55 16 3.162278e+05 
-3.162278e-07 55 16 1.000000e+06 
-3.162278e-07 55 16 3.162278e+06 
-3.162278e-07 55 16 1.000000e+07 
-3.162278e-07 55 16 3.162278e+07 
-3.162278e-07 55 16 1.000000e+08 
-3.162278e-07 60 4 1.000000e+05 
-3.162278e-07 60 4 3.162278e+05 
-3.162278e-07 60 4 1.000000e+06 
-3.162278e-07 60 4 3.162278e+06 
-3.162278e-07 60 4 1.000000e+07 
-3.162278e-07 60 4 3.162278e+07 
-3.162278e-07 60 4 1.000000e+08 
-3.162278e-07 60 6 1.000000e+05 
-3.162278e-07 60 6 3.162278e+05 
-3.162278e-07 60 6 1.000000e+06 
-3.162278e-07 60 6 3.162278e+06 
-3.162278e-07 60 6 1.000000e+07 
-3.162278e-07 60 6 3.162278e+07 
-3.162278e-07 60 6 1.000000e+08 
-3.162278e-07 60 8 1.000000e+05 
-3.162278e-07 60 8 3.162278e+05 
-3.162278e-07 60 8 1.000000e+06 
-3.162278e-07 60 8 3.162278e+06 
-3.162278e-07 60 8 1.000000e+07 
-3.162278e-07 60 8 3.162278e+07 
-3.162278e-07 60 8 1.000000e+08 
-3.162278e-07 60 10 1.000000e+05 
-3.162278e-07 60 10 3.162278e+05 
-3.162278e-07 60 10 1.000000e+06 
-3.162278e-07 60 10 3.162278e+06 
-3.162278e-07 60 10 1.000000e+07 
-3.162278e-07 60 10 3.162278e+07 
-3.162278e-07 60 10 1.000000e+08 
-3.162278e-07 60 12 1.000000e+05 
-3.162278e-07 60 12 3.162278e+05 
-3.162278e-07 60 12 1.000000e+06 
-3.162278e-07 60 12 3.162278e+06 
-3.162278e-07 60 12 1.000000e+07 
-3.162278e-07 60 12 3.162278e+07 
-3.162278e-07 60 12 1.000000e+08 
-3.162278e-07 60 14 1.000000e+05 
-3.162278e-07 60 14 3.162278e+05 
-3.162278e-07 60 14 1.000000e+06 
-3.162278e-07 60 14 3.162278e+06 
-3.162278e-07 60 14 1.000000e+07 
-3.162278e-07 60 14 3.162278e+07 
-3.162278e-07 60 14 1.000000e+08 
-3.162278e-07 60 16 1.000000e+05 
-3.162278e-07 60 16 3.162278e+05 
-3.162278e-07 60 16 1.000000e+06 
-3.162278e-07 60 16 3.162278e+06 
-3.162278e-07 60 16 1.000000e+07 
-3.162278e-07 60 16 3.162278e+07 
-3.162278e-07 60 16 1.000000e+08 
-1.000000e-07 20 4 1.000000e+05 
-1.000000e-07 20 4 3.162278e+05 
-1.000000e-07 20 4 1.000000e+06 
-1.000000e-07 20 4 3.162278e+06 
-1.000000e-07 20 4 1.000000e+07 
-1.000000e-07 20 4 3.162278e+07 
-1.000000e-07 20 4 1.000000e+08 
-1.000000e-07 20 6 1.000000e+05 
-1.000000e-07 20 6 3.162278e+05 
-1.000000e-07 20 6 1.000000e+06 
-1.000000e-07 20 6 3.162278e+06 
-1.000000e-07 20 6 1.000000e+07 
-1.000000e-07 20 6 3.162278e+07 
-1.000000e-07 20 6 1.000000e+08 
-1.000000e-07 20 8 1.000000e+05 
-1.000000e-07 20 8 3.162278e+05 
-1.000000e-07 20 8 1.000000e+06 
-1.000000e-07 20 8 3.162278e+06 
-1.000000e-07 20 8 1.000000e+07 
-1.000000e-07 20 8 3.162278e+07 
-1.000000e-07 20 8 1.000000e+08 
-1.000000e-07 20 10 1.000000e+05 
-1.000000e-07 20 10 3.162278e+05 
-1.000000e-07 20 10 1.000000e+06 
-1.000000e-07 20 10 3.162278e+06 
-1.000000e-07 20 10 1.000000e+07 
-1.000000e-07 20 10 3.162278e+07 
-1.000000e-07 20 10 1.000000e+08 
-1.000000e-07 20 12 1.000000e+05 
-1.000000e-07 20 12 3.162278e+05 
-1.000000e-07 20 12 1.000000e+06 
-1.000000e-07 20 12 3.162278e+06 
-1.000000e-07 20 12 1.000000e+07 
-1.000000e-07 20 12 3.162278e+07 
-1.000000e-07 20 12 1.000000e+08 
-1.000000e-07 20 14 1.000000e+05 
-1.000000e-07 20 14 3.162278e+05 
-1.000000e-07 20 14 1.000000e+06 
-1.000000e-07 20 14 3.162278e+06 
-1.000000e-07 20 14 1.000000e+07 
-1.000000e-07 20 14 3.162278e+07 
-1.000000e-07 20 14 1.000000e+08 
-1.000000e-07 20 16 1.000000e+05 
-1.000000e-07 20 16 3.162278e+05 
-1.000000e-07 20 16 1.000000e+06 
-1.000000e-07 20 16 3.162278e+06 
-1.000000e-07 20 16 1.000000e+07 
-1.000000e-07 20 16 3.162278e+07 
-1.000000e-07 20 16 1.000000e+08 
-1.000000e-07 25 4 1.000000e+05 
-1.000000e-07 25 4 3.162278e+05 
-1.000000e-07 25 4 1.000000e+06 
-1.000000e-07 25 4 3.162278e+06 
-1.000000e-07 25 4 1.000000e+07 
-1.000000e-07 25 4 3.162278e+07 
-1.000000e-07 25 4 1.000000e+08 
-1.000000e-07 25 6 1.000000e+05 
-1.000000e-07 25 6 3.162278e+05 
-1.000000e-07 25 6 1.000000e+06 
-1.000000e-07 25 6 3.162278e+06 
-1.000000e-07 25 6 1.000000e+07 
-1.000000e-07 25 6 3.162278e+07 
-1.000000e-07 25 6 1.000000e+08 
-1.000000e-07 25 8 1.000000e+05 
-1.000000e-07 25 8 3.162278e+05 
-1.000000e-07 25 8 1.000000e+06 
-1.000000e-07 25 8 3.162278e+06 
-1.000000e-07 25 8 1.000000e+07 
-1.000000e-07 25 8 3.162278e+07 
-1.000000e-07 25 8 1.000000e+08 
-1.000000e-07 25 10 1.000000e+05 
-1.000000e-07 25 10 3.162278e+05 
-1.000000e-07 25 10 1.000000e+06 
-1.000000e-07 25 10 3.162278e+06 
-1.000000e-07 25 10 1.000000e+07 
-1.000000e-07 25 10 3.162278e+07 
-1.000000e-07 25 10 1.000000e+08 
-1.000000e-07 25 12 1.000000e+05 
-1.000000e-07 25 12 3.162278e+05 
-1.000000e-07 25 12 1.000000e+06 
-1.000000e-07 25 12 3.162278e+06 
-1.000000e-07 25 12 1.000000e+07 
-1.000000e-07 25 12 3.162278e+07 
-1.000000e-07 25 12 1.000000e+08 
-1.000000e-07 25 14 1.000000e+05 
-1.000000e-07 25 14 3.162278e+05 
-1.000000e-07 25 14 1.000000e+06 
-1.000000e-07 25 14 3.162278e+06 
-1.000000e-07 25 14 1.000000e+07 
-1.000000e-07 25 14 3.162278e+07 
-1.000000e-07 25 14 1.000000e+08 
-1.000000e-07 25 16 1.000000e+05 
-1.000000e-07 25 16 3.162278e+05 
-1.000000e-07 25 16 1.000000e+06 
-1.000000e-07 25 16 3.162278e+06 
-1.000000e-07 25 16 1.000000e+07 
-1.000000e-07 25 16 3.162278e+07 
-1.000000e-07 25 16 1.000000e+08 
-1.000000e-07 30 4 1.000000e+05 
-1.000000e-07 30 4 3.162278e+05 
-1.000000e-07 30 4 1.000000e+06 
-1.000000e-07 30 4 3.162278e+06 
-1.000000e-07 30 4 1.000000e+07 
-1.000000e-07 30 4 3.162278e+07 
-1.000000e-07 30 4 1.000000e+08 
-1.000000e-07 30 6 1.000000e+05 
-1.000000e-07 30 6 3.162278e+05 
-1.000000e-07 30 6 1.000000e+06 
-1.000000e-07 30 6 3.162278e+06 
-1.000000e-07 30 6 1.000000e+07 
-1.000000e-07 30 6 3.162278e+07 
-1.000000e-07 30 6 1.000000e+08 
-1.000000e-07 30 8 1.000000e+05 
-1.000000e-07 30 8 3.162278e+05 
-1.000000e-07 30 8 1.000000e+06 
-1.000000e-07 30 8 3.162278e+06 
-1.000000e-07 30 8 1.000000e+07 
-1.000000e-07 30 8 3.162278e+07 
-1.000000e-07 30 8 1.000000e+08 
-1.000000e-07 30 10 1.000000e+05 
-1.000000e-07 30 10 3.162278e+05 
-1.000000e-07 30 10 1.000000e+06 
-1.000000e-07 30 10 3.162278e+06 
-1.000000e-07 30 10 1.000000e+07 
-1.000000e-07 30 10 3.162278e+07 
-1.000000e-07 30 10 1.000000e+08 
-1.000000e-07 30 12 1.000000e+05 
-1.000000e-07 30 12 3.162278e+05 
-1.000000e-07 30 12 1.000000e+06 
-1.000000e-07 30 12 3.162278e+06 
-1.000000e-07 30 12 1.000000e+07 
-1.000000e-07 30 12 3.162278e+07 
-1.000000e-07 30 12 1.000000e+08 
-1.000000e-07 30 14 1.000000e+05 
-1.000000e-07 30 14 3.162278e+05 
-1.000000e-07 30 14 1.000000e+06 
-1.000000e-07 30 14 3.162278e+06 
-1.000000e-07 30 14 1.000000e+07 
-1.000000e-07 30 14 3.162278e+07 
-1.000000e-07 30 14 1.000000e+08 
-1.000000e-07 30 16 1.000000e+05 
-1.000000e-07 30 16 3.162278e+05 
-1.000000e-07 30 16 1.000000e+06 
-1.000000e-07 30 16 3.162278e+06 
-1.000000e-07 30 16 1.000000e+07 
-1.000000e-07 30 16 3.162278e+07 
-1.000000e-07 30 16 1.000000e+08 
-1.000000e-07 35 4 1.000000e+05 
-1.000000e-07 35 4 3.162278e+05 
-1.000000e-07 35 4 1.000000e+06 
-1.000000e-07 35 4 3.162278e+06 
-1.000000e-07 35 4 1.000000e+07 
-1.000000e-07 35 4 3.162278e+07 
-1.000000e-07 35 4 1.000000e+08 
-1.000000e-07 35 6 1.000000e+05 
-1.000000e-07 35 6 3.162278e+05 
-1.000000e-07 35 6 1.000000e+06 
-1.000000e-07 35 6 3.162278e+06 
-1.000000e-07 35 6 1.000000e+07 
-1.000000e-07 35 6 3.162278e+07 
-1.000000e-07 35 6 1.000000e+08 
-1.000000e-07 35 8 1.000000e+05 
-1.000000e-07 35 8 3.162278e+05 
-1.000000e-07 35 8 1.000000e+06 
-1.000000e-07 35 8 3.162278e+06 
-1.000000e-07 35 8 1.000000e+07 
-1.000000e-07 35 8 3.162278e+07 
-1.000000e-07 35 8 1.000000e+08 
-1.000000e-07 35 10 1.000000e+05 
-1.000000e-07 35 10 3.162278e+05 
-1.000000e-07 35 10 1.000000e+06 
-1.000000e-07 35 10 3.162278e+06 
-1.000000e-07 35 10 1.000000e+07 
-1.000000e-07 35 10 3.162278e+07 
-1.000000e-07 35 10 1.000000e+08 
-1.000000e-07 35 12 1.000000e+05 
-1.000000e-07 35 12 3.162278e+05 
-1.000000e-07 35 12 1.000000e+06 
-1.000000e-07 35 12 3.162278e+06 
-1.000000e-07 35 12 1.000000e+07 
-1.000000e-07 35 12 3.162278e+07 
-1.000000e-07 35 12 1.000000e+08 
-1.000000e-07 35 14 1.000000e+05 
-1.000000e-07 35 14 3.162278e+05 
-1.000000e-07 35 14 1.000000e+06 
-1.000000e-07 35 14 3.162278e+06 
-1.000000e-07 35 14 1.000000e+07 
-1.000000e-07 35 14 3.162278e+07 
-1.000000e-07 35 14 1.000000e+08 
-1.000000e-07 35 16 1.000000e+05 
-1.000000e-07 35 16 3.162278e+05 
-1.000000e-07 35 16 1.000000e+06 
-1.000000e-07 35 16 3.162278e+06 
-1.000000e-07 35 16 1.000000e+07 
-1.000000e-07 35 16 3.162278e+07 
-1.000000e-07 35 16 1.000000e+08 
-1.000000e-07 40 4 1.000000e+05 
-1.000000e-07 40 4 3.162278e+05 
-1.000000e-07 40 4 1.000000e+06 
-1.000000e-07 40 4 3.162278e+06 
-1.000000e-07 40 4 1.000000e+07 
-1.000000e-07 40 4 3.162278e+07 
-1.000000e-07 40 4 1.000000e+08 
-1.000000e-07 40 6 1.000000e+05 
-1.000000e-07 40 6 3.162278e+05 
-1.000000e-07 40 6 1.000000e+06 
-1.000000e-07 40 6 3.162278e+06 
-1.000000e-07 40 6 1.000000e+07 
-1.000000e-07 40 6 3.162278e+07 
-1.000000e-07 40 6 1.000000e+08 
-1.000000e-07 40 8 1.000000e+05 
-1.000000e-07 40 8 3.162278e+05 
-1.000000e-07 40 8 1.000000e+06 
-1.000000e-07 40 8 3.162278e+06 
-1.000000e-07 40 8 1.000000e+07 
-1.000000e-07 40 8 3.162278e+07 
-1.000000e-07 40 8 1.000000e+08 
-1.000000e-07 40 10 1.000000e+05 
-1.000000e-07 40 10 3.162278e+05 
-1.000000e-07 40 10 1.000000e+06 
-1.000000e-07 40 10 3.162278e+06 
-1.000000e-07 40 10 1.000000e+07 
-1.000000e-07 40 10 3.162278e+07 
-1.000000e-07 40 10 1.000000e+08 
-1.000000e-07 40 12 1.000000e+05 
-1.000000e-07 40 12 3.162278e+05 
-1.000000e-07 40 12 1.000000e+06 
-1.000000e-07 40 12 3.162278e+06 
-1.000000e-07 40 12 1.000000e+07 
-1.000000e-07 40 12 3.162278e+07 
-1.000000e-07 40 12 1.000000e+08 
-1.000000e-07 40 14 1.000000e+05 
-1.000000e-07 40 14 3.162278e+05 
-1.000000e-07 40 14 1.000000e+06 
-1.000000e-07 40 14 3.162278e+06 
-1.000000e-07 40 14 1.000000e+07 
-1.000000e-07 40 14 3.162278e+07 
-1.000000e-07 40 14 1.000000e+08 
-1.000000e-07 40 16 1.000000e+05 
-1.000000e-07 40 16 3.162278e+05 
-1.000000e-07 40 16 1.000000e+06 
-1.000000e-07 40 16 3.162278e+06 
-1.000000e-07 40 16 1.000000e+07 
-1.000000e-07 40 16 3.162278e+07 
-1.000000e-07 40 16 1.000000e+08 
-1.000000e-07 45 4 1.000000e+05 
-1.000000e-07 45 4 3.162278e+05 
-1.000000e-07 45 4 1.000000e+06 
-1.000000e-07 45 4 3.162278e+06 
-1.000000e-07 45 4 1.000000e+07 
-1.000000e-07 45 4 3.162278e+07 
-1.000000e-07 45 4 1.000000e+08 
-1.000000e-07 45 6 1.000000e+05 
-1.000000e-07 45 6 3.162278e+05 
-1.000000e-07 45 6 1.000000e+06 
-1.000000e-07 45 6 3.162278e+06 
-1.000000e-07 45 6 1.000000e+07 
-1.000000e-07 45 6 3.162278e+07 
-1.000000e-07 45 6 1.000000e+08 
-1.000000e-07 45 8 1.000000e+05 
-1.000000e-07 45 8 3.162278e+05 
-1.000000e-07 45 8 1.000000e+06 
-1.000000e-07 45 8 3.162278e+06 
-1.000000e-07 45 8 1.000000e+07 
-1.000000e-07 45 8 3.162278e+07 
-1.000000e-07 45 8 1.000000e+08 
-1.000000e-07 45 10 1.000000e+05 
-1.000000e-07 45 10 3.162278e+05 
-1.000000e-07 45 10 1.000000e+06 
-1.000000e-07 45 10 3.162278e+06 
-1.000000e-07 45 10 1.000000e+07 
-1.000000e-07 45 10 3.162278e+07 
-1.000000e-07 45 10 1.000000e+08 
-1.000000e-07 45 12 1.000000e+05 
-1.000000e-07 45 12 3.162278e+05 
-1.000000e-07 45 12 1.000000e+06 
-1.000000e-07 45 12 3.162278e+06 
-1.000000e-07 45 12 1.000000e+07 
-1.000000e-07 45 12 3.162278e+07 
-1.000000e-07 45 12 1.000000e+08 
-1.000000e-07 45 14 1.000000e+05 
-1.000000e-07 45 14 3.162278e+05 
-1.000000e-07 45 14 1.000000e+06 
-1.000000e-07 45 14 3.162278e+06 
-1.000000e-07 45 14 1.000000e+07 
-1.000000e-07 45 14 3.162278e+07 
-1.000000e-07 45 14 1.000000e+08 
-1.000000e-07 45 16 1.000000e+05 
-1.000000e-07 45 16 3.162278e+05 
-1.000000e-07 45 16 1.000000e+06 
-1.000000e-07 45 16 3.162278e+06 
-1.000000e-07 45 16 1.000000e+07 
-1.000000e-07 45 16 3.162278e+07 
-1.000000e-07 45 16 1.000000e+08 
-1.000000e-07 50 4 1.000000e+05 
-1.000000e-07 50 4 3.162278e+05 
-1.000000e-07 50 4 1.000000e+06 
-1.000000e-07 50 4 3.162278e+06 
-1.000000e-07 50 4 1.000000e+07 
-1.000000e-07 50 4 3.162278e+07 
-1.000000e-07 50 4 1.000000e+08 
-1.000000e-07 50 6 1.000000e+05 
-1.000000e-07 50 6 3.162278e+05 
-1.000000e-07 50 6 1.000000e+06 
-1.000000e-07 50 6 3.162278e+06 
-1.000000e-07 50 6 1.000000e+07 
-1.000000e-07 50 6 3.162278e+07 
-1.000000e-07 50 6 1.000000e+08 
-1.000000e-07 50 8 1.000000e+05 
-1.000000e-07 50 8 3.162278e+05 
-1.000000e-07 50 8 1.000000e+06 
-1.000000e-07 50 8 3.162278e+06 
-1.000000e-07 50 8 1.000000e+07 
-1.000000e-07 50 8 3.162278e+07 
-1.000000e-07 50 8 1.000000e+08 
-1.000000e-07 50 10 1.000000e+05 
-1.000000e-07 50 10 3.162278e+05 
-1.000000e-07 50 10 1.000000e+06 
-1.000000e-07 50 10 3.162278e+06 
-1.000000e-07 50 10 1.000000e+07 
-1.000000e-07 50 10 3.162278e+07 
-1.000000e-07 50 10 1.000000e+08 
-1.000000e-07 50 12 1.000000e+05 
-1.000000e-07 50 12 3.162278e+05 
-1.000000e-07 50 12 1.000000e+06 
-1.000000e-07 50 12 3.162278e+06 
-1.000000e-07 50 12 1.000000e+07 
-1.000000e-07 50 12 3.162278e+07 
-1.000000e-07 50 12 1.000000e+08 
-1.000000e-07 50 14 1.000000e+05 
-1.000000e-07 50 14 3.162278e+05 
-1.000000e-07 50 14 1.000000e+06 
-1.000000e-07 50 14 3.162278e+06 
-1.000000e-07 50 14 1.000000e+07 
-1.000000e-07 50 14 3.162278e+07 
-1.000000e-07 50 14 1.000000e+08 
-1.000000e-07 50 16 1.000000e+05 
-1.000000e-07 50 16 3.162278e+05 
-1.000000e-07 50 16 1.000000e+06 
-1.000000e-07 50 16 3.162278e+06 
-1.000000e-07 50 16 1.000000e+07 
-1.000000e-07 50 16 3.162278e+07 
-1.000000e-07 50 16 1.000000e+08 
-1.000000e-07 55 4 1.000000e+05 
-1.000000e-07 55 4 3.162278e+05 
-1.000000e-07 55 4 1.000000e+06 
-1.000000e-07 55 4 3.162278e+06 
-1.000000e-07 55 4 1.000000e+07 
-1.000000e-07 55 4 3.162278e+07 
-1.000000e-07 55 4 1.000000e+08 
-1.000000e-07 55 6 1.000000e+05 
-1.000000e-07 55 6 3.162278e+05 
-1.000000e-07 55 6 1.000000e+06 
-1.000000e-07 55 6 3.162278e+06 
-1.000000e-07 55 6 1.000000e+07 
-1.000000e-07 55 6 3.162278e+07 
-1.000000e-07 55 6 1.000000e+08 
-1.000000e-07 55 8 1.000000e+05 
-1.000000e-07 55 8 3.162278e+05 
-1.000000e-07 55 8 1.000000e+06 
-1.000000e-07 55 8 3.162278e+06 
-1.000000e-07 55 8 1.000000e+07 
-1.000000e-07 55 8 3.162278e+07 
-1.000000e-07 55 8 1.000000e+08 
-1.000000e-07 55 10 1.000000e+05 
-1.000000e-07 55 10 3.162278e+05 
-1.000000e-07 55 10 1.000000e+06 
-1.000000e-07 55 10 3.162278e+06 
-1.000000e-07 55 10 1.000000e+07 
-1.000000e-07 55 10 3.162278e+07 
-1.000000e-07 55 10 1.000000e+08 
-1.000000e-07 55 12 1.000000e+05 
-1.000000e-07 55 12 3.162278e+05 
-1.000000e-07 55 12 1.000000e+06 
-1.000000e-07 55 12 3.162278e+06 
-1.000000e-07 55 12 1.000000e+07 
-1.000000e-07 55 12 3.162278e+07 
-1.000000e-07 55 12 1.000000e+08 
-1.000000e-07 55 14 1.000000e+05 
-1.000000e-07 55 14 3.162278e+05 
-1.000000e-07 55 14 1.000000e+06 
-1.000000e-07 55 14 3.162278e+06 
-1.000000e-07 55 14 1.000000e+07 
-1.000000e-07 55 14 3.162278e+07 
-1.000000e-07 55 14 1.000000e+08 
-1.000000e-07 55 16 1.000000e+05 
-1.000000e-07 55 16 3.162278e+05 
-1.000000e-07 55 16 1.000000e+06 
-1.000000e-07 55 16 3.162278e+06 
-1.000000e-07 55 16 1.000000e+07 
-1.000000e-07 55 16 3.162278e+07 
-1.000000e-07 55 16 1.000000e+08 
-1.000000e-07 60 4 1.000000e+05 
-1.000000e-07 60 4 3.162278e+05 
-1.000000e-07 60 4 1.000000e+06 
-1.000000e-07 60 4 3.162278e+06 
-1.000000e-07 60 4 1.000000e+07 
-1.000000e-07 60 4 3.162278e+07 
-1.000000e-07 60 4 1.000000e+08 
-1.000000e-07 60 6 1.000000e+05 
-1.000000e-07 60 6 3.162278e+05 
-1.000000e-07 60 6 1.000000e+06 
-1.000000e-07 60 6 3.162278e+06 
-1.000000e-07 60 6 1.000000e+07 
-1.000000e-07 60 6 3.162278e+07 
-1.000000e-07 60 6 1.000000e+08 
-1.000000e-07 60 8 1.000000e+05 
-1.000000e-07 60 8 3.162278e+05 
-1.000000e-07 60 8 1.000000e+06 
-1.000000e-07 60 8 3.162278e+06 
-1.000000e-07 60 8 1.000000e+07 
-1.000000e-07 60 8 3.162278e+07 
-1.000000e-07 60 8 1.000000e+08 
-1.000000e-07 60 10 1.000000e+05 
-1.000000e-07 60 10 3.162278e+05 
-1.000000e-07 60 10 1.000000e+06 
-1.000000e-07 60 10 3.162278e+06 
-1.000000e-07 60 10 1.000000e+07 
-1.000000e-07 60 10 3.162278e+07 
-1.000000e-07 60 10 1.000000e+08 
-1.000000e-07 60 12 1.000000e+05 
-1.000000e-07 60 12 3.162278e+05 
-1.000000e-07 60 12 1.000000e+06 
-1.000000e-07 60 12 3.162278e+06 
-1.000000e-07 60 12 1.000000e+07 
-1.000000e-07 60 12 3.162278e+07 
-1.000000e-07 60 12 1.000000e+08 
-1.000000e-07 60 14 1.000000e+05 
-1.000000e-07 60 14 3.162278e+05 
-1.000000e-07 60 14 1.000000e+06 
-1.000000e-07 60 14 3.162278e+06 
-1.000000e-07 60 14 1.000000e+07 
-1.000000e-07 60 14 3.162278e+07 
-1.000000e-07 60 14 1.000000e+08 
-1.000000e-07 60 16 1.000000e+05 
-1.000000e-07 60 16 3.162278e+05 
-1.000000e-07 60 16 1.000000e+06 
-1.000000e-07 60 16 3.162278e+06 
-1.000000e-07 60 16 1.000000e+07 
-1.000000e-07 60 16 3.162278e+07 
-1.000000e-07 60 16 1.000000e+08 
-3.162278e-08 20 4 1.000000e+05 
-3.162278e-08 20 4 3.162278e+05 
-3.162278e-08 20 4 1.000000e+06 
-3.162278e-08 20 4 3.162278e+06 
-3.162278e-08 20 4 1.000000e+07 
-3.162278e-08 20 4 3.162278e+07 
-3.162278e-08 20 4 1.000000e+08 
-3.162278e-08 20 6 1.000000e+05 
-3.162278e-08 20 6 3.162278e+05 
-3.162278e-08 20 6 1.000000e+06 
-3.162278e-08 20 6 3.162278e+06 
-3.162278e-08 20 6 1.000000e+07 
-3.162278e-08 20 6 3.162278e+07 
-3.162278e-08 20 6 1.000000e+08 
-3.162278e-08 20 8 1.000000e+05 
-3.162278e-08 20 8 3.162278e+05 
-3.162278e-08 20 8 1.000000e+06 
-3.162278e-08 20 8 3.162278e+06 
-3.162278e-08 20 8 1.000000e+07 
-3.162278e-08 20 8 3.162278e+07 
-3.162278e-08 20 8 1.000000e+08 
-3.162278e-08 20 10 1.000000e+05 
-3.162278e-08 20 10 3.162278e+05 
-3.162278e-08 20 10 1.000000e+06 
-3.162278e-08 20 10 3.162278e+06 
-3.162278e-08 20 10 1.000000e+07 
-3.162278e-08 20 10 3.162278e+07 
-3.162278e-08 20 10 1.000000e+08 
-3.162278e-08 20 12 1.000000e+05 
-3.162278e-08 20 12 3.162278e+05 
-3.162278e-08 20 12 1.000000e+06 
-3.162278e-08 20 12 3.162278e+06 
-3.162278e-08 20 12 1.000000e+07 
-3.162278e-08 20 12 3.162278e+07 
-3.162278e-08 20 12 1.000000e+08 
-3.162278e-08 20 14 1.000000e+05 
-3.162278e-08 20 14 3.162278e+05 
-3.162278e-08 20 14 1.000000e+06 
-3.162278e-08 20 14 3.162278e+06 
-3.162278e-08 20 14 1.000000e+07 
-3.162278e-08 20 14 3.162278e+07 
-3.162278e-08 20 14 1.000000e+08 
-3.162278e-08 20 16 1.000000e+05 
-3.162278e-08 20 16 3.162278e+05 
-3.162278e-08 20 16 1.000000e+06 
-3.162278e-08 20 16 3.162278e+06 
-3.162278e-08 20 16 1.000000e+07 
-3.162278e-08 20 16 3.162278e+07 
-3.162278e-08 20 16 1.000000e+08 
-3.162278e-08 25 4 1.000000e+05 
-3.162278e-08 25 4 3.162278e+05 
-3.162278e-08 25 4 1.000000e+06 
-3.162278e-08 25 4 3.162278e+06 
-3.162278e-08 25 4 1.000000e+07 
-3.162278e-08 25 4 3.162278e+07 
-3.162278e-08 25 4 1.000000e+08 
-3.162278e-08 25 6 1.000000e+05 
-3.162278e-08 25 6 3.162278e+05 
-3.162278e-08 25 6 1.000000e+06 
-3.162278e-08 25 6 3.162278e+06 
-3.162278e-08 25 6 1.000000e+07 
-3.162278e-08 25 6 3.162278e+07 
-3.162278e-08 25 6 1.000000e+08 
-3.162278e-08 25 8 1.000000e+05 
-3.162278e-08 25 8 3.162278e+05 
-3.162278e-08 25 8 1.000000e+06 
-3.162278e-08 25 8 3.162278e+06 
-3.162278e-08 25 8 1.000000e+07 
-3.162278e-08 25 8 3.162278e+07 
-3.162278e-08 25 8 1.000000e+08 
-3.162278e-08 25 10 1.000000e+05 
-3.162278e-08 25 10 3.162278e+05 
-3.162278e-08 25 10 1.000000e+06 
-3.162278e-08 25 10 3.162278e+06 
-3.162278e-08 25 10 1.000000e+07 
-3.162278e-08 25 10 3.162278e+07 
-3.162278e-08 25 10 1.000000e+08 
-3.162278e-08 25 12 1.000000e+05 
-3.162278e-08 25 12 3.162278e+05 
-3.162278e-08 25 12 1.000000e+06 
-3.162278e-08 25 12 3.162278e+06 
-3.162278e-08 25 12 1.000000e+07 
-3.162278e-08 25 12 3.162278e+07 
-3.162278e-08 25 12 1.000000e+08 
-3.162278e-08 25 14 1.000000e+05 
-3.162278e-08 25 14 3.162278e+05 
-3.162278e-08 25 14 1.000000e+06 
-3.162278e-08 25 14 3.162278e+06 
-3.162278e-08 25 14 1.000000e+07 
-3.162278e-08 25 14 3.162278e+07 
-3.162278e-08 25 14 1.000000e+08 
-3.162278e-08 25 16 1.000000e+05 
-3.162278e-08 25 16 3.162278e+05 
-3.162278e-08 25 16 1.000000e+06 
-3.162278e-08 25 16 3.162278e+06 
-3.162278e-08 25 16 1.000000e+07 
-3.162278e-08 25 16 3.162278e+07 
-3.162278e-08 25 16 1.000000e+08 
-3.162278e-08 30 4 1.000000e+05 
-3.162278e-08 30 4 3.162278e+05 
-3.162278e-08 30 4 1.000000e+06 
-3.162278e-08 30 4 3.162278e+06 
-3.162278e-08 30 4 1.000000e+07 
-3.162278e-08 30 4 3.162278e+07 
-3.162278e-08 30 4 1.000000e+08 
-3.162278e-08 30 6 1.000000e+05 
-3.162278e-08 30 6 3.162278e+05 
-3.162278e-08 30 6 1.000000e+06 
-3.162278e-08 30 6 3.162278e+06 
-3.162278e-08 30 6 1.000000e+07 
-3.162278e-08 30 6 3.162278e+07 
-3.162278e-08 30 6 1.000000e+08 
-3.162278e-08 30 8 1.000000e+05 
-3.162278e-08 30 8 3.162278e+05 
-3.162278e-08 30 8 1.000000e+06 
-3.162278e-08 30 8 3.162278e+06 
-3.162278e-08 30 8 1.000000e+07 
-3.162278e-08 30 8 3.162278e+07 
-3.162278e-08 30 8 1.000000e+08 
-3.162278e-08 30 10 1.000000e+05 
-3.162278e-08 30 10 3.162278e+05 
-3.162278e-08 30 10 1.000000e+06 
-3.162278e-08 30 10 3.162278e+06 
-3.162278e-08 30 10 1.000000e+07 
-3.162278e-08 30 10 3.162278e+07 
-3.162278e-08 30 10 1.000000e+08 
-3.162278e-08 30 12 1.000000e+05 
-3.162278e-08 30 12 3.162278e+05 
-3.162278e-08 30 12 1.000000e+06 
-3.162278e-08 30 12 3.162278e+06 
-3.162278e-08 30 12 1.000000e+07 
-3.162278e-08 30 12 3.162278e+07 
-3.162278e-08 30 12 1.000000e+08 
-3.162278e-08 30 14 1.000000e+05 
-3.162278e-08 30 14 3.162278e+05 
-3.162278e-08 30 14 1.000000e+06 
-3.162278e-08 30 14 3.162278e+06 
-3.162278e-08 30 14 1.000000e+07 
-3.162278e-08 30 14 3.162278e+07 
-3.162278e-08 30 14 1.000000e+08 
-3.162278e-08 30 16 1.000000e+05 
-3.162278e-08 30 16 3.162278e+05 
-3.162278e-08 30 16 1.000000e+06 
-3.162278e-08 30 16 3.162278e+06 
-3.162278e-08 30 16 1.000000e+07 
-3.162278e-08 30 16 3.162278e+07 
-3.162278e-08 30 16 1.000000e+08 
-3.162278e-08 35 4 1.000000e+05 
-3.162278e-08 35 4 3.162278e+05 
-3.162278e-08 35 4 1.000000e+06 
-3.162278e-08 35 4 3.162278e+06 
-3.162278e-08 35 4 1.000000e+07 
-3.162278e-08 35 4 3.162278e+07 
-3.162278e-08 35 4 1.000000e+08 
-3.162278e-08 35 6 1.000000e+05 
-3.162278e-08 35 6 3.162278e+05 
-3.162278e-08 35 6 1.000000e+06 
-3.162278e-08 35 6 3.162278e+06 
-3.162278e-08 35 6 1.000000e+07 
-3.162278e-08 35 6 3.162278e+07 
-3.162278e-08 35 6 1.000000e+08 
-3.162278e-08 35 8 1.000000e+05 
-3.162278e-08 35 8 3.162278e+05 
-3.162278e-08 35 8 1.000000e+06 
-3.162278e-08 35 8 3.162278e+06 
-3.162278e-08 35 8 1.000000e+07 
-3.162278e-08 35 8 3.162278e+07 
-3.162278e-08 35 8 1.000000e+08 
-3.162278e-08 35 10 1.000000e+05 
-3.162278e-08 35 10 3.162278e+05 
-3.162278e-08 35 10 1.000000e+06 
-3.162278e-08 35 10 3.162278e+06 
-3.162278e-08 35 10 1.000000e+07 
-3.162278e-08 35 10 3.162278e+07 
-3.162278e-08 35 10 1.000000e+08 
-3.162278e-08 35 12 1.000000e+05 
-3.162278e-08 35 12 3.162278e+05 
-3.162278e-08 35 12 1.000000e+06 
-3.162278e-08 35 12 3.162278e+06 
-3.162278e-08 35 12 1.000000e+07 
-3.162278e-08 35 12 3.162278e+07 
-3.162278e-08 35 12 1.000000e+08 
-3.162278e-08 35 14 1.000000e+05 
-3.162278e-08 35 14 3.162278e+05 
-3.162278e-08 35 14 1.000000e+06 
-3.162278e-08 35 14 3.162278e+06 
-3.162278e-08 35 14 1.000000e+07 
-3.162278e-08 35 14 3.162278e+07 
-3.162278e-08 35 14 1.000000e+08 
-3.162278e-08 35 16 1.000000e+05 
-3.162278e-08 35 16 3.162278e+05 
-3.162278e-08 35 16 1.000000e+06 
-3.162278e-08 35 16 3.162278e+06 
-3.162278e-08 35 16 1.000000e+07 
-3.162278e-08 35 16 3.162278e+07 
-3.162278e-08 35 16 1.000000e+08 
-3.162278e-08 40 4 1.000000e+05 
-3.162278e-08 40 4 3.162278e+05 
-3.162278e-08 40 4 1.000000e+06 
-3.162278e-08 40 4 3.162278e+06 
-3.162278e-08 40 4 1.000000e+07 
-3.162278e-08 40 4 3.162278e+07 
-3.162278e-08 40 4 1.000000e+08 
-3.162278e-08 40 6 1.000000e+05 
-3.162278e-08 40 6 3.162278e+05 
-3.162278e-08 40 6 1.000000e+06 
-3.162278e-08 40 6 3.162278e+06 
-3.162278e-08 40 6 1.000000e+07 
-3.162278e-08 40 6 3.162278e+07 
-3.162278e-08 40 6 1.000000e+08 
-3.162278e-08 40 8 1.000000e+05 
-3.162278e-08 40 8 3.162278e+05 
-3.162278e-08 40 8 1.000000e+06 
-3.162278e-08 40 8 3.162278e+06 
-3.162278e-08 40 8 1.000000e+07 
-3.162278e-08 40 8 3.162278e+07 
-3.162278e-08 40 8 1.000000e+08 
-3.162278e-08 40 10 1.000000e+05 
-3.162278e-08 40 10 3.162278e+05 
-3.162278e-08 40 10 1.000000e+06 
-3.162278e-08 40 10 3.162278e+06 
-3.162278e-08 40 10 1.000000e+07 
-3.162278e-08 40 10 3.162278e+07 
-3.162278e-08 40 10 1.000000e+08 
-3.162278e-08 40 12 1.000000e+05 
-3.162278e-08 40 12 3.162278e+05 
-3.162278e-08 40 12 1.000000e+06 
-3.162278e-08 40 12 3.162278e+06 
-3.162278e-08 40 12 1.000000e+07 
-3.162278e-08 40 12 3.162278e+07 
-3.162278e-08 40 12 1.000000e+08 
-3.162278e-08 40 14 1.000000e+05 
-3.162278e-08 40 14 3.162278e+05 
-3.162278e-08 40 14 1.000000e+06 
-3.162278e-08 40 14 3.162278e+06 
-3.162278e-08 40 14 1.000000e+07 
-3.162278e-08 40 14 3.162278e+07 
-3.162278e-08 40 14 1.000000e+08 
-3.162278e-08 40 16 1.000000e+05 
-3.162278e-08 40 16 3.162278e+05 
-3.162278e-08 40 16 1.000000e+06 
-3.162278e-08 40 16 3.162278e+06 
-3.162278e-08 40 16 1.000000e+07 
-3.162278e-08 40 16 3.162278e+07 
-3.162278e-08 40 16 1.000000e+08 
-3.162278e-08 45 4 1.000000e+05 
-3.162278e-08 45 4 3.162278e+05 
-3.162278e-08 45 4 1.000000e+06 
-3.162278e-08 45 4 3.162278e+06 
-3.162278e-08 45 4 1.000000e+07 
-3.162278e-08 45 4 3.162278e+07 
-3.162278e-08 45 4 1.000000e+08 
-3.162278e-08 45 6 1.000000e+05 
-3.162278e-08 45 6 3.162278e+05 
-3.162278e-08 45 6 1.000000e+06 
-3.162278e-08 45 6 3.162278e+06 
-3.162278e-08 45 6 1.000000e+07 
-3.162278e-08 45 6 3.162278e+07 
-3.162278e-08 45 6 1.000000e+08 
-3.162278e-08 45 8 1.000000e+05 
-3.162278e-08 45 8 3.162278e+05 
-3.162278e-08 45 8 1.000000e+06 
-3.162278e-08 45 8 3.162278e+06 
-3.162278e-08 45 8 1.000000e+07 
-3.162278e-08 45 8 3.162278e+07 
-3.162278e-08 45 8 1.000000e+08 
-3.162278e-08 45 10 1.000000e+05 
-3.162278e-08 45 10 3.162278e+05 
-3.162278e-08 45 10 1.000000e+06 
-3.162278e-08 45 10 3.162278e+06 
-3.162278e-08 45 10 1.000000e+07 
-3.162278e-08 45 10 3.162278e+07 
-3.162278e-08 45 10 1.000000e+08 
-3.162278e-08 45 12 1.000000e+05 
-3.162278e-08 45 12 3.162278e+05 
-3.162278e-08 45 12 1.000000e+06 
-3.162278e-08 45 12 3.162278e+06 
-3.162278e-08 45 12 1.000000e+07 
-3.162278e-08 45 12 3.162278e+07 
-3.162278e-08 45 12 1.000000e+08 
-3.162278e-08 45 14 1.000000e+05 
-3.162278e-08 45 14 3.162278e+05 
-3.162278e-08 45 14 1.000000e+06 
-3.162278e-08 45 14 3.162278e+06 
-3.162278e-08 45 14 1.000000e+07 
-3.162278e-08 45 14 3.162278e+07 
-3.162278e-08 45 14 1.000000e+08 
-3.162278e-08 45 16 1.000000e+05 
-3.162278e-08 45 16 3.162278e+05 
-3.162278e-08 45 16 1.000000e+06 
-3.162278e-08 45 16 3.162278e+06 
-3.162278e-08 45 16 1.000000e+07 
-3.162278e-08 45 16 3.162278e+07 
-3.162278e-08 45 16 1.000000e+08 
-3.162278e-08 50 4 1.000000e+05 
-3.162278e-08 50 4 3.162278e+05 
-3.162278e-08 50 4 1.000000e+06 
-3.162278e-08 50 4 3.162278e+06 
-3.162278e-08 50 4 1.000000e+07 
-3.162278e-08 50 4 3.162278e+07 
-3.162278e-08 50 4 1.000000e+08 
-3.162278e-08 50 6 1.000000e+05 
-3.162278e-08 50 6 3.162278e+05 
-3.162278e-08 50 6 1.000000e+06 
-3.162278e-08 50 6 3.162278e+06 
-3.162278e-08 50 6 1.000000e+07 
-3.162278e-08 50 6 3.162278e+07 
-3.162278e-08 50 6 1.000000e+08 
-3.162278e-08 50 8 1.000000e+05 
-3.162278e-08 50 8 3.162278e+05 
-3.162278e-08 50 8 1.000000e+06 
-3.162278e-08 50 8 3.162278e+06 
-3.162278e-08 50 8 1.000000e+07 
-3.162278e-08 50 8 3.162278e+07 
-3.162278e-08 50 8 1.000000e+08 
-3.162278e-08 50 10 1.000000e+05 
-3.162278e-08 50 10 3.162278e+05 
-3.162278e-08 50 10 1.000000e+06 
-3.162278e-08 50 10 3.162278e+06 
-3.162278e-08 50 10 1.000000e+07 
-3.162278e-08 50 10 3.162278e+07 
-3.162278e-08 50 10 1.000000e+08 
-3.162278e-08 50 12 1.000000e+05 
-3.162278e-08 50 12 3.162278e+05 
-3.162278e-08 50 12 1.000000e+06 
-3.162278e-08 50 12 3.162278e+06 
-3.162278e-08 50 12 1.000000e+07 
-3.162278e-08 50 12 3.162278e+07 
-3.162278e-08 50 12 1.000000e+08 
-3.162278e-08 50 14 1.000000e+05 
-3.162278e-08 50 14 3.162278e+05 
-3.162278e-08 50 14 1.000000e+06 
-3.162278e-08 50 14 3.162278e+06 
-3.162278e-08 50 14 1.000000e+07 
-3.162278e-08 50 14 3.162278e+07 
-3.162278e-08 50 14 1.000000e+08 
-3.162278e-08 50 16 1.000000e+05 
-3.162278e-08 50 16 3.162278e+05 
-3.162278e-08 50 16 1.000000e+06 
-3.162278e-08 50 16 3.162278e+06 
-3.162278e-08 50 16 1.000000e+07 
-3.162278e-08 50 16 3.162278e+07 
-3.162278e-08 50 16 1.000000e+08 
-3.162278e-08 55 4 1.000000e+05 
-3.162278e-08 55 4 3.162278e+05 
-3.162278e-08 55 4 1.000000e+06 
-3.162278e-08 55 4 3.162278e+06 
-3.162278e-08 55 4 1.000000e+07 
-3.162278e-08 55 4 3.162278e+07 
-3.162278e-08 55 4 1.000000e+08 
-3.162278e-08 55 6 1.000000e+05 
-3.162278e-08 55 6 3.162278e+05 
-3.162278e-08 55 6 1.000000e+06 
-3.162278e-08 55 6 3.162278e+06 
-3.162278e-08 55 6 1.000000e+07 
-3.162278e-08 55 6 3.162278e+07 
-3.162278e-08 55 6 1.000000e+08 
-3.162278e-08 55 8 1.000000e+05 
-3.162278e-08 55 8 3.162278e+05 
-3.162278e-08 55 8 1.000000e+06 
-3.162278e-08 55 8 3.162278e+06 
-3.162278e-08 55 8 1.000000e+07 
-3.162278e-08 55 8 3.162278e+07 
-3.162278e-08 55 8 1.000000e+08 
-3.162278e-08 55 10 1.000000e+05 
-3.162278e-08 55 10 3.162278e+05 
-3.162278e-08 55 10 1.000000e+06 
-3.162278e-08 55 10 3.162278e+06 
-3.162278e-08 55 10 1.000000e+07 
-3.162278e-08 55 10 3.162278e+07 
-3.162278e-08 55 10 1.000000e+08 
-3.162278e-08 55 12 1.000000e+05 
-3.162278e-08 55 12 3.162278e+05 
-3.162278e-08 55 12 1.000000e+06 
-3.162278e-08 55 12 3.162278e+06 
-3.162278e-08 55 12 1.000000e+07 
-3.162278e-08 55 12 3.162278e+07 
-3.162278e-08 55 12 1.000000e+08 
-3.162278e-08 55 14 1.000000e+05 
-3.162278e-08 55 14 3.162278e+05 
-3.162278e-08 55 14 1.000000e+06 
-3.162278e-08 55 14 3.162278e+06 
-3.162278e-08 55 14 1.000000e+07 
-3.162278e-08 55 14 3.162278e+07 
-3.162278e-08 55 14 1.000000e+08 
-3.162278e-08 55 16 1.000000e+05 
-3.162278e-08 55 16 3.162278e+05 
-3.162278e-08 55 16 1.000000e+06 
-3.162278e-08 55 16 3.162278e+06 
-3.162278e-08 55 16 1.000000e+07 
-3.162278e-08 55 16 3.162278e+07 
-3.162278e-08 55 16 1.000000e+08 
-3.162278e-08 60 4 1.000000e+05 
-3.162278e-08 60 4 3.162278e+05 
-3.162278e-08 60 4 1.000000e+06 
-3.162278e-08 60 4 3.162278e+06 
-3.162278e-08 60 4 1.000000e+07 
-3.162278e-08 60 4 3.162278e+07 
-3.162278e-08 60 4 1.000000e+08 
-3.162278e-08 60 6 1.000000e+05 
-3.162278e-08 60 6 3.162278e+05 
-3.162278e-08 60 6 1.000000e+06 
-3.162278e-08 60 6 3.162278e+06 
-3.162278e-08 60 6 1.000000e+07 
-3.162278e-08 60 6 3.162278e+07 
-3.162278e-08 60 6 1.000000e+08 
-3.162278e-08 60 8 1.000000e+05 
-3.162278e-08 60 8 3.162278e+05 
-3.162278e-08 60 8 1.000000e+06 
-3.162278e-08 60 8 3.162278e+06 
-3.162278e-08 60 8 1.000000e+07 
-3.162278e-08 60 8 3.162278e+07 
-3.162278e-08 60 8 1.000000e+08 
-3.162278e-08 60 10 1.000000e+05 
-3.162278e-08 60 10 3.162278e+05 
-3.162278e-08 60 10 1.000000e+06 
-3.162278e-08 60 10 3.162278e+06 
-3.162278e-08 60 10 1.000000e+07 
-3.162278e-08 60 10 3.162278e+07 
-3.162278e-08 60 10 1.000000e+08 
-3.162278e-08 60 12 1.000000e+05 
-3.162278e-08 60 12 3.162278e+05 
-3.162278e-08 60 12 1.000000e+06 
-3.162278e-08 60 12 3.162278e+06 
-3.162278e-08 60 12 1.000000e+07 
-3.162278e-08 60 12 3.162278e+07 
-3.162278e-08 60 12 1.000000e+08 
-3.162278e-08 60 14 1.000000e+05 
-3.162278e-08 60 14 3.162278e+05 
-3.162278e-08 60 14 1.000000e+06 
-3.162278e-08 60 14 3.162278e+06 
-3.162278e-08 60 14 1.000000e+07 
-3.162278e-08 60 14 3.162278e+07 
-3.162278e-08 60 14 1.000000e+08 
-3.162278e-08 60 16 1.000000e+05 
-3.162278e-08 60 16 3.162278e+05 
-3.162278e-08 60 16 1.000000e+06 
-3.162278e-08 60 16 3.162278e+06 
-3.162278e-08 60 16 1.000000e+07 
-3.162278e-08 60 16 3.162278e+07 
-3.162278e-08 60 16 1.000000e+08 
-1.000000e-08 20 4 1.000000e+05 
-1.000000e-08 20 4 3.162278e+05 
-1.000000e-08 20 4 1.000000e+06 
-1.000000e-08 20 4 3.162278e+06 
-1.000000e-08 20 4 1.000000e+07 
-1.000000e-08 20 4 3.162278e+07 
-1.000000e-08 20 4 1.000000e+08 
-1.000000e-08 20 6 1.000000e+05 
-1.000000e-08 20 6 3.162278e+05 
-1.000000e-08 20 6 1.000000e+06 
-1.000000e-08 20 6 3.162278e+06 
-1.000000e-08 20 6 1.000000e+07 
-1.000000e-08 20 6 3.162278e+07 
-1.000000e-08 20 6 1.000000e+08 
-1.000000e-08 20 8 1.000000e+05 
-1.000000e-08 20 8 3.162278e+05 
-1.000000e-08 20 8 1.000000e+06 
-1.000000e-08 20 8 3.162278e+06 
-1.000000e-08 20 8 1.000000e+07 
-1.000000e-08 20 8 3.162278e+07 
-1.000000e-08 20 8 1.000000e+08 
-1.000000e-08 20 10 1.000000e+05 
-1.000000e-08 20 10 3.162278e+05 
-1.000000e-08 20 10 1.000000e+06 
-1.000000e-08 20 10 3.162278e+06 
-1.000000e-08 20 10 1.000000e+07 
-1.000000e-08 20 10 3.162278e+07 
-1.000000e-08 20 10 1.000000e+08 
-1.000000e-08 20 12 1.000000e+05 
-1.000000e-08 20 12 3.162278e+05 
-1.000000e-08 20 12 1.000000e+06 
-1.000000e-08 20 12 3.162278e+06 
-1.000000e-08 20 12 1.000000e+07 
-1.000000e-08 20 12 3.162278e+07 
-1.000000e-08 20 12 1.000000e+08 
-1.000000e-08 20 14 1.000000e+05 
-1.000000e-08 20 14 3.162278e+05 
-1.000000e-08 20 14 1.000000e+06 
-1.000000e-08 20 14 3.162278e+06 
-1.000000e-08 20 14 1.000000e+07 
-1.000000e-08 20 14 3.162278e+07 
-1.000000e-08 20 14 1.000000e+08 
-1.000000e-08 20 16 1.000000e+05 
-1.000000e-08 20 16 3.162278e+05 
-1.000000e-08 20 16 1.000000e+06 
-1.000000e-08 20 16 3.162278e+06 
-1.000000e-08 20 16 1.000000e+07 
-1.000000e-08 20 16 3.162278e+07 
-1.000000e-08 20 16 1.000000e+08 
-1.000000e-08 25 4 1.000000e+05 
-1.000000e-08 25 4 3.162278e+05 
-1.000000e-08 25 4 1.000000e+06 
-1.000000e-08 25 4 3.162278e+06 
-1.000000e-08 25 4 1.000000e+07 
-1.000000e-08 25 4 3.162278e+07 
-1.000000e-08 25 4 1.000000e+08 
-1.000000e-08 25 6 1.000000e+05 
-1.000000e-08 25 6 3.162278e+05 
-1.000000e-08 25 6 1.000000e+06 
-1.000000e-08 25 6 3.162278e+06 
-1.000000e-08 25 6 1.000000e+07 
-1.000000e-08 25 6 3.162278e+07 
-1.000000e-08 25 6 1.000000e+08 
-1.000000e-08 25 8 1.000000e+05 
-1.000000e-08 25 8 3.162278e+05 
-1.000000e-08 25 8 1.000000e+06 
-1.000000e-08 25 8 3.162278e+06 
-1.000000e-08 25 8 1.000000e+07 
-1.000000e-08 25 8 3.162278e+07 
-1.000000e-08 25 8 1.000000e+08 
-1.000000e-08 25 10 1.000000e+05 
-1.000000e-08 25 10 3.162278e+05 
-1.000000e-08 25 10 1.000000e+06 
-1.000000e-08 25 10 3.162278e+06 
-1.000000e-08 25 10 1.000000e+07 
-1.000000e-08 25 10 3.162278e+07 
-1.000000e-08 25 10 1.000000e+08 
-1.000000e-08 25 12 1.000000e+05 
-1.000000e-08 25 12 3.162278e+05 
-1.000000e-08 25 12 1.000000e+06 
-1.000000e-08 25 12 3.162278e+06 
-1.000000e-08 25 12 1.000000e+07 
-1.000000e-08 25 12 3.162278e+07 
-1.000000e-08 25 12 1.000000e+08 
-1.000000e-08 25 14 1.000000e+05 
-1.000000e-08 25 14 3.162278e+05 
-1.000000e-08 25 14 1.000000e+06 
-1.000000e-08 25 14 3.162278e+06 
-1.000000e-08 25 14 1.000000e+07 
-1.000000e-08 25 14 3.162278e+07 
-1.000000e-08 25 14 1.000000e+08 
-1.000000e-08 25 16 1.000000e+05 
-1.000000e-08 25 16 3.162278e+05 
-1.000000e-08 25 16 1.000000e+06 
-1.000000e-08 25 16 3.162278e+06 
-1.000000e-08 25 16 1.000000e+07 
-1.000000e-08 25 16 3.162278e+07 
-1.000000e-08 25 16 1.000000e+08 
-1.000000e-08 30 4 1.000000e+05 
-1.000000e-08 30 4 3.162278e+05 
-1.000000e-08 30 4 1.000000e+06 
-1.000000e-08 30 4 3.162278e+06 
-1.000000e-08 30 4 1.000000e+07 
-1.000000e-08 30 4 3.162278e+07 
-1.000000e-08 30 4 1.000000e+08 
-1.000000e-08 30 6 1.000000e+05 
-1.000000e-08 30 6 3.162278e+05 
-1.000000e-08 30 6 1.000000e+06 
-1.000000e-08 30 6 3.162278e+06 
-1.000000e-08 30 6 1.000000e+07 
-1.000000e-08 30 6 3.162278e+07 
-1.000000e-08 30 6 1.000000e+08 
-1.000000e-08 30 8 1.000000e+05 
-1.000000e-08 30 8 3.162278e+05 
-1.000000e-08 30 8 1.000000e+06 
-1.000000e-08 30 8 3.162278e+06 
-1.000000e-08 30 8 1.000000e+07 
-1.000000e-08 30 8 3.162278e+07 
-1.000000e-08 30 8 1.000000e+08 
-1.000000e-08 30 10 1.000000e+05 
-1.000000e-08 30 10 3.162278e+05 
-1.000000e-08 30 10 1.000000e+06 
-1.000000e-08 30 10 3.162278e+06 
-1.000000e-08 30 10 1.000000e+07 
-1.000000e-08 30 10 3.162278e+07 
-1.000000e-08 30 10 1.000000e+08 
-1.000000e-08 30 12 1.000000e+05 
-1.000000e-08 30 12 3.162278e+05 
-1.000000e-08 30 12 1.000000e+06 
-1.000000e-08 30 12 3.162278e+06 
-1.000000e-08 30 12 1.000000e+07 
-1.000000e-08 30 12 3.162278e+07 
-1.000000e-08 30 12 1.000000e+08 
-1.000000e-08 30 14 1.000000e+05 
-1.000000e-08 30 14 3.162278e+05 
-1.000000e-08 30 14 1.000000e+06 
-1.000000e-08 30 14 3.162278e+06 
-1.000000e-08 30 14 1.000000e+07 
-1.000000e-08 30 14 3.162278e+07 
-1.000000e-08 30 14 1.000000e+08 
-1.000000e-08 30 16 1.000000e+05 
-1.000000e-08 30 16 3.162278e+05 
-1.000000e-08 30 16 1.000000e+06 
-1.000000e-08 30 16 3.162278e+06 
-1.000000e-08 30 16 1.000000e+07 
-1.000000e-08 30 16 3.162278e+07 
-1.000000e-08 30 16 1.000000e+08 
-1.000000e-08 35 4 1.000000e+05 
-1.000000e-08 35 4 3.162278e+05 
-1.000000e-08 35 4 1.000000e+06 
-1.000000e-08 35 4 3.162278e+06 
-1.000000e-08 35 4 1.000000e+07 
-1.000000e-08 35 4 3.162278e+07 
-1.000000e-08 35 4 1.000000e+08 
-1.000000e-08 35 6 1.000000e+05 
-1.000000e-08 35 6 3.162278e+05 
-1.000000e-08 35 6 1.000000e+06 
-1.000000e-08 35 6 3.162278e+06 
-1.000000e-08 35 6 1.000000e+07 
-1.000000e-08 35 6 3.162278e+07 
-1.000000e-08 35 6 1.000000e+08 
-1.000000e-08 35 8 1.000000e+05 
-1.000000e-08 35 8 3.162278e+05 
-1.000000e-08 35 8 1.000000e+06 
-1.000000e-08 35 8 3.162278e+06 
-1.000000e-08 35 8 1.000000e+07 
-1.000000e-08 35 8 3.162278e+07 
-1.000000e-08 35 8 1.000000e+08 
-1.000000e-08 35 10 1.000000e+05 
-1.000000e-08 35 10 3.162278e+05 
-1.000000e-08 35 10 1.000000e+06 
-1.000000e-08 35 10 3.162278e+06 
-1.000000e-08 35 10 1.000000e+07 
-1.000000e-08 35 10 3.162278e+07 
-1.000000e-08 35 10 1.000000e+08 
-1.000000e-08 35 12 1.000000e+05 
-1.000000e-08 35 12 3.162278e+05 
-1.000000e-08 35 12 1.000000e+06 
-1.000000e-08 35 12 3.162278e+06 
-1.000000e-08 35 12 1.000000e+07 
-1.000000e-08 35 12 3.162278e+07 
-1.000000e-08 35 12 1.000000e+08 
-1.000000e-08 35 14 1.000000e+05 
-1.000000e-08 35 14 3.162278e+05 
-1.000000e-08 35 14 1.000000e+06 
-1.000000e-08 35 14 3.162278e+06 
-1.000000e-08 35 14 1.000000e+07 
-1.000000e-08 35 14 3.162278e+07 
-1.000000e-08 35 14 1.000000e+08 
-1.000000e-08 35 16 1.000000e+05 
-1.000000e-08 35 16 3.162278e+05 
-1.000000e-08 35 16 1.000000e+06 
-1.000000e-08 35 16 3.162278e+06 
-1.000000e-08 35 16 1.000000e+07 
-1.000000e-08 35 16 3.162278e+07 
-1.000000e-08 35 16 1.000000e+08 
-1.000000e-08 40 4 1.000000e+05 
-1.000000e-08 40 4 3.162278e+05 
-1.000000e-08 40 4 1.000000e+06 
-1.000000e-08 40 4 3.162278e+06 
-1.000000e-08 40 4 1.000000e+07 
-1.000000e-08 40 4 3.162278e+07 
-1.000000e-08 40 4 1.000000e+08 
-1.000000e-08 40 6 1.000000e+05 
-1.000000e-08 40 6 3.162278e+05 
-1.000000e-08 40 6 1.000000e+06 
-1.000000e-08 40 6 3.162278e+06 
-1.000000e-08 40 6 1.000000e+07 
-1.000000e-08 40 6 3.162278e+07 
-1.000000e-08 40 6 1.000000e+08 
-1.000000e-08 40 8 1.000000e+05 
-1.000000e-08 40 8 3.162278e+05 
-1.000000e-08 40 8 1.000000e+06 
-1.000000e-08 40 8 3.162278e+06 
-1.000000e-08 40 8 1.000000e+07 
-1.000000e-08 40 8 3.162278e+07 
-1.000000e-08 40 8 1.000000e+08 
-1.000000e-08 40 10 1.000000e+05 
-1.000000e-08 40 10 3.162278e+05 
-1.000000e-08 40 10 1.000000e+06 
-1.000000e-08 40 10 3.162278e+06 
-1.000000e-08 40 10 1.000000e+07 
-1.000000e-08 40 10 3.162278e+07 
-1.000000e-08 40 10 1.000000e+08 
-1.000000e-08 40 12 1.000000e+05 
-1.000000e-08 40 12 3.162278e+05 
-1.000000e-08 40 12 1.000000e+06 
-1.000000e-08 40 12 3.162278e+06 
-1.000000e-08 40 12 1.000000e+07 
-1.000000e-08 40 12 3.162278e+07 
-1.000000e-08 40 12 1.000000e+08 
-1.000000e-08 40 14 1.000000e+05 
-1.000000e-08 40 14 3.162278e+05 
-1.000000e-08 40 14 1.000000e+06 
-1.000000e-08 40 14 3.162278e+06 
-1.000000e-08 40 14 1.000000e+07 
-1.000000e-08 40 14 3.162278e+07 
-1.000000e-08 40 14 1.000000e+08 
-1.000000e-08 40 16 1.000000e+05 
-1.000000e-08 40 16 3.162278e+05 
-1.000000e-08 40 16 1.000000e+06 
-1.000000e-08 40 16 3.162278e+06 
-1.000000e-08 40 16 1.000000e+07 
-1.000000e-08 40 16 3.162278e+07 
-1.000000e-08 40 16 1.000000e+08 
-1.000000e-08 45 4 1.000000e+05 
-1.000000e-08 45 4 3.162278e+05 
-1.000000e-08 45 4 1.000000e+06 
-1.000000e-08 45 4 3.162278e+06 
-1.000000e-08 45 4 1.000000e+07 
-1.000000e-08 45 4 3.162278e+07 
-1.000000e-08 45 4 1.000000e+08 
-1.000000e-08 45 6 1.000000e+05 
-1.000000e-08 45 6 3.162278e+05 
-1.000000e-08 45 6 1.000000e+06 
-1.000000e-08 45 6 3.162278e+06 
-1.000000e-08 45 6 1.000000e+07 
-1.000000e-08 45 6 3.162278e+07 
-1.000000e-08 45 6 1.000000e+08 
-1.000000e-08 45 8 1.000000e+05 
-1.000000e-08 45 8 3.162278e+05 
-1.000000e-08 45 8 1.000000e+06 
-1.000000e-08 45 8 3.162278e+06 
-1.000000e-08 45 8 1.000000e+07 
-1.000000e-08 45 8 3.162278e+07 
-1.000000e-08 45 8 1.000000e+08 
-1.000000e-08 45 10 1.000000e+05 
-1.000000e-08 45 10 3.162278e+05 
-1.000000e-08 45 10 1.000000e+06 
-1.000000e-08 45 10 3.162278e+06 
-1.000000e-08 45 10 1.000000e+07 
-1.000000e-08 45 10 3.162278e+07 
-1.000000e-08 45 10 1.000000e+08 
-1.000000e-08 45 12 1.000000e+05 
-1.000000e-08 45 12 3.162278e+05 
-1.000000e-08 45 12 1.000000e+06 
-1.000000e-08 45 12 3.162278e+06 
-1.000000e-08 45 12 1.000000e+07 
-1.000000e-08 45 12 3.162278e+07 
-1.000000e-08 45 12 1.000000e+08 
-1.000000e-08 45 14 1.000000e+05 
-1.000000e-08 45 14 3.162278e+05 
-1.000000e-08 45 14 1.000000e+06 
-1.000000e-08 45 14 3.162278e+06 
-1.000000e-08 45 14 1.000000e+07 
-1.000000e-08 45 14 3.162278e+07 
-1.000000e-08 45 14 1.000000e+08 
-1.000000e-08 45 16 1.000000e+05 
-1.000000e-08 45 16 3.162278e+05 
-1.000000e-08 45 16 1.000000e+06 
-1.000000e-08 45 16 3.162278e+06 
-1.000000e-08 45 16 1.000000e+07 
-1.000000e-08 45 16 3.162278e+07 
-1.000000e-08 45 16 1.000000e+08 
-1.000000e-08 50 4 1.000000e+05 
-1.000000e-08 50 4 3.162278e+05 
-1.000000e-08 50 4 1.000000e+06 
-1.000000e-08 50 4 3.162278e+06 
-1.000000e-08 50 4 1.000000e+07 
-1.000000e-08 50 4 3.162278e+07 
-1.000000e-08 50 4 1.000000e+08 
-1.000000e-08 50 6 1.000000e+05 
-1.000000e-08 50 6 3.162278e+05 
-1.000000e-08 50 6 1.000000e+06 
-1.000000e-08 50 6 3.162278e+06 
-1.000000e-08 50 6 1.000000e+07 
-1.000000e-08 50 6 3.162278e+07 
-1.000000e-08 50 6 1.000000e+08 
-1.000000e-08 50 8 1.000000e+05 
-1.000000e-08 50 8 3.162278e+05 
-1.000000e-08 50 8 1.000000e+06 
-1.000000e-08 50 8 3.162278e+06 
-1.000000e-08 50 8 1.000000e+07 
-1.000000e-08 50 8 3.162278e+07 
-1.000000e-08 50 8 1.000000e+08 
-1.000000e-08 50 10 1.000000e+05 
-1.000000e-08 50 10 3.162278e+05 
-1.000000e-08 50 10 1.000000e+06 
-1.000000e-08 50 10 3.162278e+06 
-1.000000e-08 50 10 1.000000e+07 
-1.000000e-08 50 10 3.162278e+07 
-1.000000e-08 50 10 1.000000e+08 
-1.000000e-08 50 12 1.000000e+05 
-1.000000e-08 50 12 3.162278e+05 
-1.000000e-08 50 12 1.000000e+06 
-1.000000e-08 50 12 3.162278e+06 
-1.000000e-08 50 12 1.000000e+07 
-1.000000e-08 50 12 3.162278e+07 
-1.000000e-08 50 12 1.000000e+08 
-1.000000e-08 50 14 1.000000e+05 
-1.000000e-08 50 14 3.162278e+05 
-1.000000e-08 50 14 1.000000e+06 
-1.000000e-08 50 14 3.162278e+06 
-1.000000e-08 50 14 1.000000e+07 
-1.000000e-08 50 14 3.162278e+07 
-1.000000e-08 50 14 1.000000e+08 
-1.000000e-08 50 16 1.000000e+05 
-1.000000e-08 50 16 3.162278e+05 
-1.000000e-08 50 16 1.000000e+06 
-1.000000e-08 50 16 3.162278e+06 
-1.000000e-08 50 16 1.000000e+07 
-1.000000e-08 50 16 3.162278e+07 
-1.000000e-08 50 16 1.000000e+08 
-1.000000e-08 55 4 1.000000e+05 
-1.000000e-08 55 4 3.162278e+05 
-1.000000e-08 55 4 1.000000e+06 
-1.000000e-08 55 4 3.162278e+06 
-1.000000e-08 55 4 1.000000e+07 
-1.000000e-08 55 4 3.162278e+07 
-1.000000e-08 55 4 1.000000e+08 
-1.000000e-08 55 6 1.000000e+05 
-1.000000e-08 55 6 3.162278e+05 
-1.000000e-08 55 6 1.000000e+06 
-1.000000e-08 55 6 3.162278e+06 
-1.000000e-08 55 6 1.000000e+07 
-1.000000e-08 55 6 3.162278e+07 
-1.000000e-08 55 6 1.000000e+08 
-1.000000e-08 55 8 1.000000e+05 
-1.000000e-08 55 8 3.162278e+05 
-1.000000e-08 55 8 1.000000e+06 
-1.000000e-08 55 8 3.162278e+06 
-1.000000e-08 55 8 1.000000e+07 
-1.000000e-08 55 8 3.162278e+07 
-1.000000e-08 55 8 1.000000e+08 
-1.000000e-08 55 10 1.000000e+05 
-1.000000e-08 55 10 3.162278e+05 
-1.000000e-08 55 10 1.000000e+06 
-1.000000e-08 55 10 3.162278e+06 
-1.000000e-08 55 10 1.000000e+07 
-1.000000e-08 55 10 3.162278e+07 
-1.000000e-08 55 10 1.000000e+08 
-1.000000e-08 55 12 1.000000e+05 
-1.000000e-08 55 12 3.162278e+05 
-1.000000e-08 55 12 1.000000e+06 
-1.000000e-08 55 12 3.162278e+06 
-1.000000e-08 55 12 1.000000e+07 
-1.000000e-08 55 12 3.162278e+07 
-1.000000e-08 55 12 1.000000e+08 
-1.000000e-08 55 14 1.000000e+05 
-1.000000e-08 55 14 3.162278e+05 
-1.000000e-08 55 14 1.000000e+06 
-1.000000e-08 55 14 3.162278e+06 
-1.000000e-08 55 14 1.000000e+07 
-1.000000e-08 55 14 3.162278e+07 
-1.000000e-08 55 14 1.000000e+08 
-1.000000e-08 55 16 1.000000e+05 
-1.000000e-08 55 16 3.162278e+05 
-1.000000e-08 55 16 1.000000e+06 
-1.000000e-08 55 16 3.162278e+06 
-1.000000e-08 55 16 1.000000e+07 
-1.000000e-08 55 16 3.162278e+07 
-1.000000e-08 55 16 1.000000e+08 
-1.000000e-08 60 4 1.000000e+05 
-1.000000e-08 60 4 3.162278e+05 
-1.000000e-08 60 4 1.000000e+06 
-1.000000e-08 60 4 3.162278e+06 
-1.000000e-08 60 4 1.000000e+07 
-1.000000e-08 60 4 3.162278e+07 
-1.000000e-08 60 4 1.000000e+08 
-1.000000e-08 60 6 1.000000e+05 
-1.000000e-08 60 6 3.162278e+05 
-1.000000e-08 60 6 1.000000e+06 
-1.000000e-08 60 6 3.162278e+06 
-1.000000e-08 60 6 1.000000e+07 
-1.000000e-08 60 6 3.162278e+07 
-1.000000e-08 60 6 1.000000e+08 
-1.000000e-08 60 8 1.000000e+05 
-1.000000e-08 60 8 3.162278e+05 
-1.000000e-08 60 8 1.000000e+06 
-1.000000e-08 60 8 3.162278e+06 
-1.000000e-08 60 8 1.000000e+07 
-1.000000e-08 60 8 3.162278e+07 
-1.000000e-08 60 8 1.000000e+08 
-1.000000e-08 60 10 1.000000e+05 
-1.000000e-08 60 10 3.162278e+05 
-1.000000e-08 60 10 1.000000e+06 
-1.000000e-08 60 10 3.162278e+06 
-1.000000e-08 60 10 1.000000e+07 
-1.000000e-08 60 10 3.162278e+07 
-1.000000e-08 60 10 1.000000e+08 
-1.000000e-08 60 12 1.000000e+05 
-1.000000e-08 60 12 3.162278e+05 
-1.000000e-08 60 12 1.000000e+06 
-1.000000e-08 60 12 3.162278e+06 
-1.000000e-08 60 12 1.000000e+07 
-1.000000e-08 60 12 3.162278e+07 
-1.000000e-08 60 12 1.000000e+08 
-1.000000e-08 60 14 1.000000e+05 
-1.000000e-08 60 14 3.162278e+05 
-1.000000e-08 60 14 1.000000e+06 
-1.000000e-08 60 14 3.162278e+06 
-1.000000e-08 60 14 1.000000e+07 
-1.000000e-08 60 14 3.162278e+07 
-1.000000e-08 60 14 1.000000e+08 
-1.000000e-08 60 16 1.000000e+05 
-1.000000e-08 60 16 3.162278e+05 
-1.000000e-08 60 16 1.000000e+06 
-1.000000e-08 60 16 3.162278e+06 
-1.000000e-08 60 16 1.000000e+07 
-1.000000e-08 60 16 3.162278e+07 
-1.000000e-08 60 16 1.000000e+08 
diff --git a/Metafor/models/bord01/frinctionSA.ascii b/Metafor/models/bord01/frinctionSA.ascii
deleted file mode 100644
index fd19aedd..00000000
--- a/Metafor/models/bord01/frinctionSA.ascii
+++ /dev/null
@@ -1,21 +0,0 @@
-   2.9999999999999999e-01   2.9999999999999999e-01
-   3.5999999999999999e-01   2.9999999999999999e-01
-   3.5999999999999999e-01   3.5999999999999999e-01
-   4.1999999999999998e-01   2.9999999999999999e-01
-   4.1999999999999998e-01   3.5999999999999999e-01
-   4.1999999999999998e-01   4.1999999999999998e-01
-   4.7999999999999998e-01   2.9999999999999999e-01
-   4.7999999999999998e-01   3.5999999999999999e-01
-   4.7999999999999998e-01   4.1999999999999998e-01
-   4.7999999999999998e-01   4.7999999999999998e-01
-   5.4000000000000004e-01   2.9999999999999999e-01
-   5.4000000000000004e-01   3.5999999999999999e-01
-   5.4000000000000004e-01   4.1999999999999998e-01
-   5.4000000000000004e-01   4.7999999999999998e-01
-   5.4000000000000004e-01   5.4000000000000004e-01
-   5.9999999999999998e-01   2.9999999999999999e-01
-   5.9999999999999998e-01   3.5999999999999999e-01
-   5.9999999999999998e-01   4.1999999999999998e-01
-   5.9999999999999998e-01   4.7999999999999998e-01
-   5.9999999999999998e-01   5.4000000000000004e-01
-   5.9999999999999998e-01   5.9999999999999998e-01
diff --git a/Metafor/models/bord01/hardening_yield.ascii.txt b/Metafor/models/bord01/hardening_yield.ascii.txt
deleted file mode 100644
index 24054cbb..00000000
--- a/Metafor/models/bord01/hardening_yield.ascii.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-   1.3763593095169656e+03   3.5586823231196348e+02
-   1.3845156042150591e+03   3.9028842309897328e+02
-   1.3919080693949841e+03   4.2321684034443632e+02
-   1.3993269593722739e+03   4.5793675396201400e+02
-   1.4075741953718125e+03   4.9852045811355879e+02
-   1.4293631249467896e+03   3.4274135431265836e+02
-   1.4377283641202764e+03   3.7631724337442211e+02
-   1.4453097643826616e+03   4.0846624407998206e+02
-   1.4529178452973242e+03   4.4239126599599155e+02
-   1.4613749063029579e+03   4.8207738638120190e+02
-   1.4783809099995856e+03   3.3117275229478480e+02
-   1.4869365388044469e+03   3.6399329898135471e+02
-   1.4946900894624671e+03   3.9544458321723545e+02
-   1.5024705475311464e+03   4.2865765564957923e+02
-   1.5111187785625614e+03   4.6753942978930405e+02
-   1.5285078023543892e+03   3.1987129922494842e+02
-   1.5372554279691117e+03   3.5194327631592853e+02
-   1.5451825759850194e+03   3.8270269042649585e+02
-   1.5531368541657739e+03   4.1520941044817346e+02
-   1.5619778486210130e+03   4.5329275427035060e+02
-   1.5853284194900534e+03   3.0766376654547690e+02
-   1.5942905210885058e+03   3.3891475164219116e+02
-   1.6024115842747024e+03   3.6891487071136351e+02
-   1.6105600197028637e+03   4.0064596281958319e+02
-   1.6196163232562271e+03   4.3785208429810166e+02
diff --git a/Metafor/models/bord01/model.py b/Metafor/models/bord01/model.py
deleted file mode 100644
index f590fc9b..00000000
--- a/Metafor/models/bord01/model.py
+++ /dev/null
@@ -1,21 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-import numpy as np
-import os
-import shutil
-
-from Metafor.Mparams.Metafor_call import Metafor_call
-
-isUnix = lambda: os.name == 'posix'
-
-def model(d):    
-    d['Metafor_model_name'] = 'tombeBord'
-    Metafor_call(d)
-    
-    Angle = np.genfromtxt("Angle1.ascii", dtype=None)
-
-    sol = Angle[len(Angle)-1]
-
-    return sol  
-
diff --git a/Metafor/models/bord01/numericalSATrainingPoints.ascii b/Metafor/models/bord01/numericalSATrainingPoints.ascii
deleted file mode 100644
index 4a844daf..00000000
--- a/Metafor/models/bord01/numericalSATrainingPoints.ascii
+++ /dev/null
@@ -1,3087 +0,0 @@
-1.000000e-05 20 4 1.000000e+05 
-1.000000e-05 20 4 3.162278e+05 
-1.000000e-05 20 4 1.000000e+06 
-1.000000e-05 20 4 3.162278e+06 
-1.000000e-05 20 4 1.000000e+07 
-1.000000e-05 20 4 3.162278e+07 
-1.000000e-05 20 4 1.000000e+08 
-1.000000e-05 20 6 1.000000e+05 
-1.000000e-05 20 6 3.162278e+05 
-1.000000e-05 20 6 1.000000e+06 
-1.000000e-05 20 6 3.162278e+06 
-1.000000e-05 20 6 1.000000e+07 
-1.000000e-05 20 6 3.162278e+07 
-1.000000e-05 20 6 1.000000e+08 
-1.000000e-05 20 8 1.000000e+05 
-1.000000e-05 20 8 3.162278e+05 
-1.000000e-05 20 8 1.000000e+06 
-1.000000e-05 20 8 3.162278e+06 
-1.000000e-05 20 8 1.000000e+07 
-1.000000e-05 20 8 3.162278e+07 
-1.000000e-05 20 8 1.000000e+08 
-1.000000e-05 20 10 1.000000e+05 
-1.000000e-05 20 10 3.162278e+05 
-1.000000e-05 20 10 1.000000e+06 
-1.000000e-05 20 10 3.162278e+06 
-1.000000e-05 20 10 1.000000e+07 
-1.000000e-05 20 10 3.162278e+07 
-1.000000e-05 20 10 1.000000e+08 
-1.000000e-05 20 12 1.000000e+05 
-1.000000e-05 20 12 3.162278e+05 
-1.000000e-05 20 12 1.000000e+06 
-1.000000e-05 20 12 3.162278e+06 
-1.000000e-05 20 12 1.000000e+07 
-1.000000e-05 20 12 3.162278e+07 
-1.000000e-05 20 12 1.000000e+08 
-1.000000e-05 20 14 1.000000e+05 
-1.000000e-05 20 14 3.162278e+05 
-1.000000e-05 20 14 1.000000e+06 
-1.000000e-05 20 14 3.162278e+06 
-1.000000e-05 20 14 1.000000e+07 
-1.000000e-05 20 14 3.162278e+07 
-1.000000e-05 20 14 1.000000e+08 
-1.000000e-05 20 16 1.000000e+05 
-1.000000e-05 20 16 3.162278e+05 
-1.000000e-05 20 16 1.000000e+06 
-1.000000e-05 20 16 3.162278e+06 
-1.000000e-05 20 16 1.000000e+07 
-1.000000e-05 20 16 3.162278e+07 
-1.000000e-05 20 16 1.000000e+08 
-1.000000e-05 25 4 1.000000e+05 
-1.000000e-05 25 4 3.162278e+05 
-1.000000e-05 25 4 1.000000e+06 
-1.000000e-05 25 4 3.162278e+06 
-1.000000e-05 25 4 1.000000e+07 
-1.000000e-05 25 4 3.162278e+07 
-1.000000e-05 25 4 1.000000e+08 
-1.000000e-05 25 6 1.000000e+05 
-1.000000e-05 25 6 3.162278e+05 
-1.000000e-05 25 6 1.000000e+06 
-1.000000e-05 25 6 3.162278e+06 
-1.000000e-05 25 6 1.000000e+07 
-1.000000e-05 25 6 3.162278e+07 
-1.000000e-05 25 6 1.000000e+08 
-1.000000e-05 25 8 1.000000e+05 
-1.000000e-05 25 8 3.162278e+05 
-1.000000e-05 25 8 1.000000e+06 
-1.000000e-05 25 8 3.162278e+06 
-1.000000e-05 25 8 1.000000e+07 
-1.000000e-05 25 8 3.162278e+07 
-1.000000e-05 25 8 1.000000e+08 
-1.000000e-05 25 10 1.000000e+05 
-1.000000e-05 25 10 3.162278e+05 
-1.000000e-05 25 10 1.000000e+06 
-1.000000e-05 25 10 3.162278e+06 
-1.000000e-05 25 10 1.000000e+07 
-1.000000e-05 25 10 3.162278e+07 
-1.000000e-05 25 10 1.000000e+08 
-1.000000e-05 25 12 1.000000e+05 
-1.000000e-05 25 12 3.162278e+05 
-1.000000e-05 25 12 1.000000e+06 
-1.000000e-05 25 12 3.162278e+06 
-1.000000e-05 25 12 1.000000e+07 
-1.000000e-05 25 12 3.162278e+07 
-1.000000e-05 25 12 1.000000e+08 
-1.000000e-05 25 14 1.000000e+05 
-1.000000e-05 25 14 3.162278e+05 
-1.000000e-05 25 14 1.000000e+06 
-1.000000e-05 25 14 3.162278e+06 
-1.000000e-05 25 14 1.000000e+07 
-1.000000e-05 25 14 3.162278e+07 
-1.000000e-05 25 14 1.000000e+08 
-1.000000e-05 25 16 1.000000e+05 
-1.000000e-05 25 16 3.162278e+05 
-1.000000e-05 25 16 1.000000e+06 
-1.000000e-05 25 16 3.162278e+06 
-1.000000e-05 25 16 1.000000e+07 
-1.000000e-05 25 16 3.162278e+07 
-1.000000e-05 25 16 1.000000e+08 
-1.000000e-05 30 4 1.000000e+05 
-1.000000e-05 30 4 3.162278e+05 
-1.000000e-05 30 4 1.000000e+06 
-1.000000e-05 30 4 3.162278e+06 
-1.000000e-05 30 4 1.000000e+07 
-1.000000e-05 30 4 3.162278e+07 
-1.000000e-05 30 4 1.000000e+08 
-1.000000e-05 30 6 1.000000e+05 
-1.000000e-05 30 6 3.162278e+05 
-1.000000e-05 30 6 1.000000e+06 
-1.000000e-05 30 6 3.162278e+06 
-1.000000e-05 30 6 1.000000e+07 
-1.000000e-05 30 6 3.162278e+07 
-1.000000e-05 30 6 1.000000e+08 
-1.000000e-05 30 8 1.000000e+05 
-1.000000e-05 30 8 3.162278e+05 
-1.000000e-05 30 8 1.000000e+06 
-1.000000e-05 30 8 3.162278e+06 
-1.000000e-05 30 8 1.000000e+07 
-1.000000e-05 30 8 3.162278e+07 
-1.000000e-05 30 8 1.000000e+08 
-1.000000e-05 30 10 1.000000e+05 
-1.000000e-05 30 10 3.162278e+05 
-1.000000e-05 30 10 1.000000e+06 
-1.000000e-05 30 10 3.162278e+06 
-1.000000e-05 30 10 1.000000e+07 
-1.000000e-05 30 10 3.162278e+07 
-1.000000e-05 30 10 1.000000e+08 
-1.000000e-05 30 12 1.000000e+05 
-1.000000e-05 30 12 3.162278e+05 
-1.000000e-05 30 12 1.000000e+06 
-1.000000e-05 30 12 3.162278e+06 
-1.000000e-05 30 12 1.000000e+07 
-1.000000e-05 30 12 3.162278e+07 
-1.000000e-05 30 12 1.000000e+08 
-1.000000e-05 30 14 1.000000e+05 
-1.000000e-05 30 14 3.162278e+05 
-1.000000e-05 30 14 1.000000e+06 
-1.000000e-05 30 14 3.162278e+06 
-1.000000e-05 30 14 1.000000e+07 
-1.000000e-05 30 14 3.162278e+07 
-1.000000e-05 30 14 1.000000e+08 
-1.000000e-05 30 16 1.000000e+05 
-1.000000e-05 30 16 3.162278e+05 
-1.000000e-05 30 16 1.000000e+06 
-1.000000e-05 30 16 3.162278e+06 
-1.000000e-05 30 16 1.000000e+07 
-1.000000e-05 30 16 3.162278e+07 
-1.000000e-05 30 16 1.000000e+08 
-1.000000e-05 35 4 1.000000e+05 
-1.000000e-05 35 4 3.162278e+05 
-1.000000e-05 35 4 1.000000e+06 
-1.000000e-05 35 4 3.162278e+06 
-1.000000e-05 35 4 1.000000e+07 
-1.000000e-05 35 4 3.162278e+07 
-1.000000e-05 35 4 1.000000e+08 
-1.000000e-05 35 6 1.000000e+05 
-1.000000e-05 35 6 3.162278e+05 
-1.000000e-05 35 6 1.000000e+06 
-1.000000e-05 35 6 3.162278e+06 
-1.000000e-05 35 6 1.000000e+07 
-1.000000e-05 35 6 3.162278e+07 
-1.000000e-05 35 6 1.000000e+08 
-1.000000e-05 35 8 1.000000e+05 
-1.000000e-05 35 8 3.162278e+05 
-1.000000e-05 35 8 1.000000e+06 
-1.000000e-05 35 8 3.162278e+06 
-1.000000e-05 35 8 1.000000e+07 
-1.000000e-05 35 8 3.162278e+07 
-1.000000e-05 35 8 1.000000e+08 
-1.000000e-05 35 10 1.000000e+05 
-1.000000e-05 35 10 3.162278e+05 
-1.000000e-05 35 10 1.000000e+06 
-1.000000e-05 35 10 3.162278e+06 
-1.000000e-05 35 10 1.000000e+07 
-1.000000e-05 35 10 3.162278e+07 
-1.000000e-05 35 10 1.000000e+08 
-1.000000e-05 35 12 1.000000e+05 
-1.000000e-05 35 12 3.162278e+05 
-1.000000e-05 35 12 1.000000e+06 
-1.000000e-05 35 12 3.162278e+06 
-1.000000e-05 35 12 1.000000e+07 
-1.000000e-05 35 12 3.162278e+07 
-1.000000e-05 35 12 1.000000e+08 
-1.000000e-05 35 14 1.000000e+05 
-1.000000e-05 35 14 3.162278e+05 
-1.000000e-05 35 14 1.000000e+06 
-1.000000e-05 35 14 3.162278e+06 
-1.000000e-05 35 14 1.000000e+07 
-1.000000e-05 35 14 3.162278e+07 
-1.000000e-05 35 14 1.000000e+08 
-1.000000e-05 35 16 1.000000e+05 
-1.000000e-05 35 16 3.162278e+05 
-1.000000e-05 35 16 1.000000e+06 
-1.000000e-05 35 16 3.162278e+06 
-1.000000e-05 35 16 1.000000e+07 
-1.000000e-05 35 16 3.162278e+07 
-1.000000e-05 35 16 1.000000e+08 
-1.000000e-05 40 4 1.000000e+05 
-1.000000e-05 40 4 3.162278e+05 
-1.000000e-05 40 4 1.000000e+06 
-1.000000e-05 40 4 3.162278e+06 
-1.000000e-05 40 4 1.000000e+07 
-1.000000e-05 40 4 3.162278e+07 
-1.000000e-05 40 4 1.000000e+08 
-1.000000e-05 40 6 1.000000e+05 
-1.000000e-05 40 6 3.162278e+05 
-1.000000e-05 40 6 1.000000e+06 
-1.000000e-05 40 6 3.162278e+06 
-1.000000e-05 40 6 1.000000e+07 
-1.000000e-05 40 6 3.162278e+07 
-1.000000e-05 40 6 1.000000e+08 
-1.000000e-05 40 8 1.000000e+05 
-1.000000e-05 40 8 3.162278e+05 
-1.000000e-05 40 8 1.000000e+06 
-1.000000e-05 40 8 3.162278e+06 
-1.000000e-05 40 8 1.000000e+07 
-1.000000e-05 40 8 3.162278e+07 
-1.000000e-05 40 8 1.000000e+08 
-1.000000e-05 40 10 1.000000e+05 
-1.000000e-05 40 10 3.162278e+05 
-1.000000e-05 40 10 1.000000e+06 
-1.000000e-05 40 10 3.162278e+06 
-1.000000e-05 40 10 1.000000e+07 
-1.000000e-05 40 10 3.162278e+07 
-1.000000e-05 40 10 1.000000e+08 
-1.000000e-05 40 12 1.000000e+05 
-1.000000e-05 40 12 3.162278e+05 
-1.000000e-05 40 12 1.000000e+06 
-1.000000e-05 40 12 3.162278e+06 
-1.000000e-05 40 12 1.000000e+07 
-1.000000e-05 40 12 3.162278e+07 
-1.000000e-05 40 12 1.000000e+08 
-1.000000e-05 40 14 1.000000e+05 
-1.000000e-05 40 14 3.162278e+05 
-1.000000e-05 40 14 1.000000e+06 
-1.000000e-05 40 14 3.162278e+06 
-1.000000e-05 40 14 1.000000e+07 
-1.000000e-05 40 14 3.162278e+07 
-1.000000e-05 40 14 1.000000e+08 
-1.000000e-05 40 16 1.000000e+05 
-1.000000e-05 40 16 3.162278e+05 
-1.000000e-05 40 16 1.000000e+06 
-1.000000e-05 40 16 3.162278e+06 
-1.000000e-05 40 16 1.000000e+07 
-1.000000e-05 40 16 3.162278e+07 
-1.000000e-05 40 16 1.000000e+08 
-1.000000e-05 45 4 1.000000e+05 
-1.000000e-05 45 4 3.162278e+05 
-1.000000e-05 45 4 1.000000e+06 
-1.000000e-05 45 4 3.162278e+06 
-1.000000e-05 45 4 1.000000e+07 
-1.000000e-05 45 4 3.162278e+07 
-1.000000e-05 45 4 1.000000e+08 
-1.000000e-05 45 6 1.000000e+05 
-1.000000e-05 45 6 3.162278e+05 
-1.000000e-05 45 6 1.000000e+06 
-1.000000e-05 45 6 3.162278e+06 
-1.000000e-05 45 6 1.000000e+07 
-1.000000e-05 45 6 3.162278e+07 
-1.000000e-05 45 6 1.000000e+08 
-1.000000e-05 45 8 1.000000e+05 
-1.000000e-05 45 8 3.162278e+05 
-1.000000e-05 45 8 1.000000e+06 
-1.000000e-05 45 8 3.162278e+06 
-1.000000e-05 45 8 1.000000e+07 
-1.000000e-05 45 8 3.162278e+07 
-1.000000e-05 45 8 1.000000e+08 
-1.000000e-05 45 10 1.000000e+05 
-1.000000e-05 45 10 3.162278e+05 
-1.000000e-05 45 10 1.000000e+06 
-1.000000e-05 45 10 3.162278e+06 
-1.000000e-05 45 10 1.000000e+07 
-1.000000e-05 45 10 3.162278e+07 
-1.000000e-05 45 10 1.000000e+08 
-1.000000e-05 45 12 1.000000e+05 
-1.000000e-05 45 12 3.162278e+05 
-1.000000e-05 45 12 1.000000e+06 
-1.000000e-05 45 12 3.162278e+06 
-1.000000e-05 45 12 1.000000e+07 
-1.000000e-05 45 12 3.162278e+07 
-1.000000e-05 45 12 1.000000e+08 
-1.000000e-05 45 14 1.000000e+05 
-1.000000e-05 45 14 3.162278e+05 
-1.000000e-05 45 14 1.000000e+06 
-1.000000e-05 45 14 3.162278e+06 
-1.000000e-05 45 14 1.000000e+07 
-1.000000e-05 45 14 3.162278e+07 
-1.000000e-05 45 14 1.000000e+08 
-1.000000e-05 45 16 1.000000e+05 
-1.000000e-05 45 16 3.162278e+05 
-1.000000e-05 45 16 1.000000e+06 
-1.000000e-05 45 16 3.162278e+06 
-1.000000e-05 45 16 1.000000e+07 
-1.000000e-05 45 16 3.162278e+07 
-1.000000e-05 45 16 1.000000e+08 
-1.000000e-05 50 4 1.000000e+05 
-1.000000e-05 50 4 3.162278e+05 
-1.000000e-05 50 4 1.000000e+06 
-1.000000e-05 50 4 3.162278e+06 
-1.000000e-05 50 4 1.000000e+07 
-1.000000e-05 50 4 3.162278e+07 
-1.000000e-05 50 4 1.000000e+08 
-1.000000e-05 50 6 1.000000e+05 
-1.000000e-05 50 6 3.162278e+05 
-1.000000e-05 50 6 1.000000e+06 
-1.000000e-05 50 6 3.162278e+06 
-1.000000e-05 50 6 1.000000e+07 
-1.000000e-05 50 6 3.162278e+07 
-1.000000e-05 50 6 1.000000e+08 
-1.000000e-05 50 8 1.000000e+05 
-1.000000e-05 50 8 3.162278e+05 
-1.000000e-05 50 8 1.000000e+06 
-1.000000e-05 50 8 3.162278e+06 
-1.000000e-05 50 8 1.000000e+07 
-1.000000e-05 50 8 3.162278e+07 
-1.000000e-05 50 8 1.000000e+08 
-1.000000e-05 50 10 1.000000e+05 
-1.000000e-05 50 10 3.162278e+05 
-1.000000e-05 50 10 1.000000e+06 
-1.000000e-05 50 10 3.162278e+06 
-1.000000e-05 50 10 1.000000e+07 
-1.000000e-05 50 10 3.162278e+07 
-1.000000e-05 50 10 1.000000e+08 
-1.000000e-05 50 12 1.000000e+05 
-1.000000e-05 50 12 3.162278e+05 
-1.000000e-05 50 12 1.000000e+06 
-1.000000e-05 50 12 3.162278e+06 
-1.000000e-05 50 12 1.000000e+07 
-1.000000e-05 50 12 3.162278e+07 
-1.000000e-05 50 12 1.000000e+08 
-1.000000e-05 50 14 1.000000e+05 
-1.000000e-05 50 14 3.162278e+05 
-1.000000e-05 50 14 1.000000e+06 
-1.000000e-05 50 14 3.162278e+06 
-1.000000e-05 50 14 1.000000e+07 
-1.000000e-05 50 14 3.162278e+07 
-1.000000e-05 50 14 1.000000e+08 
-1.000000e-05 50 16 1.000000e+05 
-1.000000e-05 50 16 3.162278e+05 
-1.000000e-05 50 16 1.000000e+06 
-1.000000e-05 50 16 3.162278e+06 
-1.000000e-05 50 16 1.000000e+07 
-1.000000e-05 50 16 3.162278e+07 
-1.000000e-05 50 16 1.000000e+08 
-1.000000e-05 55 4 1.000000e+05 
-1.000000e-05 55 4 3.162278e+05 
-1.000000e-05 55 4 1.000000e+06 
-1.000000e-05 55 4 3.162278e+06 
-1.000000e-05 55 4 1.000000e+07 
-1.000000e-05 55 4 3.162278e+07 
-1.000000e-05 55 4 1.000000e+08 
-1.000000e-05 55 6 1.000000e+05 
-1.000000e-05 55 6 3.162278e+05 
-1.000000e-05 55 6 1.000000e+06 
-1.000000e-05 55 6 3.162278e+06 
-1.000000e-05 55 6 1.000000e+07 
-1.000000e-05 55 6 3.162278e+07 
-1.000000e-05 55 6 1.000000e+08 
-1.000000e-05 55 8 1.000000e+05 
-1.000000e-05 55 8 3.162278e+05 
-1.000000e-05 55 8 1.000000e+06 
-1.000000e-05 55 8 3.162278e+06 
-1.000000e-05 55 8 1.000000e+07 
-1.000000e-05 55 8 3.162278e+07 
-1.000000e-05 55 8 1.000000e+08 
-1.000000e-05 55 10 1.000000e+05 
-1.000000e-05 55 10 3.162278e+05 
-1.000000e-05 55 10 1.000000e+06 
-1.000000e-05 55 10 3.162278e+06 
-1.000000e-05 55 10 1.000000e+07 
-1.000000e-05 55 10 3.162278e+07 
-1.000000e-05 55 10 1.000000e+08 
-1.000000e-05 55 12 1.000000e+05 
-1.000000e-05 55 12 3.162278e+05 
-1.000000e-05 55 12 1.000000e+06 
-1.000000e-05 55 12 3.162278e+06 
-1.000000e-05 55 12 1.000000e+07 
-1.000000e-05 55 12 3.162278e+07 
-1.000000e-05 55 12 1.000000e+08 
-1.000000e-05 55 14 1.000000e+05 
-1.000000e-05 55 14 3.162278e+05 
-1.000000e-05 55 14 1.000000e+06 
-1.000000e-05 55 14 3.162278e+06 
-1.000000e-05 55 14 1.000000e+07 
-1.000000e-05 55 14 3.162278e+07 
-1.000000e-05 55 14 1.000000e+08 
-1.000000e-05 55 16 1.000000e+05 
-1.000000e-05 55 16 3.162278e+05 
-1.000000e-05 55 16 1.000000e+06 
-1.000000e-05 55 16 3.162278e+06 
-1.000000e-05 55 16 1.000000e+07 
-1.000000e-05 55 16 3.162278e+07 
-1.000000e-05 55 16 1.000000e+08 
-1.000000e-05 60 4 1.000000e+05 
-1.000000e-05 60 4 3.162278e+05 
-1.000000e-05 60 4 1.000000e+06 
-1.000000e-05 60 4 3.162278e+06 
-1.000000e-05 60 4 1.000000e+07 
-1.000000e-05 60 4 3.162278e+07 
-1.000000e-05 60 4 1.000000e+08 
-1.000000e-05 60 6 1.000000e+05 
-1.000000e-05 60 6 3.162278e+05 
-1.000000e-05 60 6 1.000000e+06 
-1.000000e-05 60 6 3.162278e+06 
-1.000000e-05 60 6 1.000000e+07 
-1.000000e-05 60 6 3.162278e+07 
-1.000000e-05 60 6 1.000000e+08 
-1.000000e-05 60 8 1.000000e+05 
-1.000000e-05 60 8 3.162278e+05 
-1.000000e-05 60 8 1.000000e+06 
-1.000000e-05 60 8 3.162278e+06 
-1.000000e-05 60 8 1.000000e+07 
-1.000000e-05 60 8 3.162278e+07 
-1.000000e-05 60 8 1.000000e+08 
-1.000000e-05 60 10 1.000000e+05 
-1.000000e-05 60 10 3.162278e+05 
-1.000000e-05 60 10 1.000000e+06 
-1.000000e-05 60 10 3.162278e+06 
-1.000000e-05 60 10 1.000000e+07 
-1.000000e-05 60 10 3.162278e+07 
-1.000000e-05 60 10 1.000000e+08 
-1.000000e-05 60 12 1.000000e+05 
-1.000000e-05 60 12 3.162278e+05 
-1.000000e-05 60 12 1.000000e+06 
-1.000000e-05 60 12 3.162278e+06 
-1.000000e-05 60 12 1.000000e+07 
-1.000000e-05 60 12 3.162278e+07 
-1.000000e-05 60 12 1.000000e+08 
-1.000000e-05 60 14 1.000000e+05 
-1.000000e-05 60 14 3.162278e+05 
-1.000000e-05 60 14 1.000000e+06 
-1.000000e-05 60 14 3.162278e+06 
-1.000000e-05 60 14 1.000000e+07 
-1.000000e-05 60 14 3.162278e+07 
-1.000000e-05 60 14 1.000000e+08 
-1.000000e-05 60 16 1.000000e+05 
-1.000000e-05 60 16 3.162278e+05 
-1.000000e-05 60 16 1.000000e+06 
-1.000000e-05 60 16 3.162278e+06 
-1.000000e-05 60 16 1.000000e+07 
-1.000000e-05 60 16 3.162278e+07 
-1.000000e-05 60 16 1.000000e+08 
-3.162278e-06 20 4 1.000000e+05 
-3.162278e-06 20 4 3.162278e+05 
-3.162278e-06 20 4 1.000000e+06 
-3.162278e-06 20 4 3.162278e+06 
-3.162278e-06 20 4 1.000000e+07 
-3.162278e-06 20 4 3.162278e+07 
-3.162278e-06 20 4 1.000000e+08 
-3.162278e-06 20 6 1.000000e+05 
-3.162278e-06 20 6 3.162278e+05 
-3.162278e-06 20 6 1.000000e+06 
-3.162278e-06 20 6 3.162278e+06 
-3.162278e-06 20 6 1.000000e+07 
-3.162278e-06 20 6 3.162278e+07 
-3.162278e-06 20 6 1.000000e+08 
-3.162278e-06 20 8 1.000000e+05 
-3.162278e-06 20 8 3.162278e+05 
-3.162278e-06 20 8 1.000000e+06 
-3.162278e-06 20 8 3.162278e+06 
-3.162278e-06 20 8 1.000000e+07 
-3.162278e-06 20 8 3.162278e+07 
-3.162278e-06 20 8 1.000000e+08 
-3.162278e-06 20 10 1.000000e+05 
-3.162278e-06 20 10 3.162278e+05 
-3.162278e-06 20 10 1.000000e+06 
-3.162278e-06 20 10 3.162278e+06 
-3.162278e-06 20 10 1.000000e+07 
-3.162278e-06 20 10 3.162278e+07 
-3.162278e-06 20 10 1.000000e+08 
-3.162278e-06 20 12 1.000000e+05 
-3.162278e-06 20 12 3.162278e+05 
-3.162278e-06 20 12 1.000000e+06 
-3.162278e-06 20 12 3.162278e+06 
-3.162278e-06 20 12 1.000000e+07 
-3.162278e-06 20 12 3.162278e+07 
-3.162278e-06 20 12 1.000000e+08 
-3.162278e-06 20 14 1.000000e+05 
-3.162278e-06 20 14 3.162278e+05 
-3.162278e-06 20 14 1.000000e+06 
-3.162278e-06 20 14 3.162278e+06 
-3.162278e-06 20 14 1.000000e+07 
-3.162278e-06 20 14 3.162278e+07 
-3.162278e-06 20 14 1.000000e+08 
-3.162278e-06 20 16 1.000000e+05 
-3.162278e-06 20 16 3.162278e+05 
-3.162278e-06 20 16 1.000000e+06 
-3.162278e-06 20 16 3.162278e+06 
-3.162278e-06 20 16 1.000000e+07 
-3.162278e-06 20 16 3.162278e+07 
-3.162278e-06 20 16 1.000000e+08 
-3.162278e-06 25 4 1.000000e+05 
-3.162278e-06 25 4 3.162278e+05 
-3.162278e-06 25 4 1.000000e+06 
-3.162278e-06 25 4 3.162278e+06 
-3.162278e-06 25 4 1.000000e+07 
-3.162278e-06 25 4 3.162278e+07 
-3.162278e-06 25 4 1.000000e+08 
-3.162278e-06 25 6 1.000000e+05 
-3.162278e-06 25 6 3.162278e+05 
-3.162278e-06 25 6 1.000000e+06 
-3.162278e-06 25 6 3.162278e+06 
-3.162278e-06 25 6 1.000000e+07 
-3.162278e-06 25 6 3.162278e+07 
-3.162278e-06 25 6 1.000000e+08 
-3.162278e-06 25 8 1.000000e+05 
-3.162278e-06 25 8 3.162278e+05 
-3.162278e-06 25 8 1.000000e+06 
-3.162278e-06 25 8 3.162278e+06 
-3.162278e-06 25 8 1.000000e+07 
-3.162278e-06 25 8 3.162278e+07 
-3.162278e-06 25 8 1.000000e+08 
-3.162278e-06 25 10 1.000000e+05 
-3.162278e-06 25 10 3.162278e+05 
-3.162278e-06 25 10 1.000000e+06 
-3.162278e-06 25 10 3.162278e+06 
-3.162278e-06 25 10 1.000000e+07 
-3.162278e-06 25 10 3.162278e+07 
-3.162278e-06 25 10 1.000000e+08 
-3.162278e-06 25 12 1.000000e+05 
-3.162278e-06 25 12 3.162278e+05 
-3.162278e-06 25 12 1.000000e+06 
-3.162278e-06 25 12 3.162278e+06 
-3.162278e-06 25 12 1.000000e+07 
-3.162278e-06 25 12 3.162278e+07 
-3.162278e-06 25 12 1.000000e+08 
-3.162278e-06 25 14 1.000000e+05 
-3.162278e-06 25 14 3.162278e+05 
-3.162278e-06 25 14 1.000000e+06 
-3.162278e-06 25 14 3.162278e+06 
-3.162278e-06 25 14 1.000000e+07 
-3.162278e-06 25 14 3.162278e+07 
-3.162278e-06 25 14 1.000000e+08 
-3.162278e-06 25 16 1.000000e+05 
-3.162278e-06 25 16 3.162278e+05 
-3.162278e-06 25 16 1.000000e+06 
-3.162278e-06 25 16 3.162278e+06 
-3.162278e-06 25 16 1.000000e+07 
-3.162278e-06 25 16 3.162278e+07 
-3.162278e-06 25 16 1.000000e+08 
-3.162278e-06 30 4 1.000000e+05 
-3.162278e-06 30 4 3.162278e+05 
-3.162278e-06 30 4 1.000000e+06 
-3.162278e-06 30 4 3.162278e+06 
-3.162278e-06 30 4 1.000000e+07 
-3.162278e-06 30 4 3.162278e+07 
-3.162278e-06 30 4 1.000000e+08 
-3.162278e-06 30 6 1.000000e+05 
-3.162278e-06 30 6 3.162278e+05 
-3.162278e-06 30 6 1.000000e+06 
-3.162278e-06 30 6 3.162278e+06 
-3.162278e-06 30 6 1.000000e+07 
-3.162278e-06 30 6 3.162278e+07 
-3.162278e-06 30 6 1.000000e+08 
-3.162278e-06 30 8 1.000000e+05 
-3.162278e-06 30 8 3.162278e+05 
-3.162278e-06 30 8 1.000000e+06 
-3.162278e-06 30 8 3.162278e+06 
-3.162278e-06 30 8 1.000000e+07 
-3.162278e-06 30 8 3.162278e+07 
-3.162278e-06 30 8 1.000000e+08 
-3.162278e-06 30 10 1.000000e+05 
-3.162278e-06 30 10 3.162278e+05 
-3.162278e-06 30 10 1.000000e+06 
-3.162278e-06 30 10 3.162278e+06 
-3.162278e-06 30 10 1.000000e+07 
-3.162278e-06 30 10 3.162278e+07 
-3.162278e-06 30 10 1.000000e+08 
-3.162278e-06 30 12 1.000000e+05 
-3.162278e-06 30 12 3.162278e+05 
-3.162278e-06 30 12 1.000000e+06 
-3.162278e-06 30 12 3.162278e+06 
-3.162278e-06 30 12 1.000000e+07 
-3.162278e-06 30 12 3.162278e+07 
-3.162278e-06 30 12 1.000000e+08 
-3.162278e-06 30 14 1.000000e+05 
-3.162278e-06 30 14 3.162278e+05 
-3.162278e-06 30 14 1.000000e+06 
-3.162278e-06 30 14 3.162278e+06 
-3.162278e-06 30 14 1.000000e+07 
-3.162278e-06 30 14 3.162278e+07 
-3.162278e-06 30 14 1.000000e+08 
-3.162278e-06 30 16 1.000000e+05 
-3.162278e-06 30 16 3.162278e+05 
-3.162278e-06 30 16 1.000000e+06 
-3.162278e-06 30 16 3.162278e+06 
-3.162278e-06 30 16 1.000000e+07 
-3.162278e-06 30 16 3.162278e+07 
-3.162278e-06 30 16 1.000000e+08 
-3.162278e-06 35 4 1.000000e+05 
-3.162278e-06 35 4 3.162278e+05 
-3.162278e-06 35 4 1.000000e+06 
-3.162278e-06 35 4 3.162278e+06 
-3.162278e-06 35 4 1.000000e+07 
-3.162278e-06 35 4 3.162278e+07 
-3.162278e-06 35 4 1.000000e+08 
-3.162278e-06 35 6 1.000000e+05 
-3.162278e-06 35 6 3.162278e+05 
-3.162278e-06 35 6 1.000000e+06 
-3.162278e-06 35 6 3.162278e+06 
-3.162278e-06 35 6 1.000000e+07 
-3.162278e-06 35 6 3.162278e+07 
-3.162278e-06 35 6 1.000000e+08 
-3.162278e-06 35 8 1.000000e+05 
-3.162278e-06 35 8 3.162278e+05 
-3.162278e-06 35 8 1.000000e+06 
-3.162278e-06 35 8 3.162278e+06 
-3.162278e-06 35 8 1.000000e+07 
-3.162278e-06 35 8 3.162278e+07 
-3.162278e-06 35 8 1.000000e+08 
-3.162278e-06 35 10 1.000000e+05 
-3.162278e-06 35 10 3.162278e+05 
-3.162278e-06 35 10 1.000000e+06 
-3.162278e-06 35 10 3.162278e+06 
-3.162278e-06 35 10 1.000000e+07 
-3.162278e-06 35 10 3.162278e+07 
-3.162278e-06 35 10 1.000000e+08 
-3.162278e-06 35 12 1.000000e+05 
-3.162278e-06 35 12 3.162278e+05 
-3.162278e-06 35 12 1.000000e+06 
-3.162278e-06 35 12 3.162278e+06 
-3.162278e-06 35 12 1.000000e+07 
-3.162278e-06 35 12 3.162278e+07 
-3.162278e-06 35 12 1.000000e+08 
-3.162278e-06 35 14 1.000000e+05 
-3.162278e-06 35 14 3.162278e+05 
-3.162278e-06 35 14 1.000000e+06 
-3.162278e-06 35 14 3.162278e+06 
-3.162278e-06 35 14 1.000000e+07 
-3.162278e-06 35 14 3.162278e+07 
-3.162278e-06 35 14 1.000000e+08 
-3.162278e-06 35 16 1.000000e+05 
-3.162278e-06 35 16 3.162278e+05 
-3.162278e-06 35 16 1.000000e+06 
-3.162278e-06 35 16 3.162278e+06 
-3.162278e-06 35 16 1.000000e+07 
-3.162278e-06 35 16 3.162278e+07 
-3.162278e-06 35 16 1.000000e+08 
-3.162278e-06 40 4 1.000000e+05 
-3.162278e-06 40 4 3.162278e+05 
-3.162278e-06 40 4 1.000000e+06 
-3.162278e-06 40 4 3.162278e+06 
-3.162278e-06 40 4 1.000000e+07 
-3.162278e-06 40 4 3.162278e+07 
-3.162278e-06 40 4 1.000000e+08 
-3.162278e-06 40 6 1.000000e+05 
-3.162278e-06 40 6 3.162278e+05 
-3.162278e-06 40 6 1.000000e+06 
-3.162278e-06 40 6 3.162278e+06 
-3.162278e-06 40 6 1.000000e+07 
-3.162278e-06 40 6 3.162278e+07 
-3.162278e-06 40 6 1.000000e+08 
-3.162278e-06 40 8 1.000000e+05 
-3.162278e-06 40 8 3.162278e+05 
-3.162278e-06 40 8 1.000000e+06 
-3.162278e-06 40 8 3.162278e+06 
-3.162278e-06 40 8 1.000000e+07 
-3.162278e-06 40 8 3.162278e+07 
-3.162278e-06 40 8 1.000000e+08 
-3.162278e-06 40 10 1.000000e+05 
-3.162278e-06 40 10 3.162278e+05 
-3.162278e-06 40 10 1.000000e+06 
-3.162278e-06 40 10 3.162278e+06 
-3.162278e-06 40 10 1.000000e+07 
-3.162278e-06 40 10 3.162278e+07 
-3.162278e-06 40 10 1.000000e+08 
-3.162278e-06 40 12 1.000000e+05 
-3.162278e-06 40 12 3.162278e+05 
-3.162278e-06 40 12 1.000000e+06 
-3.162278e-06 40 12 3.162278e+06 
-3.162278e-06 40 12 1.000000e+07 
-3.162278e-06 40 12 3.162278e+07 
-3.162278e-06 40 12 1.000000e+08 
-3.162278e-06 40 14 1.000000e+05 
-3.162278e-06 40 14 3.162278e+05 
-3.162278e-06 40 14 1.000000e+06 
-3.162278e-06 40 14 3.162278e+06 
-3.162278e-06 40 14 1.000000e+07 
-3.162278e-06 40 14 3.162278e+07 
-3.162278e-06 40 14 1.000000e+08 
-3.162278e-06 40 16 1.000000e+05 
-3.162278e-06 40 16 3.162278e+05 
-3.162278e-06 40 16 1.000000e+06 
-3.162278e-06 40 16 3.162278e+06 
-3.162278e-06 40 16 1.000000e+07 
-3.162278e-06 40 16 3.162278e+07 
-3.162278e-06 40 16 1.000000e+08 
-3.162278e-06 45 4 1.000000e+05 
-3.162278e-06 45 4 3.162278e+05 
-3.162278e-06 45 4 1.000000e+06 
-3.162278e-06 45 4 3.162278e+06 
-3.162278e-06 45 4 1.000000e+07 
-3.162278e-06 45 4 3.162278e+07 
-3.162278e-06 45 4 1.000000e+08 
-3.162278e-06 45 6 1.000000e+05 
-3.162278e-06 45 6 3.162278e+05 
-3.162278e-06 45 6 1.000000e+06 
-3.162278e-06 45 6 3.162278e+06 
-3.162278e-06 45 6 1.000000e+07 
-3.162278e-06 45 6 3.162278e+07 
-3.162278e-06 45 6 1.000000e+08 
-3.162278e-06 45 8 1.000000e+05 
-3.162278e-06 45 8 3.162278e+05 
-3.162278e-06 45 8 1.000000e+06 
-3.162278e-06 45 8 3.162278e+06 
-3.162278e-06 45 8 1.000000e+07 
-3.162278e-06 45 8 3.162278e+07 
-3.162278e-06 45 8 1.000000e+08 
-3.162278e-06 45 10 1.000000e+05 
-3.162278e-06 45 10 3.162278e+05 
-3.162278e-06 45 10 1.000000e+06 
-3.162278e-06 45 10 3.162278e+06 
-3.162278e-06 45 10 1.000000e+07 
-3.162278e-06 45 10 3.162278e+07 
-3.162278e-06 45 10 1.000000e+08 
-3.162278e-06 45 12 1.000000e+05 
-3.162278e-06 45 12 3.162278e+05 
-3.162278e-06 45 12 1.000000e+06 
-3.162278e-06 45 12 3.162278e+06 
-3.162278e-06 45 12 1.000000e+07 
-3.162278e-06 45 12 3.162278e+07 
-3.162278e-06 45 12 1.000000e+08 
-3.162278e-06 45 14 1.000000e+05 
-3.162278e-06 45 14 3.162278e+05 
-3.162278e-06 45 14 1.000000e+06 
-3.162278e-06 45 14 3.162278e+06 
-3.162278e-06 45 14 1.000000e+07 
-3.162278e-06 45 14 3.162278e+07 
-3.162278e-06 45 14 1.000000e+08 
-3.162278e-06 45 16 1.000000e+05 
-3.162278e-06 45 16 3.162278e+05 
-3.162278e-06 45 16 1.000000e+06 
-3.162278e-06 45 16 3.162278e+06 
-3.162278e-06 45 16 1.000000e+07 
-3.162278e-06 45 16 3.162278e+07 
-3.162278e-06 45 16 1.000000e+08 
-3.162278e-06 50 4 1.000000e+05 
-3.162278e-06 50 4 3.162278e+05 
-3.162278e-06 50 4 1.000000e+06 
-3.162278e-06 50 4 3.162278e+06 
-3.162278e-06 50 4 1.000000e+07 
-3.162278e-06 50 4 3.162278e+07 
-3.162278e-06 50 4 1.000000e+08 
-3.162278e-06 50 6 1.000000e+05 
-3.162278e-06 50 6 3.162278e+05 
-3.162278e-06 50 6 1.000000e+06 
-3.162278e-06 50 6 3.162278e+06 
-3.162278e-06 50 6 1.000000e+07 
-3.162278e-06 50 6 3.162278e+07 
-3.162278e-06 50 6 1.000000e+08 
-3.162278e-06 50 8 1.000000e+05 
-3.162278e-06 50 8 3.162278e+05 
-3.162278e-06 50 8 1.000000e+06 
-3.162278e-06 50 8 3.162278e+06 
-3.162278e-06 50 8 1.000000e+07 
-3.162278e-06 50 8 3.162278e+07 
-3.162278e-06 50 8 1.000000e+08 
-3.162278e-06 50 10 1.000000e+05 
-3.162278e-06 50 10 3.162278e+05 
-3.162278e-06 50 10 1.000000e+06 
-3.162278e-06 50 10 3.162278e+06 
-3.162278e-06 50 10 1.000000e+07 
-3.162278e-06 50 10 3.162278e+07 
-3.162278e-06 50 10 1.000000e+08 
-3.162278e-06 50 12 1.000000e+05 
-3.162278e-06 50 12 3.162278e+05 
-3.162278e-06 50 12 1.000000e+06 
-3.162278e-06 50 12 3.162278e+06 
-3.162278e-06 50 12 1.000000e+07 
-3.162278e-06 50 12 3.162278e+07 
-3.162278e-06 50 12 1.000000e+08 
-3.162278e-06 50 14 1.000000e+05 
-3.162278e-06 50 14 3.162278e+05 
-3.162278e-06 50 14 1.000000e+06 
-3.162278e-06 50 14 3.162278e+06 
-3.162278e-06 50 14 1.000000e+07 
-3.162278e-06 50 14 3.162278e+07 
-3.162278e-06 50 14 1.000000e+08 
-3.162278e-06 50 16 1.000000e+05 
-3.162278e-06 50 16 3.162278e+05 
-3.162278e-06 50 16 1.000000e+06 
-3.162278e-06 50 16 3.162278e+06 
-3.162278e-06 50 16 1.000000e+07 
-3.162278e-06 50 16 3.162278e+07 
-3.162278e-06 50 16 1.000000e+08 
-3.162278e-06 55 4 1.000000e+05 
-3.162278e-06 55 4 3.162278e+05 
-3.162278e-06 55 4 1.000000e+06 
-3.162278e-06 55 4 3.162278e+06 
-3.162278e-06 55 4 1.000000e+07 
-3.162278e-06 55 4 3.162278e+07 
-3.162278e-06 55 4 1.000000e+08 
-3.162278e-06 55 6 1.000000e+05 
-3.162278e-06 55 6 3.162278e+05 
-3.162278e-06 55 6 1.000000e+06 
-3.162278e-06 55 6 3.162278e+06 
-3.162278e-06 55 6 1.000000e+07 
-3.162278e-06 55 6 3.162278e+07 
-3.162278e-06 55 6 1.000000e+08 
-3.162278e-06 55 8 1.000000e+05 
-3.162278e-06 55 8 3.162278e+05 
-3.162278e-06 55 8 1.000000e+06 
-3.162278e-06 55 8 3.162278e+06 
-3.162278e-06 55 8 1.000000e+07 
-3.162278e-06 55 8 3.162278e+07 
-3.162278e-06 55 8 1.000000e+08 
-3.162278e-06 55 10 1.000000e+05 
-3.162278e-06 55 10 3.162278e+05 
-3.162278e-06 55 10 1.000000e+06 
-3.162278e-06 55 10 3.162278e+06 
-3.162278e-06 55 10 1.000000e+07 
-3.162278e-06 55 10 3.162278e+07 
-3.162278e-06 55 10 1.000000e+08 
-3.162278e-06 55 12 1.000000e+05 
-3.162278e-06 55 12 3.162278e+05 
-3.162278e-06 55 12 1.000000e+06 
-3.162278e-06 55 12 3.162278e+06 
-3.162278e-06 55 12 1.000000e+07 
-3.162278e-06 55 12 3.162278e+07 
-3.162278e-06 55 12 1.000000e+08 
-3.162278e-06 55 14 1.000000e+05 
-3.162278e-06 55 14 3.162278e+05 
-3.162278e-06 55 14 1.000000e+06 
-3.162278e-06 55 14 3.162278e+06 
-3.162278e-06 55 14 1.000000e+07 
-3.162278e-06 55 14 3.162278e+07 
-3.162278e-06 55 14 1.000000e+08 
-3.162278e-06 55 16 1.000000e+05 
-3.162278e-06 55 16 3.162278e+05 
-3.162278e-06 55 16 1.000000e+06 
-3.162278e-06 55 16 3.162278e+06 
-3.162278e-06 55 16 1.000000e+07 
-3.162278e-06 55 16 3.162278e+07 
-3.162278e-06 55 16 1.000000e+08 
-3.162278e-06 60 4 1.000000e+05 
-3.162278e-06 60 4 3.162278e+05 
-3.162278e-06 60 4 1.000000e+06 
-3.162278e-06 60 4 3.162278e+06 
-3.162278e-06 60 4 1.000000e+07 
-3.162278e-06 60 4 3.162278e+07 
-3.162278e-06 60 4 1.000000e+08 
-3.162278e-06 60 6 1.000000e+05 
-3.162278e-06 60 6 3.162278e+05 
-3.162278e-06 60 6 1.000000e+06 
-3.162278e-06 60 6 3.162278e+06 
-3.162278e-06 60 6 1.000000e+07 
-3.162278e-06 60 6 3.162278e+07 
-3.162278e-06 60 6 1.000000e+08 
-3.162278e-06 60 8 1.000000e+05 
-3.162278e-06 60 8 3.162278e+05 
-3.162278e-06 60 8 1.000000e+06 
-3.162278e-06 60 8 3.162278e+06 
-3.162278e-06 60 8 1.000000e+07 
-3.162278e-06 60 8 3.162278e+07 
-3.162278e-06 60 8 1.000000e+08 
-3.162278e-06 60 10 1.000000e+05 
-3.162278e-06 60 10 3.162278e+05 
-3.162278e-06 60 10 1.000000e+06 
-3.162278e-06 60 10 3.162278e+06 
-3.162278e-06 60 10 1.000000e+07 
-3.162278e-06 60 10 3.162278e+07 
-3.162278e-06 60 10 1.000000e+08 
-3.162278e-06 60 12 1.000000e+05 
-3.162278e-06 60 12 3.162278e+05 
-3.162278e-06 60 12 1.000000e+06 
-3.162278e-06 60 12 3.162278e+06 
-3.162278e-06 60 12 1.000000e+07 
-3.162278e-06 60 12 3.162278e+07 
-3.162278e-06 60 12 1.000000e+08 
-3.162278e-06 60 14 1.000000e+05 
-3.162278e-06 60 14 3.162278e+05 
-3.162278e-06 60 14 1.000000e+06 
-3.162278e-06 60 14 3.162278e+06 
-3.162278e-06 60 14 1.000000e+07 
-3.162278e-06 60 14 3.162278e+07 
-3.162278e-06 60 14 1.000000e+08 
-3.162278e-06 60 16 1.000000e+05 
-3.162278e-06 60 16 3.162278e+05 
-3.162278e-06 60 16 1.000000e+06 
-3.162278e-06 60 16 3.162278e+06 
-3.162278e-06 60 16 1.000000e+07 
-3.162278e-06 60 16 3.162278e+07 
-3.162278e-06 60 16 1.000000e+08 
-1.000000e-06 20 4 1.000000e+05 
-1.000000e-06 20 4 3.162278e+05 
-1.000000e-06 20 4 1.000000e+06 
-1.000000e-06 20 4 3.162278e+06 
-1.000000e-06 20 4 1.000000e+07 
-1.000000e-06 20 4 3.162278e+07 
-1.000000e-06 20 4 1.000000e+08 
-1.000000e-06 20 6 1.000000e+05 
-1.000000e-06 20 6 3.162278e+05 
-1.000000e-06 20 6 1.000000e+06 
-1.000000e-06 20 6 3.162278e+06 
-1.000000e-06 20 6 1.000000e+07 
-1.000000e-06 20 6 3.162278e+07 
-1.000000e-06 20 6 1.000000e+08 
-1.000000e-06 20 8 1.000000e+05 
-1.000000e-06 20 8 3.162278e+05 
-1.000000e-06 20 8 1.000000e+06 
-1.000000e-06 20 8 3.162278e+06 
-1.000000e-06 20 8 1.000000e+07 
-1.000000e-06 20 8 3.162278e+07 
-1.000000e-06 20 8 1.000000e+08 
-1.000000e-06 20 10 1.000000e+05 
-1.000000e-06 20 10 3.162278e+05 
-1.000000e-06 20 10 1.000000e+06 
-1.000000e-06 20 10 3.162278e+06 
-1.000000e-06 20 10 1.000000e+07 
-1.000000e-06 20 10 3.162278e+07 
-1.000000e-06 20 10 1.000000e+08 
-1.000000e-06 20 12 1.000000e+05 
-1.000000e-06 20 12 3.162278e+05 
-1.000000e-06 20 12 1.000000e+06 
-1.000000e-06 20 12 3.162278e+06 
-1.000000e-06 20 12 1.000000e+07 
-1.000000e-06 20 12 3.162278e+07 
-1.000000e-06 20 12 1.000000e+08 
-1.000000e-06 20 14 1.000000e+05 
-1.000000e-06 20 14 3.162278e+05 
-1.000000e-06 20 14 1.000000e+06 
-1.000000e-06 20 14 3.162278e+06 
-1.000000e-06 20 14 1.000000e+07 
-1.000000e-06 20 14 3.162278e+07 
-1.000000e-06 20 14 1.000000e+08 
-1.000000e-06 20 16 1.000000e+05 
-1.000000e-06 20 16 3.162278e+05 
-1.000000e-06 20 16 1.000000e+06 
-1.000000e-06 20 16 3.162278e+06 
-1.000000e-06 20 16 1.000000e+07 
-1.000000e-06 20 16 3.162278e+07 
-1.000000e-06 20 16 1.000000e+08 
-1.000000e-06 25 4 1.000000e+05 
-1.000000e-06 25 4 3.162278e+05 
-1.000000e-06 25 4 1.000000e+06 
-1.000000e-06 25 4 3.162278e+06 
-1.000000e-06 25 4 1.000000e+07 
-1.000000e-06 25 4 3.162278e+07 
-1.000000e-06 25 4 1.000000e+08 
-1.000000e-06 25 6 1.000000e+05 
-1.000000e-06 25 6 3.162278e+05 
-1.000000e-06 25 6 1.000000e+06 
-1.000000e-06 25 6 3.162278e+06 
-1.000000e-06 25 6 1.000000e+07 
-1.000000e-06 25 6 3.162278e+07 
-1.000000e-06 25 6 1.000000e+08 
-1.000000e-06 25 8 1.000000e+05 
-1.000000e-06 25 8 3.162278e+05 
-1.000000e-06 25 8 1.000000e+06 
-1.000000e-06 25 8 3.162278e+06 
-1.000000e-06 25 8 1.000000e+07 
-1.000000e-06 25 8 3.162278e+07 
-1.000000e-06 25 8 1.000000e+08 
-1.000000e-06 25 10 1.000000e+05 
-1.000000e-06 25 10 3.162278e+05 
-1.000000e-06 25 10 1.000000e+06 
-1.000000e-06 25 10 3.162278e+06 
-1.000000e-06 25 10 1.000000e+07 
-1.000000e-06 25 10 3.162278e+07 
-1.000000e-06 25 10 1.000000e+08 
-1.000000e-06 25 12 1.000000e+05 
-1.000000e-06 25 12 3.162278e+05 
-1.000000e-06 25 12 1.000000e+06 
-1.000000e-06 25 12 3.162278e+06 
-1.000000e-06 25 12 1.000000e+07 
-1.000000e-06 25 12 3.162278e+07 
-1.000000e-06 25 12 1.000000e+08 
-1.000000e-06 25 14 1.000000e+05 
-1.000000e-06 25 14 3.162278e+05 
-1.000000e-06 25 14 1.000000e+06 
-1.000000e-06 25 14 3.162278e+06 
-1.000000e-06 25 14 1.000000e+07 
-1.000000e-06 25 14 3.162278e+07 
-1.000000e-06 25 14 1.000000e+08 
-1.000000e-06 25 16 1.000000e+05 
-1.000000e-06 25 16 3.162278e+05 
-1.000000e-06 25 16 1.000000e+06 
-1.000000e-06 25 16 3.162278e+06 
-1.000000e-06 25 16 1.000000e+07 
-1.000000e-06 25 16 3.162278e+07 
-1.000000e-06 25 16 1.000000e+08 
-1.000000e-06 30 4 1.000000e+05 
-1.000000e-06 30 4 3.162278e+05 
-1.000000e-06 30 4 1.000000e+06 
-1.000000e-06 30 4 3.162278e+06 
-1.000000e-06 30 4 1.000000e+07 
-1.000000e-06 30 4 3.162278e+07 
-1.000000e-06 30 4 1.000000e+08 
-1.000000e-06 30 6 1.000000e+05 
-1.000000e-06 30 6 3.162278e+05 
-1.000000e-06 30 6 1.000000e+06 
-1.000000e-06 30 6 3.162278e+06 
-1.000000e-06 30 6 1.000000e+07 
-1.000000e-06 30 6 3.162278e+07 
-1.000000e-06 30 6 1.000000e+08 
-1.000000e-06 30 8 1.000000e+05 
-1.000000e-06 30 8 3.162278e+05 
-1.000000e-06 30 8 1.000000e+06 
-1.000000e-06 30 8 3.162278e+06 
-1.000000e-06 30 8 1.000000e+07 
-1.000000e-06 30 8 3.162278e+07 
-1.000000e-06 30 8 1.000000e+08 
-1.000000e-06 30 10 1.000000e+05 
-1.000000e-06 30 10 3.162278e+05 
-1.000000e-06 30 10 1.000000e+06 
-1.000000e-06 30 10 3.162278e+06 
-1.000000e-06 30 10 1.000000e+07 
-1.000000e-06 30 10 3.162278e+07 
-1.000000e-06 30 10 1.000000e+08 
-1.000000e-06 30 12 1.000000e+05 
-1.000000e-06 30 12 3.162278e+05 
-1.000000e-06 30 12 1.000000e+06 
-1.000000e-06 30 12 3.162278e+06 
-1.000000e-06 30 12 1.000000e+07 
-1.000000e-06 30 12 3.162278e+07 
-1.000000e-06 30 12 1.000000e+08 
-1.000000e-06 30 14 1.000000e+05 
-1.000000e-06 30 14 3.162278e+05 
-1.000000e-06 30 14 1.000000e+06 
-1.000000e-06 30 14 3.162278e+06 
-1.000000e-06 30 14 1.000000e+07 
-1.000000e-06 30 14 3.162278e+07 
-1.000000e-06 30 14 1.000000e+08 
-1.000000e-06 30 16 1.000000e+05 
-1.000000e-06 30 16 3.162278e+05 
-1.000000e-06 30 16 1.000000e+06 
-1.000000e-06 30 16 3.162278e+06 
-1.000000e-06 30 16 1.000000e+07 
-1.000000e-06 30 16 3.162278e+07 
-1.000000e-06 30 16 1.000000e+08 
-1.000000e-06 35 4 1.000000e+05 
-1.000000e-06 35 4 3.162278e+05 
-1.000000e-06 35 4 1.000000e+06 
-1.000000e-06 35 4 3.162278e+06 
-1.000000e-06 35 4 1.000000e+07 
-1.000000e-06 35 4 3.162278e+07 
-1.000000e-06 35 4 1.000000e+08 
-1.000000e-06 35 6 1.000000e+05 
-1.000000e-06 35 6 3.162278e+05 
-1.000000e-06 35 6 1.000000e+06 
-1.000000e-06 35 6 3.162278e+06 
-1.000000e-06 35 6 1.000000e+07 
-1.000000e-06 35 6 3.162278e+07 
-1.000000e-06 35 6 1.000000e+08 
-1.000000e-06 35 8 1.000000e+05 
-1.000000e-06 35 8 3.162278e+05 
-1.000000e-06 35 8 1.000000e+06 
-1.000000e-06 35 8 3.162278e+06 
-1.000000e-06 35 8 1.000000e+07 
-1.000000e-06 35 8 3.162278e+07 
-1.000000e-06 35 8 1.000000e+08 
-1.000000e-06 35 10 1.000000e+05 
-1.000000e-06 35 10 3.162278e+05 
-1.000000e-06 35 10 1.000000e+06 
-1.000000e-06 35 10 3.162278e+06 
-1.000000e-06 35 10 1.000000e+07 
-1.000000e-06 35 10 3.162278e+07 
-1.000000e-06 35 10 1.000000e+08 
-1.000000e-06 35 12 1.000000e+05 
-1.000000e-06 35 12 3.162278e+05 
-1.000000e-06 35 12 1.000000e+06 
-1.000000e-06 35 12 3.162278e+06 
-1.000000e-06 35 12 1.000000e+07 
-1.000000e-06 35 12 3.162278e+07 
-1.000000e-06 35 12 1.000000e+08 
-1.000000e-06 35 14 1.000000e+05 
-1.000000e-06 35 14 3.162278e+05 
-1.000000e-06 35 14 1.000000e+06 
-1.000000e-06 35 14 3.162278e+06 
-1.000000e-06 35 14 1.000000e+07 
-1.000000e-06 35 14 3.162278e+07 
-1.000000e-06 35 14 1.000000e+08 
-1.000000e-06 35 16 1.000000e+05 
-1.000000e-06 35 16 3.162278e+05 
-1.000000e-06 35 16 1.000000e+06 
-1.000000e-06 35 16 3.162278e+06 
-1.000000e-06 35 16 1.000000e+07 
-1.000000e-06 35 16 3.162278e+07 
-1.000000e-06 35 16 1.000000e+08 
-1.000000e-06 40 4 1.000000e+05 
-1.000000e-06 40 4 3.162278e+05 
-1.000000e-06 40 4 1.000000e+06 
-1.000000e-06 40 4 3.162278e+06 
-1.000000e-06 40 4 1.000000e+07 
-1.000000e-06 40 4 3.162278e+07 
-1.000000e-06 40 4 1.000000e+08 
-1.000000e-06 40 6 1.000000e+05 
-1.000000e-06 40 6 3.162278e+05 
-1.000000e-06 40 6 1.000000e+06 
-1.000000e-06 40 6 3.162278e+06 
-1.000000e-06 40 6 1.000000e+07 
-1.000000e-06 40 6 3.162278e+07 
-1.000000e-06 40 6 1.000000e+08 
-1.000000e-06 40 8 1.000000e+05 
-1.000000e-06 40 8 3.162278e+05 
-1.000000e-06 40 8 1.000000e+06 
-1.000000e-06 40 8 3.162278e+06 
-1.000000e-06 40 8 1.000000e+07 
-1.000000e-06 40 8 3.162278e+07 
-1.000000e-06 40 8 1.000000e+08 
-1.000000e-06 40 10 1.000000e+05 
-1.000000e-06 40 10 3.162278e+05 
-1.000000e-06 40 10 1.000000e+06 
-1.000000e-06 40 10 3.162278e+06 
-1.000000e-06 40 10 1.000000e+07 
-1.000000e-06 40 10 3.162278e+07 
-1.000000e-06 40 10 1.000000e+08 
-1.000000e-06 40 12 1.000000e+05 
-1.000000e-06 40 12 3.162278e+05 
-1.000000e-06 40 12 1.000000e+06 
-1.000000e-06 40 12 3.162278e+06 
-1.000000e-06 40 12 1.000000e+07 
-1.000000e-06 40 12 3.162278e+07 
-1.000000e-06 40 12 1.000000e+08 
-1.000000e-06 40 14 1.000000e+05 
-1.000000e-06 40 14 3.162278e+05 
-1.000000e-06 40 14 1.000000e+06 
-1.000000e-06 40 14 3.162278e+06 
-1.000000e-06 40 14 1.000000e+07 
-1.000000e-06 40 14 3.162278e+07 
-1.000000e-06 40 14 1.000000e+08 
-1.000000e-06 40 16 1.000000e+05 
-1.000000e-06 40 16 3.162278e+05 
-1.000000e-06 40 16 1.000000e+06 
-1.000000e-06 40 16 3.162278e+06 
-1.000000e-06 40 16 1.000000e+07 
-1.000000e-06 40 16 3.162278e+07 
-1.000000e-06 40 16 1.000000e+08 
-1.000000e-06 45 4 1.000000e+05 
-1.000000e-06 45 4 3.162278e+05 
-1.000000e-06 45 4 1.000000e+06 
-1.000000e-06 45 4 3.162278e+06 
-1.000000e-06 45 4 1.000000e+07 
-1.000000e-06 45 4 3.162278e+07 
-1.000000e-06 45 4 1.000000e+08 
-1.000000e-06 45 6 1.000000e+05 
-1.000000e-06 45 6 3.162278e+05 
-1.000000e-06 45 6 1.000000e+06 
-1.000000e-06 45 6 3.162278e+06 
-1.000000e-06 45 6 1.000000e+07 
-1.000000e-06 45 6 3.162278e+07 
-1.000000e-06 45 6 1.000000e+08 
-1.000000e-06 45 8 1.000000e+05 
-1.000000e-06 45 8 3.162278e+05 
-1.000000e-06 45 8 1.000000e+06 
-1.000000e-06 45 8 3.162278e+06 
-1.000000e-06 45 8 1.000000e+07 
-1.000000e-06 45 8 3.162278e+07 
-1.000000e-06 45 8 1.000000e+08 
-1.000000e-06 45 10 1.000000e+05 
-1.000000e-06 45 10 3.162278e+05 
-1.000000e-06 45 10 1.000000e+06 
-1.000000e-06 45 10 3.162278e+06 
-1.000000e-06 45 10 1.000000e+07 
-1.000000e-06 45 10 3.162278e+07 
-1.000000e-06 45 10 1.000000e+08 
-1.000000e-06 45 12 1.000000e+05 
-1.000000e-06 45 12 3.162278e+05 
-1.000000e-06 45 12 1.000000e+06 
-1.000000e-06 45 12 3.162278e+06 
-1.000000e-06 45 12 1.000000e+07 
-1.000000e-06 45 12 3.162278e+07 
-1.000000e-06 45 12 1.000000e+08 
-1.000000e-06 45 14 1.000000e+05 
-1.000000e-06 45 14 3.162278e+05 
-1.000000e-06 45 14 1.000000e+06 
-1.000000e-06 45 14 3.162278e+06 
-1.000000e-06 45 14 1.000000e+07 
-1.000000e-06 45 14 3.162278e+07 
-1.000000e-06 45 14 1.000000e+08 
-1.000000e-06 45 16 1.000000e+05 
-1.000000e-06 45 16 3.162278e+05 
-1.000000e-06 45 16 1.000000e+06 
-1.000000e-06 45 16 3.162278e+06 
-1.000000e-06 45 16 1.000000e+07 
-1.000000e-06 45 16 3.162278e+07 
-1.000000e-06 45 16 1.000000e+08 
-1.000000e-06 50 4 1.000000e+05 
-1.000000e-06 50 4 3.162278e+05 
-1.000000e-06 50 4 1.000000e+06 
-1.000000e-06 50 4 3.162278e+06 
-1.000000e-06 50 4 1.000000e+07 
-1.000000e-06 50 4 3.162278e+07 
-1.000000e-06 50 4 1.000000e+08 
-1.000000e-06 50 6 1.000000e+05 
-1.000000e-06 50 6 3.162278e+05 
-1.000000e-06 50 6 1.000000e+06 
-1.000000e-06 50 6 3.162278e+06 
-1.000000e-06 50 6 1.000000e+07 
-1.000000e-06 50 6 3.162278e+07 
-1.000000e-06 50 6 1.000000e+08 
-1.000000e-06 50 8 1.000000e+05 
-1.000000e-06 50 8 3.162278e+05 
-1.000000e-06 50 8 1.000000e+06 
-1.000000e-06 50 8 3.162278e+06 
-1.000000e-06 50 8 1.000000e+07 
-1.000000e-06 50 8 3.162278e+07 
-1.000000e-06 50 8 1.000000e+08 
-1.000000e-06 50 10 1.000000e+05 
-1.000000e-06 50 10 3.162278e+05 
-1.000000e-06 50 10 1.000000e+06 
-1.000000e-06 50 10 3.162278e+06 
-1.000000e-06 50 10 1.000000e+07 
-1.000000e-06 50 10 3.162278e+07 
-1.000000e-06 50 10 1.000000e+08 
-1.000000e-06 50 12 1.000000e+05 
-1.000000e-06 50 12 3.162278e+05 
-1.000000e-06 50 12 1.000000e+06 
-1.000000e-06 50 12 3.162278e+06 
-1.000000e-06 50 12 1.000000e+07 
-1.000000e-06 50 12 3.162278e+07 
-1.000000e-06 50 12 1.000000e+08 
-1.000000e-06 50 14 1.000000e+05 
-1.000000e-06 50 14 3.162278e+05 
-1.000000e-06 50 14 1.000000e+06 
-1.000000e-06 50 14 3.162278e+06 
-1.000000e-06 50 14 1.000000e+07 
-1.000000e-06 50 14 3.162278e+07 
-1.000000e-06 50 14 1.000000e+08 
-1.000000e-06 50 16 1.000000e+05 
-1.000000e-06 50 16 3.162278e+05 
-1.000000e-06 50 16 1.000000e+06 
-1.000000e-06 50 16 3.162278e+06 
-1.000000e-06 50 16 1.000000e+07 
-1.000000e-06 50 16 3.162278e+07 
-1.000000e-06 50 16 1.000000e+08 
-1.000000e-06 55 4 1.000000e+05 
-1.000000e-06 55 4 3.162278e+05 
-1.000000e-06 55 4 1.000000e+06 
-1.000000e-06 55 4 3.162278e+06 
-1.000000e-06 55 4 1.000000e+07 
-1.000000e-06 55 4 3.162278e+07 
-1.000000e-06 55 4 1.000000e+08 
-1.000000e-06 55 6 1.000000e+05 
-1.000000e-06 55 6 3.162278e+05 
-1.000000e-06 55 6 1.000000e+06 
-1.000000e-06 55 6 3.162278e+06 
-1.000000e-06 55 6 1.000000e+07 
-1.000000e-06 55 6 3.162278e+07 
-1.000000e-06 55 6 1.000000e+08 
-1.000000e-06 55 8 1.000000e+05 
-1.000000e-06 55 8 3.162278e+05 
-1.000000e-06 55 8 1.000000e+06 
-1.000000e-06 55 8 3.162278e+06 
-1.000000e-06 55 8 1.000000e+07 
-1.000000e-06 55 8 3.162278e+07 
-1.000000e-06 55 8 1.000000e+08 
-1.000000e-06 55 10 1.000000e+05 
-1.000000e-06 55 10 3.162278e+05 
-1.000000e-06 55 10 1.000000e+06 
-1.000000e-06 55 10 3.162278e+06 
-1.000000e-06 55 10 1.000000e+07 
-1.000000e-06 55 10 3.162278e+07 
-1.000000e-06 55 10 1.000000e+08 
-1.000000e-06 55 12 1.000000e+05 
-1.000000e-06 55 12 3.162278e+05 
-1.000000e-06 55 12 1.000000e+06 
-1.000000e-06 55 12 3.162278e+06 
-1.000000e-06 55 12 1.000000e+07 
-1.000000e-06 55 12 3.162278e+07 
-1.000000e-06 55 12 1.000000e+08 
-1.000000e-06 55 14 1.000000e+05 
-1.000000e-06 55 14 3.162278e+05 
-1.000000e-06 55 14 1.000000e+06 
-1.000000e-06 55 14 3.162278e+06 
-1.000000e-06 55 14 1.000000e+07 
-1.000000e-06 55 14 3.162278e+07 
-1.000000e-06 55 14 1.000000e+08 
-1.000000e-06 55 16 1.000000e+05 
-1.000000e-06 55 16 3.162278e+05 
-1.000000e-06 55 16 1.000000e+06 
-1.000000e-06 55 16 3.162278e+06 
-1.000000e-06 55 16 1.000000e+07 
-1.000000e-06 55 16 3.162278e+07 
-1.000000e-06 55 16 1.000000e+08 
-1.000000e-06 60 4 1.000000e+05 
-1.000000e-06 60 4 3.162278e+05 
-1.000000e-06 60 4 1.000000e+06 
-1.000000e-06 60 4 3.162278e+06 
-1.000000e-06 60 4 1.000000e+07 
-1.000000e-06 60 4 3.162278e+07 
-1.000000e-06 60 4 1.000000e+08 
-1.000000e-06 60 6 1.000000e+05 
-1.000000e-06 60 6 3.162278e+05 
-1.000000e-06 60 6 1.000000e+06 
-1.000000e-06 60 6 3.162278e+06 
-1.000000e-06 60 6 1.000000e+07 
-1.000000e-06 60 6 3.162278e+07 
-1.000000e-06 60 6 1.000000e+08 
-1.000000e-06 60 8 1.000000e+05 
-1.000000e-06 60 8 3.162278e+05 
-1.000000e-06 60 8 1.000000e+06 
-1.000000e-06 60 8 3.162278e+06 
-1.000000e-06 60 8 1.000000e+07 
-1.000000e-06 60 8 3.162278e+07 
-1.000000e-06 60 8 1.000000e+08 
-1.000000e-06 60 10 1.000000e+05 
-1.000000e-06 60 10 3.162278e+05 
-1.000000e-06 60 10 1.000000e+06 
-1.000000e-06 60 10 3.162278e+06 
-1.000000e-06 60 10 1.000000e+07 
-1.000000e-06 60 10 3.162278e+07 
-1.000000e-06 60 10 1.000000e+08 
-1.000000e-06 60 12 1.000000e+05 
-1.000000e-06 60 12 3.162278e+05 
-1.000000e-06 60 12 1.000000e+06 
-1.000000e-06 60 12 3.162278e+06 
-1.000000e-06 60 12 1.000000e+07 
-1.000000e-06 60 12 3.162278e+07 
-1.000000e-06 60 12 1.000000e+08 
-1.000000e-06 60 14 1.000000e+05 
-1.000000e-06 60 14 3.162278e+05 
-1.000000e-06 60 14 1.000000e+06 
-1.000000e-06 60 14 3.162278e+06 
-1.000000e-06 60 14 1.000000e+07 
-1.000000e-06 60 14 3.162278e+07 
-1.000000e-06 60 14 1.000000e+08 
-1.000000e-06 60 16 1.000000e+05 
-1.000000e-06 60 16 3.162278e+05 
-1.000000e-06 60 16 1.000000e+06 
-1.000000e-06 60 16 3.162278e+06 
-1.000000e-06 60 16 1.000000e+07 
-1.000000e-06 60 16 3.162278e+07 
-1.000000e-06 60 16 1.000000e+08 
-3.162278e-07 20 4 1.000000e+05 
-3.162278e-07 20 4 3.162278e+05 
-3.162278e-07 20 4 1.000000e+06 
-3.162278e-07 20 4 3.162278e+06 
-3.162278e-07 20 4 1.000000e+07 
-3.162278e-07 20 4 3.162278e+07 
-3.162278e-07 20 4 1.000000e+08 
-3.162278e-07 20 6 1.000000e+05 
-3.162278e-07 20 6 3.162278e+05 
-3.162278e-07 20 6 1.000000e+06 
-3.162278e-07 20 6 3.162278e+06 
-3.162278e-07 20 6 1.000000e+07 
-3.162278e-07 20 6 3.162278e+07 
-3.162278e-07 20 6 1.000000e+08 
-3.162278e-07 20 8 1.000000e+05 
-3.162278e-07 20 8 3.162278e+05 
-3.162278e-07 20 8 1.000000e+06 
-3.162278e-07 20 8 3.162278e+06 
-3.162278e-07 20 8 1.000000e+07 
-3.162278e-07 20 8 3.162278e+07 
-3.162278e-07 20 8 1.000000e+08 
-3.162278e-07 20 10 1.000000e+05 
-3.162278e-07 20 10 3.162278e+05 
-3.162278e-07 20 10 1.000000e+06 
-3.162278e-07 20 10 3.162278e+06 
-3.162278e-07 20 10 1.000000e+07 
-3.162278e-07 20 10 3.162278e+07 
-3.162278e-07 20 10 1.000000e+08 
-3.162278e-07 20 12 1.000000e+05 
-3.162278e-07 20 12 3.162278e+05 
-3.162278e-07 20 12 1.000000e+06 
-3.162278e-07 20 12 3.162278e+06 
-3.162278e-07 20 12 1.000000e+07 
-3.162278e-07 20 12 3.162278e+07 
-3.162278e-07 20 12 1.000000e+08 
-3.162278e-07 20 14 1.000000e+05 
-3.162278e-07 20 14 3.162278e+05 
-3.162278e-07 20 14 1.000000e+06 
-3.162278e-07 20 14 3.162278e+06 
-3.162278e-07 20 14 1.000000e+07 
-3.162278e-07 20 14 3.162278e+07 
-3.162278e-07 20 14 1.000000e+08 
-3.162278e-07 20 16 1.000000e+05 
-3.162278e-07 20 16 3.162278e+05 
-3.162278e-07 20 16 1.000000e+06 
-3.162278e-07 20 16 3.162278e+06 
-3.162278e-07 20 16 1.000000e+07 
-3.162278e-07 20 16 3.162278e+07 
-3.162278e-07 20 16 1.000000e+08 
-3.162278e-07 25 4 1.000000e+05 
-3.162278e-07 25 4 3.162278e+05 
-3.162278e-07 25 4 1.000000e+06 
-3.162278e-07 25 4 3.162278e+06 
-3.162278e-07 25 4 1.000000e+07 
-3.162278e-07 25 4 3.162278e+07 
-3.162278e-07 25 4 1.000000e+08 
-3.162278e-07 25 6 1.000000e+05 
-3.162278e-07 25 6 3.162278e+05 
-3.162278e-07 25 6 1.000000e+06 
-3.162278e-07 25 6 3.162278e+06 
-3.162278e-07 25 6 1.000000e+07 
-3.162278e-07 25 6 3.162278e+07 
-3.162278e-07 25 6 1.000000e+08 
-3.162278e-07 25 8 1.000000e+05 
-3.162278e-07 25 8 3.162278e+05 
-3.162278e-07 25 8 1.000000e+06 
-3.162278e-07 25 8 3.162278e+06 
-3.162278e-07 25 8 1.000000e+07 
-3.162278e-07 25 8 3.162278e+07 
-3.162278e-07 25 8 1.000000e+08 
-3.162278e-07 25 10 1.000000e+05 
-3.162278e-07 25 10 3.162278e+05 
-3.162278e-07 25 10 1.000000e+06 
-3.162278e-07 25 10 3.162278e+06 
-3.162278e-07 25 10 1.000000e+07 
-3.162278e-07 25 10 3.162278e+07 
-3.162278e-07 25 10 1.000000e+08 
-3.162278e-07 25 12 1.000000e+05 
-3.162278e-07 25 12 3.162278e+05 
-3.162278e-07 25 12 1.000000e+06 
-3.162278e-07 25 12 3.162278e+06 
-3.162278e-07 25 12 1.000000e+07 
-3.162278e-07 25 12 3.162278e+07 
-3.162278e-07 25 12 1.000000e+08 
-3.162278e-07 25 14 1.000000e+05 
-3.162278e-07 25 14 3.162278e+05 
-3.162278e-07 25 14 1.000000e+06 
-3.162278e-07 25 14 3.162278e+06 
-3.162278e-07 25 14 1.000000e+07 
-3.162278e-07 25 14 3.162278e+07 
-3.162278e-07 25 14 1.000000e+08 
-3.162278e-07 25 16 1.000000e+05 
-3.162278e-07 25 16 3.162278e+05 
-3.162278e-07 25 16 1.000000e+06 
-3.162278e-07 25 16 3.162278e+06 
-3.162278e-07 25 16 1.000000e+07 
-3.162278e-07 25 16 3.162278e+07 
-3.162278e-07 25 16 1.000000e+08 
-3.162278e-07 30 4 1.000000e+05 
-3.162278e-07 30 4 3.162278e+05 
-3.162278e-07 30 4 1.000000e+06 
-3.162278e-07 30 4 3.162278e+06 
-3.162278e-07 30 4 1.000000e+07 
-3.162278e-07 30 4 3.162278e+07 
-3.162278e-07 30 4 1.000000e+08 
-3.162278e-07 30 6 1.000000e+05 
-3.162278e-07 30 6 3.162278e+05 
-3.162278e-07 30 6 1.000000e+06 
-3.162278e-07 30 6 3.162278e+06 
-3.162278e-07 30 6 1.000000e+07 
-3.162278e-07 30 6 3.162278e+07 
-3.162278e-07 30 6 1.000000e+08 
-3.162278e-07 30 8 1.000000e+05 
-3.162278e-07 30 8 3.162278e+05 
-3.162278e-07 30 8 1.000000e+06 
-3.162278e-07 30 8 3.162278e+06 
-3.162278e-07 30 8 1.000000e+07 
-3.162278e-07 30 8 3.162278e+07 
-3.162278e-07 30 8 1.000000e+08 
-3.162278e-07 30 10 1.000000e+05 
-3.162278e-07 30 10 3.162278e+05 
-3.162278e-07 30 10 1.000000e+06 
-3.162278e-07 30 10 3.162278e+06 
-3.162278e-07 30 10 1.000000e+07 
-3.162278e-07 30 10 3.162278e+07 
-3.162278e-07 30 10 1.000000e+08 
-3.162278e-07 30 12 1.000000e+05 
-3.162278e-07 30 12 3.162278e+05 
-3.162278e-07 30 12 1.000000e+06 
-3.162278e-07 30 12 3.162278e+06 
-3.162278e-07 30 12 1.000000e+07 
-3.162278e-07 30 12 3.162278e+07 
-3.162278e-07 30 12 1.000000e+08 
-3.162278e-07 30 14 1.000000e+05 
-3.162278e-07 30 14 3.162278e+05 
-3.162278e-07 30 14 1.000000e+06 
-3.162278e-07 30 14 3.162278e+06 
-3.162278e-07 30 14 1.000000e+07 
-3.162278e-07 30 14 3.162278e+07 
-3.162278e-07 30 14 1.000000e+08 
-3.162278e-07 30 16 1.000000e+05 
-3.162278e-07 30 16 3.162278e+05 
-3.162278e-07 30 16 1.000000e+06 
-3.162278e-07 30 16 3.162278e+06 
-3.162278e-07 30 16 1.000000e+07 
-3.162278e-07 30 16 3.162278e+07 
-3.162278e-07 30 16 1.000000e+08 
-3.162278e-07 35 4 1.000000e+05 
-3.162278e-07 35 4 3.162278e+05 
-3.162278e-07 35 4 1.000000e+06 
-3.162278e-07 35 4 3.162278e+06 
-3.162278e-07 35 4 1.000000e+07 
-3.162278e-07 35 4 3.162278e+07 
-3.162278e-07 35 4 1.000000e+08 
-3.162278e-07 35 6 1.000000e+05 
-3.162278e-07 35 6 3.162278e+05 
-3.162278e-07 35 6 1.000000e+06 
-3.162278e-07 35 6 3.162278e+06 
-3.162278e-07 35 6 1.000000e+07 
-3.162278e-07 35 6 3.162278e+07 
-3.162278e-07 35 6 1.000000e+08 
-3.162278e-07 35 8 1.000000e+05 
-3.162278e-07 35 8 3.162278e+05 
-3.162278e-07 35 8 1.000000e+06 
-3.162278e-07 35 8 3.162278e+06 
-3.162278e-07 35 8 1.000000e+07 
-3.162278e-07 35 8 3.162278e+07 
-3.162278e-07 35 8 1.000000e+08 
-3.162278e-07 35 10 1.000000e+05 
-3.162278e-07 35 10 3.162278e+05 
-3.162278e-07 35 10 1.000000e+06 
-3.162278e-07 35 10 3.162278e+06 
-3.162278e-07 35 10 1.000000e+07 
-3.162278e-07 35 10 3.162278e+07 
-3.162278e-07 35 10 1.000000e+08 
-3.162278e-07 35 12 1.000000e+05 
-3.162278e-07 35 12 3.162278e+05 
-3.162278e-07 35 12 1.000000e+06 
-3.162278e-07 35 12 3.162278e+06 
-3.162278e-07 35 12 1.000000e+07 
-3.162278e-07 35 12 3.162278e+07 
-3.162278e-07 35 12 1.000000e+08 
-3.162278e-07 35 14 1.000000e+05 
-3.162278e-07 35 14 3.162278e+05 
-3.162278e-07 35 14 1.000000e+06 
-3.162278e-07 35 14 3.162278e+06 
-3.162278e-07 35 14 1.000000e+07 
-3.162278e-07 35 14 3.162278e+07 
-3.162278e-07 35 14 1.000000e+08 
-3.162278e-07 35 16 1.000000e+05 
-3.162278e-07 35 16 3.162278e+05 
-3.162278e-07 35 16 1.000000e+06 
-3.162278e-07 35 16 3.162278e+06 
-3.162278e-07 35 16 1.000000e+07 
-3.162278e-07 35 16 3.162278e+07 
-3.162278e-07 35 16 1.000000e+08 
-3.162278e-07 40 4 1.000000e+05 
-3.162278e-07 40 4 3.162278e+05 
-3.162278e-07 40 4 1.000000e+06 
-3.162278e-07 40 4 3.162278e+06 
-3.162278e-07 40 4 1.000000e+07 
-3.162278e-07 40 4 3.162278e+07 
-3.162278e-07 40 4 1.000000e+08 
-3.162278e-07 40 6 1.000000e+05 
-3.162278e-07 40 6 3.162278e+05 
-3.162278e-07 40 6 1.000000e+06 
-3.162278e-07 40 6 3.162278e+06 
-3.162278e-07 40 6 1.000000e+07 
-3.162278e-07 40 6 3.162278e+07 
-3.162278e-07 40 6 1.000000e+08 
-3.162278e-07 40 8 1.000000e+05 
-3.162278e-07 40 8 3.162278e+05 
-3.162278e-07 40 8 1.000000e+06 
-3.162278e-07 40 8 3.162278e+06 
-3.162278e-07 40 8 1.000000e+07 
-3.162278e-07 40 8 3.162278e+07 
-3.162278e-07 40 8 1.000000e+08 
-3.162278e-07 40 10 1.000000e+05 
-3.162278e-07 40 10 3.162278e+05 
-3.162278e-07 40 10 1.000000e+06 
-3.162278e-07 40 10 3.162278e+06 
-3.162278e-07 40 10 1.000000e+07 
-3.162278e-07 40 10 3.162278e+07 
-3.162278e-07 40 10 1.000000e+08 
-3.162278e-07 40 12 1.000000e+05 
-3.162278e-07 40 12 3.162278e+05 
-3.162278e-07 40 12 1.000000e+06 
-3.162278e-07 40 12 3.162278e+06 
-3.162278e-07 40 12 1.000000e+07 
-3.162278e-07 40 12 3.162278e+07 
-3.162278e-07 40 12 1.000000e+08 
-3.162278e-07 40 14 1.000000e+05 
-3.162278e-07 40 14 3.162278e+05 
-3.162278e-07 40 14 1.000000e+06 
-3.162278e-07 40 14 3.162278e+06 
-3.162278e-07 40 14 1.000000e+07 
-3.162278e-07 40 14 3.162278e+07 
-3.162278e-07 40 14 1.000000e+08 
-3.162278e-07 40 16 1.000000e+05 
-3.162278e-07 40 16 3.162278e+05 
-3.162278e-07 40 16 1.000000e+06 
-3.162278e-07 40 16 3.162278e+06 
-3.162278e-07 40 16 1.000000e+07 
-3.162278e-07 40 16 3.162278e+07 
-3.162278e-07 40 16 1.000000e+08 
-3.162278e-07 45 4 1.000000e+05 
-3.162278e-07 45 4 3.162278e+05 
-3.162278e-07 45 4 1.000000e+06 
-3.162278e-07 45 4 3.162278e+06 
-3.162278e-07 45 4 1.000000e+07 
-3.162278e-07 45 4 3.162278e+07 
-3.162278e-07 45 4 1.000000e+08 
-3.162278e-07 45 6 1.000000e+05 
-3.162278e-07 45 6 3.162278e+05 
-3.162278e-07 45 6 1.000000e+06 
-3.162278e-07 45 6 3.162278e+06 
-3.162278e-07 45 6 1.000000e+07 
-3.162278e-07 45 6 3.162278e+07 
-3.162278e-07 45 6 1.000000e+08 
-3.162278e-07 45 8 1.000000e+05 
-3.162278e-07 45 8 3.162278e+05 
-3.162278e-07 45 8 1.000000e+06 
-3.162278e-07 45 8 3.162278e+06 
-3.162278e-07 45 8 1.000000e+07 
-3.162278e-07 45 8 3.162278e+07 
-3.162278e-07 45 8 1.000000e+08 
-3.162278e-07 45 10 1.000000e+05 
-3.162278e-07 45 10 3.162278e+05 
-3.162278e-07 45 10 1.000000e+06 
-3.162278e-07 45 10 3.162278e+06 
-3.162278e-07 45 10 1.000000e+07 
-3.162278e-07 45 10 3.162278e+07 
-3.162278e-07 45 10 1.000000e+08 
-3.162278e-07 45 12 1.000000e+05 
-3.162278e-07 45 12 3.162278e+05 
-3.162278e-07 45 12 1.000000e+06 
-3.162278e-07 45 12 3.162278e+06 
-3.162278e-07 45 12 1.000000e+07 
-3.162278e-07 45 12 3.162278e+07 
-3.162278e-07 45 12 1.000000e+08 
-3.162278e-07 45 14 1.000000e+05 
-3.162278e-07 45 14 3.162278e+05 
-3.162278e-07 45 14 1.000000e+06 
-3.162278e-07 45 14 3.162278e+06 
-3.162278e-07 45 14 1.000000e+07 
-3.162278e-07 45 14 3.162278e+07 
-3.162278e-07 45 14 1.000000e+08 
-3.162278e-07 45 16 1.000000e+05 
-3.162278e-07 45 16 3.162278e+05 
-3.162278e-07 45 16 1.000000e+06 
-3.162278e-07 45 16 3.162278e+06 
-3.162278e-07 45 16 1.000000e+07 
-3.162278e-07 45 16 3.162278e+07 
-3.162278e-07 45 16 1.000000e+08 
-3.162278e-07 50 4 1.000000e+05 
-3.162278e-07 50 4 3.162278e+05 
-3.162278e-07 50 4 1.000000e+06 
-3.162278e-07 50 4 3.162278e+06 
-3.162278e-07 50 4 1.000000e+07 
-3.162278e-07 50 4 3.162278e+07 
-3.162278e-07 50 4 1.000000e+08 
-3.162278e-07 50 6 1.000000e+05 
-3.162278e-07 50 6 3.162278e+05 
-3.162278e-07 50 6 1.000000e+06 
-3.162278e-07 50 6 3.162278e+06 
-3.162278e-07 50 6 1.000000e+07 
-3.162278e-07 50 6 3.162278e+07 
-3.162278e-07 50 6 1.000000e+08 
-3.162278e-07 50 8 1.000000e+05 
-3.162278e-07 50 8 3.162278e+05 
-3.162278e-07 50 8 1.000000e+06 
-3.162278e-07 50 8 3.162278e+06 
-3.162278e-07 50 8 1.000000e+07 
-3.162278e-07 50 8 3.162278e+07 
-3.162278e-07 50 8 1.000000e+08 
-3.162278e-07 50 10 1.000000e+05 
-3.162278e-07 50 10 3.162278e+05 
-3.162278e-07 50 10 1.000000e+06 
-3.162278e-07 50 10 3.162278e+06 
-3.162278e-07 50 10 1.000000e+07 
-3.162278e-07 50 10 3.162278e+07 
-3.162278e-07 50 10 1.000000e+08 
-3.162278e-07 50 12 1.000000e+05 
-3.162278e-07 50 12 3.162278e+05 
-3.162278e-07 50 12 1.000000e+06 
-3.162278e-07 50 12 3.162278e+06 
-3.162278e-07 50 12 1.000000e+07 
-3.162278e-07 50 12 3.162278e+07 
-3.162278e-07 50 12 1.000000e+08 
-3.162278e-07 50 14 1.000000e+05 
-3.162278e-07 50 14 3.162278e+05 
-3.162278e-07 50 14 1.000000e+06 
-3.162278e-07 50 14 3.162278e+06 
-3.162278e-07 50 14 1.000000e+07 
-3.162278e-07 50 14 3.162278e+07 
-3.162278e-07 50 14 1.000000e+08 
-3.162278e-07 50 16 1.000000e+05 
-3.162278e-07 50 16 3.162278e+05 
-3.162278e-07 50 16 1.000000e+06 
-3.162278e-07 50 16 3.162278e+06 
-3.162278e-07 50 16 1.000000e+07 
-3.162278e-07 50 16 3.162278e+07 
-3.162278e-07 50 16 1.000000e+08 
-3.162278e-07 55 4 1.000000e+05 
-3.162278e-07 55 4 3.162278e+05 
-3.162278e-07 55 4 1.000000e+06 
-3.162278e-07 55 4 3.162278e+06 
-3.162278e-07 55 4 1.000000e+07 
-3.162278e-07 55 4 3.162278e+07 
-3.162278e-07 55 4 1.000000e+08 
-3.162278e-07 55 6 1.000000e+05 
-3.162278e-07 55 6 3.162278e+05 
-3.162278e-07 55 6 1.000000e+06 
-3.162278e-07 55 6 3.162278e+06 
-3.162278e-07 55 6 1.000000e+07 
-3.162278e-07 55 6 3.162278e+07 
-3.162278e-07 55 6 1.000000e+08 
-3.162278e-07 55 8 1.000000e+05 
-3.162278e-07 55 8 3.162278e+05 
-3.162278e-07 55 8 1.000000e+06 
-3.162278e-07 55 8 3.162278e+06 
-3.162278e-07 55 8 1.000000e+07 
-3.162278e-07 55 8 3.162278e+07 
-3.162278e-07 55 8 1.000000e+08 
-3.162278e-07 55 10 1.000000e+05 
-3.162278e-07 55 10 3.162278e+05 
-3.162278e-07 55 10 1.000000e+06 
-3.162278e-07 55 10 3.162278e+06 
-3.162278e-07 55 10 1.000000e+07 
-3.162278e-07 55 10 3.162278e+07 
-3.162278e-07 55 10 1.000000e+08 
-3.162278e-07 55 12 1.000000e+05 
-3.162278e-07 55 12 3.162278e+05 
-3.162278e-07 55 12 1.000000e+06 
-3.162278e-07 55 12 3.162278e+06 
-3.162278e-07 55 12 1.000000e+07 
-3.162278e-07 55 12 3.162278e+07 
-3.162278e-07 55 12 1.000000e+08 
-3.162278e-07 55 14 1.000000e+05 
-3.162278e-07 55 14 3.162278e+05 
-3.162278e-07 55 14 1.000000e+06 
-3.162278e-07 55 14 3.162278e+06 
-3.162278e-07 55 14 1.000000e+07 
-3.162278e-07 55 14 3.162278e+07 
-3.162278e-07 55 14 1.000000e+08 
-3.162278e-07 55 16 1.000000e+05 
-3.162278e-07 55 16 3.162278e+05 
-3.162278e-07 55 16 1.000000e+06 
-3.162278e-07 55 16 3.162278e+06 
-3.162278e-07 55 16 1.000000e+07 
-3.162278e-07 55 16 3.162278e+07 
-3.162278e-07 55 16 1.000000e+08 
-3.162278e-07 60 4 1.000000e+05 
-3.162278e-07 60 4 3.162278e+05 
-3.162278e-07 60 4 1.000000e+06 
-3.162278e-07 60 4 3.162278e+06 
-3.162278e-07 60 4 1.000000e+07 
-3.162278e-07 60 4 3.162278e+07 
-3.162278e-07 60 4 1.000000e+08 
-3.162278e-07 60 6 1.000000e+05 
-3.162278e-07 60 6 3.162278e+05 
-3.162278e-07 60 6 1.000000e+06 
-3.162278e-07 60 6 3.162278e+06 
-3.162278e-07 60 6 1.000000e+07 
-3.162278e-07 60 6 3.162278e+07 
-3.162278e-07 60 6 1.000000e+08 
-3.162278e-07 60 8 1.000000e+05 
-3.162278e-07 60 8 3.162278e+05 
-3.162278e-07 60 8 1.000000e+06 
-3.162278e-07 60 8 3.162278e+06 
-3.162278e-07 60 8 1.000000e+07 
-3.162278e-07 60 8 3.162278e+07 
-3.162278e-07 60 8 1.000000e+08 
-3.162278e-07 60 10 1.000000e+05 
-3.162278e-07 60 10 3.162278e+05 
-3.162278e-07 60 10 1.000000e+06 
-3.162278e-07 60 10 3.162278e+06 
-3.162278e-07 60 10 1.000000e+07 
-3.162278e-07 60 10 3.162278e+07 
-3.162278e-07 60 10 1.000000e+08 
-3.162278e-07 60 12 1.000000e+05 
-3.162278e-07 60 12 3.162278e+05 
-3.162278e-07 60 12 1.000000e+06 
-3.162278e-07 60 12 3.162278e+06 
-3.162278e-07 60 12 1.000000e+07 
-3.162278e-07 60 12 3.162278e+07 
-3.162278e-07 60 12 1.000000e+08 
-3.162278e-07 60 14 1.000000e+05 
-3.162278e-07 60 14 3.162278e+05 
-3.162278e-07 60 14 1.000000e+06 
-3.162278e-07 60 14 3.162278e+06 
-3.162278e-07 60 14 1.000000e+07 
-3.162278e-07 60 14 3.162278e+07 
-3.162278e-07 60 14 1.000000e+08 
-3.162278e-07 60 16 1.000000e+05 
-3.162278e-07 60 16 3.162278e+05 
-3.162278e-07 60 16 1.000000e+06 
-3.162278e-07 60 16 3.162278e+06 
-3.162278e-07 60 16 1.000000e+07 
-3.162278e-07 60 16 3.162278e+07 
-3.162278e-07 60 16 1.000000e+08 
-1.000000e-07 20 4 1.000000e+05 
-1.000000e-07 20 4 3.162278e+05 
-1.000000e-07 20 4 1.000000e+06 
-1.000000e-07 20 4 3.162278e+06 
-1.000000e-07 20 4 1.000000e+07 
-1.000000e-07 20 4 3.162278e+07 
-1.000000e-07 20 4 1.000000e+08 
-1.000000e-07 20 6 1.000000e+05 
-1.000000e-07 20 6 3.162278e+05 
-1.000000e-07 20 6 1.000000e+06 
-1.000000e-07 20 6 3.162278e+06 
-1.000000e-07 20 6 1.000000e+07 
-1.000000e-07 20 6 3.162278e+07 
-1.000000e-07 20 6 1.000000e+08 
-1.000000e-07 20 8 1.000000e+05 
-1.000000e-07 20 8 3.162278e+05 
-1.000000e-07 20 8 1.000000e+06 
-1.000000e-07 20 8 3.162278e+06 
-1.000000e-07 20 8 1.000000e+07 
-1.000000e-07 20 8 3.162278e+07 
-1.000000e-07 20 8 1.000000e+08 
-1.000000e-07 20 10 1.000000e+05 
-1.000000e-07 20 10 3.162278e+05 
-1.000000e-07 20 10 1.000000e+06 
-1.000000e-07 20 10 3.162278e+06 
-1.000000e-07 20 10 1.000000e+07 
-1.000000e-07 20 10 3.162278e+07 
-1.000000e-07 20 10 1.000000e+08 
-1.000000e-07 20 12 1.000000e+05 
-1.000000e-07 20 12 3.162278e+05 
-1.000000e-07 20 12 1.000000e+06 
-1.000000e-07 20 12 3.162278e+06 
-1.000000e-07 20 12 1.000000e+07 
-1.000000e-07 20 12 3.162278e+07 
-1.000000e-07 20 12 1.000000e+08 
-1.000000e-07 20 14 1.000000e+05 
-1.000000e-07 20 14 3.162278e+05 
-1.000000e-07 20 14 1.000000e+06 
-1.000000e-07 20 14 3.162278e+06 
-1.000000e-07 20 14 1.000000e+07 
-1.000000e-07 20 14 3.162278e+07 
-1.000000e-07 20 14 1.000000e+08 
-1.000000e-07 20 16 1.000000e+05 
-1.000000e-07 20 16 3.162278e+05 
-1.000000e-07 20 16 1.000000e+06 
-1.000000e-07 20 16 3.162278e+06 
-1.000000e-07 20 16 1.000000e+07 
-1.000000e-07 20 16 3.162278e+07 
-1.000000e-07 20 16 1.000000e+08 
-1.000000e-07 25 4 1.000000e+05 
-1.000000e-07 25 4 3.162278e+05 
-1.000000e-07 25 4 1.000000e+06 
-1.000000e-07 25 4 3.162278e+06 
-1.000000e-07 25 4 1.000000e+07 
-1.000000e-07 25 4 3.162278e+07 
-1.000000e-07 25 4 1.000000e+08 
-1.000000e-07 25 6 1.000000e+05 
-1.000000e-07 25 6 3.162278e+05 
-1.000000e-07 25 6 1.000000e+06 
-1.000000e-07 25 6 3.162278e+06 
-1.000000e-07 25 6 1.000000e+07 
-1.000000e-07 25 6 3.162278e+07 
-1.000000e-07 25 6 1.000000e+08 
-1.000000e-07 25 8 1.000000e+05 
-1.000000e-07 25 8 3.162278e+05 
-1.000000e-07 25 8 1.000000e+06 
-1.000000e-07 25 8 3.162278e+06 
-1.000000e-07 25 8 1.000000e+07 
-1.000000e-07 25 8 3.162278e+07 
-1.000000e-07 25 8 1.000000e+08 
-1.000000e-07 25 10 1.000000e+05 
-1.000000e-07 25 10 3.162278e+05 
-1.000000e-07 25 10 1.000000e+06 
-1.000000e-07 25 10 3.162278e+06 
-1.000000e-07 25 10 1.000000e+07 
-1.000000e-07 25 10 3.162278e+07 
-1.000000e-07 25 10 1.000000e+08 
-1.000000e-07 25 12 1.000000e+05 
-1.000000e-07 25 12 3.162278e+05 
-1.000000e-07 25 12 1.000000e+06 
-1.000000e-07 25 12 3.162278e+06 
-1.000000e-07 25 12 1.000000e+07 
-1.000000e-07 25 12 3.162278e+07 
-1.000000e-07 25 12 1.000000e+08 
-1.000000e-07 25 14 1.000000e+05 
-1.000000e-07 25 14 3.162278e+05 
-1.000000e-07 25 14 1.000000e+06 
-1.000000e-07 25 14 3.162278e+06 
-1.000000e-07 25 14 1.000000e+07 
-1.000000e-07 25 14 3.162278e+07 
-1.000000e-07 25 14 1.000000e+08 
-1.000000e-07 25 16 1.000000e+05 
-1.000000e-07 25 16 3.162278e+05 
-1.000000e-07 25 16 1.000000e+06 
-1.000000e-07 25 16 3.162278e+06 
-1.000000e-07 25 16 1.000000e+07 
-1.000000e-07 25 16 3.162278e+07 
-1.000000e-07 25 16 1.000000e+08 
-1.000000e-07 30 4 1.000000e+05 
-1.000000e-07 30 4 3.162278e+05 
-1.000000e-07 30 4 1.000000e+06 
-1.000000e-07 30 4 3.162278e+06 
-1.000000e-07 30 4 1.000000e+07 
-1.000000e-07 30 4 3.162278e+07 
-1.000000e-07 30 4 1.000000e+08 
-1.000000e-07 30 6 1.000000e+05 
-1.000000e-07 30 6 3.162278e+05 
-1.000000e-07 30 6 1.000000e+06 
-1.000000e-07 30 6 3.162278e+06 
-1.000000e-07 30 6 1.000000e+07 
-1.000000e-07 30 6 3.162278e+07 
-1.000000e-07 30 6 1.000000e+08 
-1.000000e-07 30 8 1.000000e+05 
-1.000000e-07 30 8 3.162278e+05 
-1.000000e-07 30 8 1.000000e+06 
-1.000000e-07 30 8 3.162278e+06 
-1.000000e-07 30 8 1.000000e+07 
-1.000000e-07 30 8 3.162278e+07 
-1.000000e-07 30 8 1.000000e+08 
-1.000000e-07 30 10 1.000000e+05 
-1.000000e-07 30 10 3.162278e+05 
-1.000000e-07 30 10 1.000000e+06 
-1.000000e-07 30 10 3.162278e+06 
-1.000000e-07 30 10 1.000000e+07 
-1.000000e-07 30 10 3.162278e+07 
-1.000000e-07 30 10 1.000000e+08 
-1.000000e-07 30 12 1.000000e+05 
-1.000000e-07 30 12 3.162278e+05 
-1.000000e-07 30 12 1.000000e+06 
-1.000000e-07 30 12 3.162278e+06 
-1.000000e-07 30 12 1.000000e+07 
-1.000000e-07 30 12 3.162278e+07 
-1.000000e-07 30 12 1.000000e+08 
-1.000000e-07 30 14 1.000000e+05 
-1.000000e-07 30 14 3.162278e+05 
-1.000000e-07 30 14 1.000000e+06 
-1.000000e-07 30 14 3.162278e+06 
-1.000000e-07 30 14 1.000000e+07 
-1.000000e-07 30 14 3.162278e+07 
-1.000000e-07 30 14 1.000000e+08 
-1.000000e-07 30 16 1.000000e+05 
-1.000000e-07 30 16 3.162278e+05 
-1.000000e-07 30 16 1.000000e+06 
-1.000000e-07 30 16 3.162278e+06 
-1.000000e-07 30 16 1.000000e+07 
-1.000000e-07 30 16 3.162278e+07 
-1.000000e-07 30 16 1.000000e+08 
-1.000000e-07 35 4 1.000000e+05 
-1.000000e-07 35 4 3.162278e+05 
-1.000000e-07 35 4 1.000000e+06 
-1.000000e-07 35 4 3.162278e+06 
-1.000000e-07 35 4 1.000000e+07 
-1.000000e-07 35 4 3.162278e+07 
-1.000000e-07 35 4 1.000000e+08 
-1.000000e-07 35 6 1.000000e+05 
-1.000000e-07 35 6 3.162278e+05 
-1.000000e-07 35 6 1.000000e+06 
-1.000000e-07 35 6 3.162278e+06 
-1.000000e-07 35 6 1.000000e+07 
-1.000000e-07 35 6 3.162278e+07 
-1.000000e-07 35 6 1.000000e+08 
-1.000000e-07 35 8 1.000000e+05 
-1.000000e-07 35 8 3.162278e+05 
-1.000000e-07 35 8 1.000000e+06 
-1.000000e-07 35 8 3.162278e+06 
-1.000000e-07 35 8 1.000000e+07 
-1.000000e-07 35 8 3.162278e+07 
-1.000000e-07 35 8 1.000000e+08 
-1.000000e-07 35 10 1.000000e+05 
-1.000000e-07 35 10 3.162278e+05 
-1.000000e-07 35 10 1.000000e+06 
-1.000000e-07 35 10 3.162278e+06 
-1.000000e-07 35 10 1.000000e+07 
-1.000000e-07 35 10 3.162278e+07 
-1.000000e-07 35 10 1.000000e+08 
-1.000000e-07 35 12 1.000000e+05 
-1.000000e-07 35 12 3.162278e+05 
-1.000000e-07 35 12 1.000000e+06 
-1.000000e-07 35 12 3.162278e+06 
-1.000000e-07 35 12 1.000000e+07 
-1.000000e-07 35 12 3.162278e+07 
-1.000000e-07 35 12 1.000000e+08 
-1.000000e-07 35 14 1.000000e+05 
-1.000000e-07 35 14 3.162278e+05 
-1.000000e-07 35 14 1.000000e+06 
-1.000000e-07 35 14 3.162278e+06 
-1.000000e-07 35 14 1.000000e+07 
-1.000000e-07 35 14 3.162278e+07 
-1.000000e-07 35 14 1.000000e+08 
-1.000000e-07 35 16 1.000000e+05 
-1.000000e-07 35 16 3.162278e+05 
-1.000000e-07 35 16 1.000000e+06 
-1.000000e-07 35 16 3.162278e+06 
-1.000000e-07 35 16 1.000000e+07 
-1.000000e-07 35 16 3.162278e+07 
-1.000000e-07 35 16 1.000000e+08 
-1.000000e-07 40 4 1.000000e+05 
-1.000000e-07 40 4 3.162278e+05 
-1.000000e-07 40 4 1.000000e+06 
-1.000000e-07 40 4 3.162278e+06 
-1.000000e-07 40 4 1.000000e+07 
-1.000000e-07 40 4 3.162278e+07 
-1.000000e-07 40 4 1.000000e+08 
-1.000000e-07 40 6 1.000000e+05 
-1.000000e-07 40 6 3.162278e+05 
-1.000000e-07 40 6 1.000000e+06 
-1.000000e-07 40 6 3.162278e+06 
-1.000000e-07 40 6 1.000000e+07 
-1.000000e-07 40 6 3.162278e+07 
-1.000000e-07 40 6 1.000000e+08 
-1.000000e-07 40 8 1.000000e+05 
-1.000000e-07 40 8 3.162278e+05 
-1.000000e-07 40 8 1.000000e+06 
-1.000000e-07 40 8 3.162278e+06 
-1.000000e-07 40 8 1.000000e+07 
-1.000000e-07 40 8 3.162278e+07 
-1.000000e-07 40 8 1.000000e+08 
-1.000000e-07 40 10 1.000000e+05 
-1.000000e-07 40 10 3.162278e+05 
-1.000000e-07 40 10 1.000000e+06 
-1.000000e-07 40 10 3.162278e+06 
-1.000000e-07 40 10 1.000000e+07 
-1.000000e-07 40 10 3.162278e+07 
-1.000000e-07 40 10 1.000000e+08 
-1.000000e-07 40 12 1.000000e+05 
-1.000000e-07 40 12 3.162278e+05 
-1.000000e-07 40 12 1.000000e+06 
-1.000000e-07 40 12 3.162278e+06 
-1.000000e-07 40 12 1.000000e+07 
-1.000000e-07 40 12 3.162278e+07 
-1.000000e-07 40 12 1.000000e+08 
-1.000000e-07 40 14 1.000000e+05 
-1.000000e-07 40 14 3.162278e+05 
-1.000000e-07 40 14 1.000000e+06 
-1.000000e-07 40 14 3.162278e+06 
-1.000000e-07 40 14 1.000000e+07 
-1.000000e-07 40 14 3.162278e+07 
-1.000000e-07 40 14 1.000000e+08 
-1.000000e-07 40 16 1.000000e+05 
-1.000000e-07 40 16 3.162278e+05 
-1.000000e-07 40 16 1.000000e+06 
-1.000000e-07 40 16 3.162278e+06 
-1.000000e-07 40 16 1.000000e+07 
-1.000000e-07 40 16 3.162278e+07 
-1.000000e-07 40 16 1.000000e+08 
-1.000000e-07 45 4 1.000000e+05 
-1.000000e-07 45 4 3.162278e+05 
-1.000000e-07 45 4 1.000000e+06 
-1.000000e-07 45 4 3.162278e+06 
-1.000000e-07 45 4 1.000000e+07 
-1.000000e-07 45 4 3.162278e+07 
-1.000000e-07 45 4 1.000000e+08 
-1.000000e-07 45 6 1.000000e+05 
-1.000000e-07 45 6 3.162278e+05 
-1.000000e-07 45 6 1.000000e+06 
-1.000000e-07 45 6 3.162278e+06 
-1.000000e-07 45 6 1.000000e+07 
-1.000000e-07 45 6 3.162278e+07 
-1.000000e-07 45 6 1.000000e+08 
-1.000000e-07 45 8 1.000000e+05 
-1.000000e-07 45 8 3.162278e+05 
-1.000000e-07 45 8 1.000000e+06 
-1.000000e-07 45 8 3.162278e+06 
-1.000000e-07 45 8 1.000000e+07 
-1.000000e-07 45 8 3.162278e+07 
-1.000000e-07 45 8 1.000000e+08 
-1.000000e-07 45 10 1.000000e+05 
-1.000000e-07 45 10 3.162278e+05 
-1.000000e-07 45 10 1.000000e+06 
-1.000000e-07 45 10 3.162278e+06 
-1.000000e-07 45 10 1.000000e+07 
-1.000000e-07 45 10 3.162278e+07 
-1.000000e-07 45 10 1.000000e+08 
-1.000000e-07 45 12 1.000000e+05 
-1.000000e-07 45 12 3.162278e+05 
-1.000000e-07 45 12 1.000000e+06 
-1.000000e-07 45 12 3.162278e+06 
-1.000000e-07 45 12 1.000000e+07 
-1.000000e-07 45 12 3.162278e+07 
-1.000000e-07 45 12 1.000000e+08 
-1.000000e-07 45 14 1.000000e+05 
-1.000000e-07 45 14 3.162278e+05 
-1.000000e-07 45 14 1.000000e+06 
-1.000000e-07 45 14 3.162278e+06 
-1.000000e-07 45 14 1.000000e+07 
-1.000000e-07 45 14 3.162278e+07 
-1.000000e-07 45 14 1.000000e+08 
-1.000000e-07 45 16 1.000000e+05 
-1.000000e-07 45 16 3.162278e+05 
-1.000000e-07 45 16 1.000000e+06 
-1.000000e-07 45 16 3.162278e+06 
-1.000000e-07 45 16 1.000000e+07 
-1.000000e-07 45 16 3.162278e+07 
-1.000000e-07 45 16 1.000000e+08 
-1.000000e-07 50 4 1.000000e+05 
-1.000000e-07 50 4 3.162278e+05 
-1.000000e-07 50 4 1.000000e+06 
-1.000000e-07 50 4 3.162278e+06 
-1.000000e-07 50 4 1.000000e+07 
-1.000000e-07 50 4 3.162278e+07 
-1.000000e-07 50 4 1.000000e+08 
-1.000000e-07 50 6 1.000000e+05 
-1.000000e-07 50 6 3.162278e+05 
-1.000000e-07 50 6 1.000000e+06 
-1.000000e-07 50 6 3.162278e+06 
-1.000000e-07 50 6 1.000000e+07 
-1.000000e-07 50 6 3.162278e+07 
-1.000000e-07 50 6 1.000000e+08 
-1.000000e-07 50 8 1.000000e+05 
-1.000000e-07 50 8 3.162278e+05 
-1.000000e-07 50 8 1.000000e+06 
-1.000000e-07 50 8 3.162278e+06 
-1.000000e-07 50 8 1.000000e+07 
-1.000000e-07 50 8 3.162278e+07 
-1.000000e-07 50 8 1.000000e+08 
-1.000000e-07 50 10 1.000000e+05 
-1.000000e-07 50 10 3.162278e+05 
-1.000000e-07 50 10 1.000000e+06 
-1.000000e-07 50 10 3.162278e+06 
-1.000000e-07 50 10 1.000000e+07 
-1.000000e-07 50 10 3.162278e+07 
-1.000000e-07 50 10 1.000000e+08 
-1.000000e-07 50 12 1.000000e+05 
-1.000000e-07 50 12 3.162278e+05 
-1.000000e-07 50 12 1.000000e+06 
-1.000000e-07 50 12 3.162278e+06 
-1.000000e-07 50 12 1.000000e+07 
-1.000000e-07 50 12 3.162278e+07 
-1.000000e-07 50 12 1.000000e+08 
-1.000000e-07 50 14 1.000000e+05 
-1.000000e-07 50 14 3.162278e+05 
-1.000000e-07 50 14 1.000000e+06 
-1.000000e-07 50 14 3.162278e+06 
-1.000000e-07 50 14 1.000000e+07 
-1.000000e-07 50 14 3.162278e+07 
-1.000000e-07 50 14 1.000000e+08 
-1.000000e-07 50 16 1.000000e+05 
-1.000000e-07 50 16 3.162278e+05 
-1.000000e-07 50 16 1.000000e+06 
-1.000000e-07 50 16 3.162278e+06 
-1.000000e-07 50 16 1.000000e+07 
-1.000000e-07 50 16 3.162278e+07 
-1.000000e-07 50 16 1.000000e+08 
-1.000000e-07 55 4 1.000000e+05 
-1.000000e-07 55 4 3.162278e+05 
-1.000000e-07 55 4 1.000000e+06 
-1.000000e-07 55 4 3.162278e+06 
-1.000000e-07 55 4 1.000000e+07 
-1.000000e-07 55 4 3.162278e+07 
-1.000000e-07 55 4 1.000000e+08 
-1.000000e-07 55 6 1.000000e+05 
-1.000000e-07 55 6 3.162278e+05 
-1.000000e-07 55 6 1.000000e+06 
-1.000000e-07 55 6 3.162278e+06 
-1.000000e-07 55 6 1.000000e+07 
-1.000000e-07 55 6 3.162278e+07 
-1.000000e-07 55 6 1.000000e+08 
-1.000000e-07 55 8 1.000000e+05 
-1.000000e-07 55 8 3.162278e+05 
-1.000000e-07 55 8 1.000000e+06 
-1.000000e-07 55 8 3.162278e+06 
-1.000000e-07 55 8 1.000000e+07 
-1.000000e-07 55 8 3.162278e+07 
-1.000000e-07 55 8 1.000000e+08 
-1.000000e-07 55 10 1.000000e+05 
-1.000000e-07 55 10 3.162278e+05 
-1.000000e-07 55 10 1.000000e+06 
-1.000000e-07 55 10 3.162278e+06 
-1.000000e-07 55 10 1.000000e+07 
-1.000000e-07 55 10 3.162278e+07 
-1.000000e-07 55 10 1.000000e+08 
-1.000000e-07 55 12 1.000000e+05 
-1.000000e-07 55 12 3.162278e+05 
-1.000000e-07 55 12 1.000000e+06 
-1.000000e-07 55 12 3.162278e+06 
-1.000000e-07 55 12 1.000000e+07 
-1.000000e-07 55 12 3.162278e+07 
-1.000000e-07 55 12 1.000000e+08 
-1.000000e-07 55 14 1.000000e+05 
-1.000000e-07 55 14 3.162278e+05 
-1.000000e-07 55 14 1.000000e+06 
-1.000000e-07 55 14 3.162278e+06 
-1.000000e-07 55 14 1.000000e+07 
-1.000000e-07 55 14 3.162278e+07 
-1.000000e-07 55 14 1.000000e+08 
-1.000000e-07 55 16 1.000000e+05 
-1.000000e-07 55 16 3.162278e+05 
-1.000000e-07 55 16 1.000000e+06 
-1.000000e-07 55 16 3.162278e+06 
-1.000000e-07 55 16 1.000000e+07 
-1.000000e-07 55 16 3.162278e+07 
-1.000000e-07 55 16 1.000000e+08 
-1.000000e-07 60 4 1.000000e+05 
-1.000000e-07 60 4 3.162278e+05 
-1.000000e-07 60 4 1.000000e+06 
-1.000000e-07 60 4 3.162278e+06 
-1.000000e-07 60 4 1.000000e+07 
-1.000000e-07 60 4 3.162278e+07 
-1.000000e-07 60 4 1.000000e+08 
-1.000000e-07 60 6 1.000000e+05 
-1.000000e-07 60 6 3.162278e+05 
-1.000000e-07 60 6 1.000000e+06 
-1.000000e-07 60 6 3.162278e+06 
-1.000000e-07 60 6 1.000000e+07 
-1.000000e-07 60 6 3.162278e+07 
-1.000000e-07 60 6 1.000000e+08 
-1.000000e-07 60 8 1.000000e+05 
-1.000000e-07 60 8 3.162278e+05 
-1.000000e-07 60 8 1.000000e+06 
-1.000000e-07 60 8 3.162278e+06 
-1.000000e-07 60 8 1.000000e+07 
-1.000000e-07 60 8 3.162278e+07 
-1.000000e-07 60 8 1.000000e+08 
-1.000000e-07 60 10 1.000000e+05 
-1.000000e-07 60 10 3.162278e+05 
-1.000000e-07 60 10 1.000000e+06 
-1.000000e-07 60 10 3.162278e+06 
-1.000000e-07 60 10 1.000000e+07 
-1.000000e-07 60 10 3.162278e+07 
-1.000000e-07 60 10 1.000000e+08 
-1.000000e-07 60 12 1.000000e+05 
-1.000000e-07 60 12 3.162278e+05 
-1.000000e-07 60 12 1.000000e+06 
-1.000000e-07 60 12 3.162278e+06 
-1.000000e-07 60 12 1.000000e+07 
-1.000000e-07 60 12 3.162278e+07 
-1.000000e-07 60 12 1.000000e+08 
-1.000000e-07 60 14 1.000000e+05 
-1.000000e-07 60 14 3.162278e+05 
-1.000000e-07 60 14 1.000000e+06 
-1.000000e-07 60 14 3.162278e+06 
-1.000000e-07 60 14 1.000000e+07 
-1.000000e-07 60 14 3.162278e+07 
-1.000000e-07 60 14 1.000000e+08 
-1.000000e-07 60 16 1.000000e+05 
-1.000000e-07 60 16 3.162278e+05 
-1.000000e-07 60 16 1.000000e+06 
-1.000000e-07 60 16 3.162278e+06 
-1.000000e-07 60 16 1.000000e+07 
-1.000000e-07 60 16 3.162278e+07 
-1.000000e-07 60 16 1.000000e+08 
-3.162278e-08 20 4 1.000000e+05 
-3.162278e-08 20 4 3.162278e+05 
-3.162278e-08 20 4 1.000000e+06 
-3.162278e-08 20 4 3.162278e+06 
-3.162278e-08 20 4 1.000000e+07 
-3.162278e-08 20 4 3.162278e+07 
-3.162278e-08 20 4 1.000000e+08 
-3.162278e-08 20 6 1.000000e+05 
-3.162278e-08 20 6 3.162278e+05 
-3.162278e-08 20 6 1.000000e+06 
-3.162278e-08 20 6 3.162278e+06 
-3.162278e-08 20 6 1.000000e+07 
-3.162278e-08 20 6 3.162278e+07 
-3.162278e-08 20 6 1.000000e+08 
-3.162278e-08 20 8 1.000000e+05 
-3.162278e-08 20 8 3.162278e+05 
-3.162278e-08 20 8 1.000000e+06 
-3.162278e-08 20 8 3.162278e+06 
-3.162278e-08 20 8 1.000000e+07 
-3.162278e-08 20 8 3.162278e+07 
-3.162278e-08 20 8 1.000000e+08 
-3.162278e-08 20 10 1.000000e+05 
-3.162278e-08 20 10 3.162278e+05 
-3.162278e-08 20 10 1.000000e+06 
-3.162278e-08 20 10 3.162278e+06 
-3.162278e-08 20 10 1.000000e+07 
-3.162278e-08 20 10 3.162278e+07 
-3.162278e-08 20 10 1.000000e+08 
-3.162278e-08 20 12 1.000000e+05 
-3.162278e-08 20 12 3.162278e+05 
-3.162278e-08 20 12 1.000000e+06 
-3.162278e-08 20 12 3.162278e+06 
-3.162278e-08 20 12 1.000000e+07 
-3.162278e-08 20 12 3.162278e+07 
-3.162278e-08 20 12 1.000000e+08 
-3.162278e-08 20 14 1.000000e+05 
-3.162278e-08 20 14 3.162278e+05 
-3.162278e-08 20 14 1.000000e+06 
-3.162278e-08 20 14 3.162278e+06 
-3.162278e-08 20 14 1.000000e+07 
-3.162278e-08 20 14 3.162278e+07 
-3.162278e-08 20 14 1.000000e+08 
-3.162278e-08 20 16 1.000000e+05 
-3.162278e-08 20 16 3.162278e+05 
-3.162278e-08 20 16 1.000000e+06 
-3.162278e-08 20 16 3.162278e+06 
-3.162278e-08 20 16 1.000000e+07 
-3.162278e-08 20 16 3.162278e+07 
-3.162278e-08 20 16 1.000000e+08 
-3.162278e-08 25 4 1.000000e+05 
-3.162278e-08 25 4 3.162278e+05 
-3.162278e-08 25 4 1.000000e+06 
-3.162278e-08 25 4 3.162278e+06 
-3.162278e-08 25 4 1.000000e+07 
-3.162278e-08 25 4 3.162278e+07 
-3.162278e-08 25 4 1.000000e+08 
-3.162278e-08 25 6 1.000000e+05 
-3.162278e-08 25 6 3.162278e+05 
-3.162278e-08 25 6 1.000000e+06 
-3.162278e-08 25 6 3.162278e+06 
-3.162278e-08 25 6 1.000000e+07 
-3.162278e-08 25 6 3.162278e+07 
-3.162278e-08 25 6 1.000000e+08 
-3.162278e-08 25 8 1.000000e+05 
-3.162278e-08 25 8 3.162278e+05 
-3.162278e-08 25 8 1.000000e+06 
-3.162278e-08 25 8 3.162278e+06 
-3.162278e-08 25 8 1.000000e+07 
-3.162278e-08 25 8 3.162278e+07 
-3.162278e-08 25 8 1.000000e+08 
-3.162278e-08 25 10 1.000000e+05 
-3.162278e-08 25 10 3.162278e+05 
-3.162278e-08 25 10 1.000000e+06 
-3.162278e-08 25 10 3.162278e+06 
-3.162278e-08 25 10 1.000000e+07 
-3.162278e-08 25 10 3.162278e+07 
-3.162278e-08 25 10 1.000000e+08 
-3.162278e-08 25 12 1.000000e+05 
-3.162278e-08 25 12 3.162278e+05 
-3.162278e-08 25 12 1.000000e+06 
-3.162278e-08 25 12 3.162278e+06 
-3.162278e-08 25 12 1.000000e+07 
-3.162278e-08 25 12 3.162278e+07 
-3.162278e-08 25 12 1.000000e+08 
-3.162278e-08 25 14 1.000000e+05 
-3.162278e-08 25 14 3.162278e+05 
-3.162278e-08 25 14 1.000000e+06 
-3.162278e-08 25 14 3.162278e+06 
-3.162278e-08 25 14 1.000000e+07 
-3.162278e-08 25 14 3.162278e+07 
-3.162278e-08 25 14 1.000000e+08 
-3.162278e-08 25 16 1.000000e+05 
-3.162278e-08 25 16 3.162278e+05 
-3.162278e-08 25 16 1.000000e+06 
-3.162278e-08 25 16 3.162278e+06 
-3.162278e-08 25 16 1.000000e+07 
-3.162278e-08 25 16 3.162278e+07 
-3.162278e-08 25 16 1.000000e+08 
-3.162278e-08 30 4 1.000000e+05 
-3.162278e-08 30 4 3.162278e+05 
-3.162278e-08 30 4 1.000000e+06 
-3.162278e-08 30 4 3.162278e+06 
-3.162278e-08 30 4 1.000000e+07 
-3.162278e-08 30 4 3.162278e+07 
-3.162278e-08 30 4 1.000000e+08 
-3.162278e-08 30 6 1.000000e+05 
-3.162278e-08 30 6 3.162278e+05 
-3.162278e-08 30 6 1.000000e+06 
-3.162278e-08 30 6 3.162278e+06 
-3.162278e-08 30 6 1.000000e+07 
-3.162278e-08 30 6 3.162278e+07 
-3.162278e-08 30 6 1.000000e+08 
-3.162278e-08 30 8 1.000000e+05 
-3.162278e-08 30 8 3.162278e+05 
-3.162278e-08 30 8 1.000000e+06 
-3.162278e-08 30 8 3.162278e+06 
-3.162278e-08 30 8 1.000000e+07 
-3.162278e-08 30 8 3.162278e+07 
-3.162278e-08 30 8 1.000000e+08 
-3.162278e-08 30 10 1.000000e+05 
-3.162278e-08 30 10 3.162278e+05 
-3.162278e-08 30 10 1.000000e+06 
-3.162278e-08 30 10 3.162278e+06 
-3.162278e-08 30 10 1.000000e+07 
-3.162278e-08 30 10 3.162278e+07 
-3.162278e-08 30 10 1.000000e+08 
-3.162278e-08 30 12 1.000000e+05 
-3.162278e-08 30 12 3.162278e+05 
-3.162278e-08 30 12 1.000000e+06 
-3.162278e-08 30 12 3.162278e+06 
-3.162278e-08 30 12 1.000000e+07 
-3.162278e-08 30 12 3.162278e+07 
-3.162278e-08 30 12 1.000000e+08 
-3.162278e-08 30 14 1.000000e+05 
-3.162278e-08 30 14 3.162278e+05 
-3.162278e-08 30 14 1.000000e+06 
-3.162278e-08 30 14 3.162278e+06 
-3.162278e-08 30 14 1.000000e+07 
-3.162278e-08 30 14 3.162278e+07 
-3.162278e-08 30 14 1.000000e+08 
-3.162278e-08 30 16 1.000000e+05 
-3.162278e-08 30 16 3.162278e+05 
-3.162278e-08 30 16 1.000000e+06 
-3.162278e-08 30 16 3.162278e+06 
-3.162278e-08 30 16 1.000000e+07 
-3.162278e-08 30 16 3.162278e+07 
-3.162278e-08 30 16 1.000000e+08 
-3.162278e-08 35 4 1.000000e+05 
-3.162278e-08 35 4 3.162278e+05 
-3.162278e-08 35 4 1.000000e+06 
-3.162278e-08 35 4 3.162278e+06 
-3.162278e-08 35 4 1.000000e+07 
-3.162278e-08 35 4 3.162278e+07 
-3.162278e-08 35 4 1.000000e+08 
-3.162278e-08 35 6 1.000000e+05 
-3.162278e-08 35 6 3.162278e+05 
-3.162278e-08 35 6 1.000000e+06 
-3.162278e-08 35 6 3.162278e+06 
-3.162278e-08 35 6 1.000000e+07 
-3.162278e-08 35 6 3.162278e+07 
-3.162278e-08 35 6 1.000000e+08 
-3.162278e-08 35 8 1.000000e+05 
-3.162278e-08 35 8 3.162278e+05 
-3.162278e-08 35 8 1.000000e+06 
-3.162278e-08 35 8 3.162278e+06 
-3.162278e-08 35 8 1.000000e+07 
-3.162278e-08 35 8 3.162278e+07 
-3.162278e-08 35 8 1.000000e+08 
-3.162278e-08 35 10 1.000000e+05 
-3.162278e-08 35 10 3.162278e+05 
-3.162278e-08 35 10 1.000000e+06 
-3.162278e-08 35 10 3.162278e+06 
-3.162278e-08 35 10 1.000000e+07 
-3.162278e-08 35 10 3.162278e+07 
-3.162278e-08 35 10 1.000000e+08 
-3.162278e-08 35 12 1.000000e+05 
-3.162278e-08 35 12 3.162278e+05 
-3.162278e-08 35 12 1.000000e+06 
-3.162278e-08 35 12 3.162278e+06 
-3.162278e-08 35 12 1.000000e+07 
-3.162278e-08 35 12 3.162278e+07 
-3.162278e-08 35 12 1.000000e+08 
-3.162278e-08 35 14 1.000000e+05 
-3.162278e-08 35 14 3.162278e+05 
-3.162278e-08 35 14 1.000000e+06 
-3.162278e-08 35 14 3.162278e+06 
-3.162278e-08 35 14 1.000000e+07 
-3.162278e-08 35 14 3.162278e+07 
-3.162278e-08 35 14 1.000000e+08 
-3.162278e-08 35 16 1.000000e+05 
-3.162278e-08 35 16 3.162278e+05 
-3.162278e-08 35 16 1.000000e+06 
-3.162278e-08 35 16 3.162278e+06 
-3.162278e-08 35 16 1.000000e+07 
-3.162278e-08 35 16 3.162278e+07 
-3.162278e-08 35 16 1.000000e+08 
-3.162278e-08 40 4 1.000000e+05 
-3.162278e-08 40 4 3.162278e+05 
-3.162278e-08 40 4 1.000000e+06 
-3.162278e-08 40 4 3.162278e+06 
-3.162278e-08 40 4 1.000000e+07 
-3.162278e-08 40 4 3.162278e+07 
-3.162278e-08 40 4 1.000000e+08 
-3.162278e-08 40 6 1.000000e+05 
-3.162278e-08 40 6 3.162278e+05 
-3.162278e-08 40 6 1.000000e+06 
-3.162278e-08 40 6 3.162278e+06 
-3.162278e-08 40 6 1.000000e+07 
-3.162278e-08 40 6 3.162278e+07 
-3.162278e-08 40 6 1.000000e+08 
-3.162278e-08 40 8 1.000000e+05 
-3.162278e-08 40 8 3.162278e+05 
-3.162278e-08 40 8 1.000000e+06 
-3.162278e-08 40 8 3.162278e+06 
-3.162278e-08 40 8 1.000000e+07 
-3.162278e-08 40 8 3.162278e+07 
-3.162278e-08 40 8 1.000000e+08 
-3.162278e-08 40 10 1.000000e+05 
-3.162278e-08 40 10 3.162278e+05 
-3.162278e-08 40 10 1.000000e+06 
-3.162278e-08 40 10 3.162278e+06 
-3.162278e-08 40 10 1.000000e+07 
-3.162278e-08 40 10 3.162278e+07 
-3.162278e-08 40 10 1.000000e+08 
-3.162278e-08 40 12 1.000000e+05 
-3.162278e-08 40 12 3.162278e+05 
-3.162278e-08 40 12 1.000000e+06 
-3.162278e-08 40 12 3.162278e+06 
-3.162278e-08 40 12 1.000000e+07 
-3.162278e-08 40 12 3.162278e+07 
-3.162278e-08 40 12 1.000000e+08 
-3.162278e-08 40 14 1.000000e+05 
-3.162278e-08 40 14 3.162278e+05 
-3.162278e-08 40 14 1.000000e+06 
-3.162278e-08 40 14 3.162278e+06 
-3.162278e-08 40 14 1.000000e+07 
-3.162278e-08 40 14 3.162278e+07 
-3.162278e-08 40 14 1.000000e+08 
-3.162278e-08 40 16 1.000000e+05 
-3.162278e-08 40 16 3.162278e+05 
-3.162278e-08 40 16 1.000000e+06 
-3.162278e-08 40 16 3.162278e+06 
-3.162278e-08 40 16 1.000000e+07 
-3.162278e-08 40 16 3.162278e+07 
-3.162278e-08 40 16 1.000000e+08 
-3.162278e-08 45 4 1.000000e+05 
-3.162278e-08 45 4 3.162278e+05 
-3.162278e-08 45 4 1.000000e+06 
-3.162278e-08 45 4 3.162278e+06 
-3.162278e-08 45 4 1.000000e+07 
-3.162278e-08 45 4 3.162278e+07 
-3.162278e-08 45 4 1.000000e+08 
-3.162278e-08 45 6 1.000000e+05 
-3.162278e-08 45 6 3.162278e+05 
-3.162278e-08 45 6 1.000000e+06 
-3.162278e-08 45 6 3.162278e+06 
-3.162278e-08 45 6 1.000000e+07 
-3.162278e-08 45 6 3.162278e+07 
-3.162278e-08 45 6 1.000000e+08 
-3.162278e-08 45 8 1.000000e+05 
-3.162278e-08 45 8 3.162278e+05 
-3.162278e-08 45 8 1.000000e+06 
-3.162278e-08 45 8 3.162278e+06 
-3.162278e-08 45 8 1.000000e+07 
-3.162278e-08 45 8 3.162278e+07 
-3.162278e-08 45 8 1.000000e+08 
-3.162278e-08 45 10 1.000000e+05 
-3.162278e-08 45 10 3.162278e+05 
-3.162278e-08 45 10 1.000000e+06 
-3.162278e-08 45 10 3.162278e+06 
-3.162278e-08 45 10 1.000000e+07 
-3.162278e-08 45 10 3.162278e+07 
-3.162278e-08 45 10 1.000000e+08 
-3.162278e-08 45 12 1.000000e+05 
-3.162278e-08 45 12 3.162278e+05 
-3.162278e-08 45 12 1.000000e+06 
-3.162278e-08 45 12 3.162278e+06 
-3.162278e-08 45 12 1.000000e+07 
-3.162278e-08 45 12 3.162278e+07 
-3.162278e-08 45 12 1.000000e+08 
-3.162278e-08 45 14 1.000000e+05 
-3.162278e-08 45 14 3.162278e+05 
-3.162278e-08 45 14 1.000000e+06 
-3.162278e-08 45 14 3.162278e+06 
-3.162278e-08 45 14 1.000000e+07 
-3.162278e-08 45 14 3.162278e+07 
-3.162278e-08 45 14 1.000000e+08 
-3.162278e-08 45 16 1.000000e+05 
-3.162278e-08 45 16 3.162278e+05 
-3.162278e-08 45 16 1.000000e+06 
-3.162278e-08 45 16 3.162278e+06 
-3.162278e-08 45 16 1.000000e+07 
-3.162278e-08 45 16 3.162278e+07 
-3.162278e-08 45 16 1.000000e+08 
-3.162278e-08 50 4 1.000000e+05 
-3.162278e-08 50 4 3.162278e+05 
-3.162278e-08 50 4 1.000000e+06 
-3.162278e-08 50 4 3.162278e+06 
-3.162278e-08 50 4 1.000000e+07 
-3.162278e-08 50 4 3.162278e+07 
-3.162278e-08 50 4 1.000000e+08 
-3.162278e-08 50 6 1.000000e+05 
-3.162278e-08 50 6 3.162278e+05 
-3.162278e-08 50 6 1.000000e+06 
-3.162278e-08 50 6 3.162278e+06 
-3.162278e-08 50 6 1.000000e+07 
-3.162278e-08 50 6 3.162278e+07 
-3.162278e-08 50 6 1.000000e+08 
-3.162278e-08 50 8 1.000000e+05 
-3.162278e-08 50 8 3.162278e+05 
-3.162278e-08 50 8 1.000000e+06 
-3.162278e-08 50 8 3.162278e+06 
-3.162278e-08 50 8 1.000000e+07 
-3.162278e-08 50 8 3.162278e+07 
-3.162278e-08 50 8 1.000000e+08 
-3.162278e-08 50 10 1.000000e+05 
-3.162278e-08 50 10 3.162278e+05 
-3.162278e-08 50 10 1.000000e+06 
-3.162278e-08 50 10 3.162278e+06 
-3.162278e-08 50 10 1.000000e+07 
-3.162278e-08 50 10 3.162278e+07 
-3.162278e-08 50 10 1.000000e+08 
-3.162278e-08 50 12 1.000000e+05 
-3.162278e-08 50 12 3.162278e+05 
-3.162278e-08 50 12 1.000000e+06 
-3.162278e-08 50 12 3.162278e+06 
-3.162278e-08 50 12 1.000000e+07 
-3.162278e-08 50 12 3.162278e+07 
-3.162278e-08 50 12 1.000000e+08 
-3.162278e-08 50 14 1.000000e+05 
-3.162278e-08 50 14 3.162278e+05 
-3.162278e-08 50 14 1.000000e+06 
-3.162278e-08 50 14 3.162278e+06 
-3.162278e-08 50 14 1.000000e+07 
-3.162278e-08 50 14 3.162278e+07 
-3.162278e-08 50 14 1.000000e+08 
-3.162278e-08 50 16 1.000000e+05 
-3.162278e-08 50 16 3.162278e+05 
-3.162278e-08 50 16 1.000000e+06 
-3.162278e-08 50 16 3.162278e+06 
-3.162278e-08 50 16 1.000000e+07 
-3.162278e-08 50 16 3.162278e+07 
-3.162278e-08 50 16 1.000000e+08 
-3.162278e-08 55 4 1.000000e+05 
-3.162278e-08 55 4 3.162278e+05 
-3.162278e-08 55 4 1.000000e+06 
-3.162278e-08 55 4 3.162278e+06 
-3.162278e-08 55 4 1.000000e+07 
-3.162278e-08 55 4 3.162278e+07 
-3.162278e-08 55 4 1.000000e+08 
-3.162278e-08 55 6 1.000000e+05 
-3.162278e-08 55 6 3.162278e+05 
-3.162278e-08 55 6 1.000000e+06 
-3.162278e-08 55 6 3.162278e+06 
-3.162278e-08 55 6 1.000000e+07 
-3.162278e-08 55 6 3.162278e+07 
-3.162278e-08 55 6 1.000000e+08 
-3.162278e-08 55 8 1.000000e+05 
-3.162278e-08 55 8 3.162278e+05 
-3.162278e-08 55 8 1.000000e+06 
-3.162278e-08 55 8 3.162278e+06 
-3.162278e-08 55 8 1.000000e+07 
-3.162278e-08 55 8 3.162278e+07 
-3.162278e-08 55 8 1.000000e+08 
-3.162278e-08 55 10 1.000000e+05 
-3.162278e-08 55 10 3.162278e+05 
-3.162278e-08 55 10 1.000000e+06 
-3.162278e-08 55 10 3.162278e+06 
-3.162278e-08 55 10 1.000000e+07 
-3.162278e-08 55 10 3.162278e+07 
-3.162278e-08 55 10 1.000000e+08 
-3.162278e-08 55 12 1.000000e+05 
-3.162278e-08 55 12 3.162278e+05 
-3.162278e-08 55 12 1.000000e+06 
-3.162278e-08 55 12 3.162278e+06 
-3.162278e-08 55 12 1.000000e+07 
-3.162278e-08 55 12 3.162278e+07 
-3.162278e-08 55 12 1.000000e+08 
-3.162278e-08 55 14 1.000000e+05 
-3.162278e-08 55 14 3.162278e+05 
-3.162278e-08 55 14 1.000000e+06 
-3.162278e-08 55 14 3.162278e+06 
-3.162278e-08 55 14 1.000000e+07 
-3.162278e-08 55 14 3.162278e+07 
-3.162278e-08 55 14 1.000000e+08 
-3.162278e-08 55 16 1.000000e+05 
-3.162278e-08 55 16 3.162278e+05 
-3.162278e-08 55 16 1.000000e+06 
-3.162278e-08 55 16 3.162278e+06 
-3.162278e-08 55 16 1.000000e+07 
-3.162278e-08 55 16 3.162278e+07 
-3.162278e-08 55 16 1.000000e+08 
-3.162278e-08 60 4 1.000000e+05 
-3.162278e-08 60 4 3.162278e+05 
-3.162278e-08 60 4 1.000000e+06 
-3.162278e-08 60 4 3.162278e+06 
-3.162278e-08 60 4 1.000000e+07 
-3.162278e-08 60 4 3.162278e+07 
-3.162278e-08 60 4 1.000000e+08 
-3.162278e-08 60 6 1.000000e+05 
-3.162278e-08 60 6 3.162278e+05 
-3.162278e-08 60 6 1.000000e+06 
-3.162278e-08 60 6 3.162278e+06 
-3.162278e-08 60 6 1.000000e+07 
-3.162278e-08 60 6 3.162278e+07 
-3.162278e-08 60 6 1.000000e+08 
-3.162278e-08 60 8 1.000000e+05 
-3.162278e-08 60 8 3.162278e+05 
-3.162278e-08 60 8 1.000000e+06 
-3.162278e-08 60 8 3.162278e+06 
-3.162278e-08 60 8 1.000000e+07 
-3.162278e-08 60 8 3.162278e+07 
-3.162278e-08 60 8 1.000000e+08 
-3.162278e-08 60 10 1.000000e+05 
-3.162278e-08 60 10 3.162278e+05 
-3.162278e-08 60 10 1.000000e+06 
-3.162278e-08 60 10 3.162278e+06 
-3.162278e-08 60 10 1.000000e+07 
-3.162278e-08 60 10 3.162278e+07 
-3.162278e-08 60 10 1.000000e+08 
-3.162278e-08 60 12 1.000000e+05 
-3.162278e-08 60 12 3.162278e+05 
-3.162278e-08 60 12 1.000000e+06 
-3.162278e-08 60 12 3.162278e+06 
-3.162278e-08 60 12 1.000000e+07 
-3.162278e-08 60 12 3.162278e+07 
-3.162278e-08 60 12 1.000000e+08 
-3.162278e-08 60 14 1.000000e+05 
-3.162278e-08 60 14 3.162278e+05 
-3.162278e-08 60 14 1.000000e+06 
-3.162278e-08 60 14 3.162278e+06 
-3.162278e-08 60 14 1.000000e+07 
-3.162278e-08 60 14 3.162278e+07 
-3.162278e-08 60 14 1.000000e+08 
-3.162278e-08 60 16 1.000000e+05 
-3.162278e-08 60 16 3.162278e+05 
-3.162278e-08 60 16 1.000000e+06 
-3.162278e-08 60 16 3.162278e+06 
-3.162278e-08 60 16 1.000000e+07 
-3.162278e-08 60 16 3.162278e+07 
-3.162278e-08 60 16 1.000000e+08 
-1.000000e-08 20 4 1.000000e+05 
-1.000000e-08 20 4 3.162278e+05 
-1.000000e-08 20 4 1.000000e+06 
-1.000000e-08 20 4 3.162278e+06 
-1.000000e-08 20 4 1.000000e+07 
-1.000000e-08 20 4 3.162278e+07 
-1.000000e-08 20 4 1.000000e+08 
-1.000000e-08 20 6 1.000000e+05 
-1.000000e-08 20 6 3.162278e+05 
-1.000000e-08 20 6 1.000000e+06 
-1.000000e-08 20 6 3.162278e+06 
-1.000000e-08 20 6 1.000000e+07 
-1.000000e-08 20 6 3.162278e+07 
-1.000000e-08 20 6 1.000000e+08 
-1.000000e-08 20 8 1.000000e+05 
-1.000000e-08 20 8 3.162278e+05 
-1.000000e-08 20 8 1.000000e+06 
-1.000000e-08 20 8 3.162278e+06 
-1.000000e-08 20 8 1.000000e+07 
-1.000000e-08 20 8 3.162278e+07 
-1.000000e-08 20 8 1.000000e+08 
-1.000000e-08 20 10 1.000000e+05 
-1.000000e-08 20 10 3.162278e+05 
-1.000000e-08 20 10 1.000000e+06 
-1.000000e-08 20 10 3.162278e+06 
-1.000000e-08 20 10 1.000000e+07 
-1.000000e-08 20 10 3.162278e+07 
-1.000000e-08 20 10 1.000000e+08 
-1.000000e-08 20 12 1.000000e+05 
-1.000000e-08 20 12 3.162278e+05 
-1.000000e-08 20 12 1.000000e+06 
-1.000000e-08 20 12 3.162278e+06 
-1.000000e-08 20 12 1.000000e+07 
-1.000000e-08 20 12 3.162278e+07 
-1.000000e-08 20 12 1.000000e+08 
-1.000000e-08 20 14 1.000000e+05 
-1.000000e-08 20 14 3.162278e+05 
-1.000000e-08 20 14 1.000000e+06 
-1.000000e-08 20 14 3.162278e+06 
-1.000000e-08 20 14 1.000000e+07 
-1.000000e-08 20 14 3.162278e+07 
-1.000000e-08 20 14 1.000000e+08 
-1.000000e-08 20 16 1.000000e+05 
-1.000000e-08 20 16 3.162278e+05 
-1.000000e-08 20 16 1.000000e+06 
-1.000000e-08 20 16 3.162278e+06 
-1.000000e-08 20 16 1.000000e+07 
-1.000000e-08 20 16 3.162278e+07 
-1.000000e-08 20 16 1.000000e+08 
-1.000000e-08 25 4 1.000000e+05 
-1.000000e-08 25 4 3.162278e+05 
-1.000000e-08 25 4 1.000000e+06 
-1.000000e-08 25 4 3.162278e+06 
-1.000000e-08 25 4 1.000000e+07 
-1.000000e-08 25 4 3.162278e+07 
-1.000000e-08 25 4 1.000000e+08 
-1.000000e-08 25 6 1.000000e+05 
-1.000000e-08 25 6 3.162278e+05 
-1.000000e-08 25 6 1.000000e+06 
-1.000000e-08 25 6 3.162278e+06 
-1.000000e-08 25 6 1.000000e+07 
-1.000000e-08 25 6 3.162278e+07 
-1.000000e-08 25 6 1.000000e+08 
-1.000000e-08 25 8 1.000000e+05 
-1.000000e-08 25 8 3.162278e+05 
-1.000000e-08 25 8 1.000000e+06 
-1.000000e-08 25 8 3.162278e+06 
-1.000000e-08 25 8 1.000000e+07 
-1.000000e-08 25 8 3.162278e+07 
-1.000000e-08 25 8 1.000000e+08 
-1.000000e-08 25 10 1.000000e+05 
-1.000000e-08 25 10 3.162278e+05 
-1.000000e-08 25 10 1.000000e+06 
-1.000000e-08 25 10 3.162278e+06 
-1.000000e-08 25 10 1.000000e+07 
-1.000000e-08 25 10 3.162278e+07 
-1.000000e-08 25 10 1.000000e+08 
-1.000000e-08 25 12 1.000000e+05 
-1.000000e-08 25 12 3.162278e+05 
-1.000000e-08 25 12 1.000000e+06 
-1.000000e-08 25 12 3.162278e+06 
-1.000000e-08 25 12 1.000000e+07 
-1.000000e-08 25 12 3.162278e+07 
-1.000000e-08 25 12 1.000000e+08 
-1.000000e-08 25 14 1.000000e+05 
-1.000000e-08 25 14 3.162278e+05 
-1.000000e-08 25 14 1.000000e+06 
-1.000000e-08 25 14 3.162278e+06 
-1.000000e-08 25 14 1.000000e+07 
-1.000000e-08 25 14 3.162278e+07 
-1.000000e-08 25 14 1.000000e+08 
-1.000000e-08 25 16 1.000000e+05 
-1.000000e-08 25 16 3.162278e+05 
-1.000000e-08 25 16 1.000000e+06 
-1.000000e-08 25 16 3.162278e+06 
-1.000000e-08 25 16 1.000000e+07 
-1.000000e-08 25 16 3.162278e+07 
-1.000000e-08 25 16 1.000000e+08 
-1.000000e-08 30 4 1.000000e+05 
-1.000000e-08 30 4 3.162278e+05 
-1.000000e-08 30 4 1.000000e+06 
-1.000000e-08 30 4 3.162278e+06 
-1.000000e-08 30 4 1.000000e+07 
-1.000000e-08 30 4 3.162278e+07 
-1.000000e-08 30 4 1.000000e+08 
-1.000000e-08 30 6 1.000000e+05 
-1.000000e-08 30 6 3.162278e+05 
-1.000000e-08 30 6 1.000000e+06 
-1.000000e-08 30 6 3.162278e+06 
-1.000000e-08 30 6 1.000000e+07 
-1.000000e-08 30 6 3.162278e+07 
-1.000000e-08 30 6 1.000000e+08 
-1.000000e-08 30 8 1.000000e+05 
-1.000000e-08 30 8 3.162278e+05 
-1.000000e-08 30 8 1.000000e+06 
-1.000000e-08 30 8 3.162278e+06 
-1.000000e-08 30 8 1.000000e+07 
-1.000000e-08 30 8 3.162278e+07 
-1.000000e-08 30 8 1.000000e+08 
-1.000000e-08 30 10 1.000000e+05 
-1.000000e-08 30 10 3.162278e+05 
-1.000000e-08 30 10 1.000000e+06 
-1.000000e-08 30 10 3.162278e+06 
-1.000000e-08 30 10 1.000000e+07 
-1.000000e-08 30 10 3.162278e+07 
-1.000000e-08 30 10 1.000000e+08 
-1.000000e-08 30 12 1.000000e+05 
-1.000000e-08 30 12 3.162278e+05 
-1.000000e-08 30 12 1.000000e+06 
-1.000000e-08 30 12 3.162278e+06 
-1.000000e-08 30 12 1.000000e+07 
-1.000000e-08 30 12 3.162278e+07 
-1.000000e-08 30 12 1.000000e+08 
-1.000000e-08 30 14 1.000000e+05 
-1.000000e-08 30 14 3.162278e+05 
-1.000000e-08 30 14 1.000000e+06 
-1.000000e-08 30 14 3.162278e+06 
-1.000000e-08 30 14 1.000000e+07 
-1.000000e-08 30 14 3.162278e+07 
-1.000000e-08 30 14 1.000000e+08 
-1.000000e-08 30 16 1.000000e+05 
-1.000000e-08 30 16 3.162278e+05 
-1.000000e-08 30 16 1.000000e+06 
-1.000000e-08 30 16 3.162278e+06 
-1.000000e-08 30 16 1.000000e+07 
-1.000000e-08 30 16 3.162278e+07 
-1.000000e-08 30 16 1.000000e+08 
-1.000000e-08 35 4 1.000000e+05 
-1.000000e-08 35 4 3.162278e+05 
-1.000000e-08 35 4 1.000000e+06 
-1.000000e-08 35 4 3.162278e+06 
-1.000000e-08 35 4 1.000000e+07 
-1.000000e-08 35 4 3.162278e+07 
-1.000000e-08 35 4 1.000000e+08 
-1.000000e-08 35 6 1.000000e+05 
-1.000000e-08 35 6 3.162278e+05 
-1.000000e-08 35 6 1.000000e+06 
-1.000000e-08 35 6 3.162278e+06 
-1.000000e-08 35 6 1.000000e+07 
-1.000000e-08 35 6 3.162278e+07 
-1.000000e-08 35 6 1.000000e+08 
-1.000000e-08 35 8 1.000000e+05 
-1.000000e-08 35 8 3.162278e+05 
-1.000000e-08 35 8 1.000000e+06 
-1.000000e-08 35 8 3.162278e+06 
-1.000000e-08 35 8 1.000000e+07 
-1.000000e-08 35 8 3.162278e+07 
-1.000000e-08 35 8 1.000000e+08 
-1.000000e-08 35 10 1.000000e+05 
-1.000000e-08 35 10 3.162278e+05 
-1.000000e-08 35 10 1.000000e+06 
-1.000000e-08 35 10 3.162278e+06 
-1.000000e-08 35 10 1.000000e+07 
-1.000000e-08 35 10 3.162278e+07 
-1.000000e-08 35 10 1.000000e+08 
-1.000000e-08 35 12 1.000000e+05 
-1.000000e-08 35 12 3.162278e+05 
-1.000000e-08 35 12 1.000000e+06 
-1.000000e-08 35 12 3.162278e+06 
-1.000000e-08 35 12 1.000000e+07 
-1.000000e-08 35 12 3.162278e+07 
-1.000000e-08 35 12 1.000000e+08 
-1.000000e-08 35 14 1.000000e+05 
-1.000000e-08 35 14 3.162278e+05 
-1.000000e-08 35 14 1.000000e+06 
-1.000000e-08 35 14 3.162278e+06 
-1.000000e-08 35 14 1.000000e+07 
-1.000000e-08 35 14 3.162278e+07 
-1.000000e-08 35 14 1.000000e+08 
-1.000000e-08 35 16 1.000000e+05 
-1.000000e-08 35 16 3.162278e+05 
-1.000000e-08 35 16 1.000000e+06 
-1.000000e-08 35 16 3.162278e+06 
-1.000000e-08 35 16 1.000000e+07 
-1.000000e-08 35 16 3.162278e+07 
-1.000000e-08 35 16 1.000000e+08 
-1.000000e-08 40 4 1.000000e+05 
-1.000000e-08 40 4 3.162278e+05 
-1.000000e-08 40 4 1.000000e+06 
-1.000000e-08 40 4 3.162278e+06 
-1.000000e-08 40 4 1.000000e+07 
-1.000000e-08 40 4 3.162278e+07 
-1.000000e-08 40 4 1.000000e+08 
-1.000000e-08 40 6 1.000000e+05 
-1.000000e-08 40 6 3.162278e+05 
-1.000000e-08 40 6 1.000000e+06 
-1.000000e-08 40 6 3.162278e+06 
-1.000000e-08 40 6 1.000000e+07 
-1.000000e-08 40 6 3.162278e+07 
-1.000000e-08 40 6 1.000000e+08 
-1.000000e-08 40 8 1.000000e+05 
-1.000000e-08 40 8 3.162278e+05 
-1.000000e-08 40 8 1.000000e+06 
-1.000000e-08 40 8 3.162278e+06 
-1.000000e-08 40 8 1.000000e+07 
-1.000000e-08 40 8 3.162278e+07 
-1.000000e-08 40 8 1.000000e+08 
-1.000000e-08 40 10 1.000000e+05 
-1.000000e-08 40 10 3.162278e+05 
-1.000000e-08 40 10 1.000000e+06 
-1.000000e-08 40 10 3.162278e+06 
-1.000000e-08 40 10 1.000000e+07 
-1.000000e-08 40 10 3.162278e+07 
-1.000000e-08 40 10 1.000000e+08 
-1.000000e-08 40 12 1.000000e+05 
-1.000000e-08 40 12 3.162278e+05 
-1.000000e-08 40 12 1.000000e+06 
-1.000000e-08 40 12 3.162278e+06 
-1.000000e-08 40 12 1.000000e+07 
-1.000000e-08 40 12 3.162278e+07 
-1.000000e-08 40 12 1.000000e+08 
-1.000000e-08 40 14 1.000000e+05 
-1.000000e-08 40 14 3.162278e+05 
-1.000000e-08 40 14 1.000000e+06 
-1.000000e-08 40 14 3.162278e+06 
-1.000000e-08 40 14 1.000000e+07 
-1.000000e-08 40 14 3.162278e+07 
-1.000000e-08 40 14 1.000000e+08 
-1.000000e-08 40 16 1.000000e+05 
-1.000000e-08 40 16 3.162278e+05 
-1.000000e-08 40 16 1.000000e+06 
-1.000000e-08 40 16 3.162278e+06 
-1.000000e-08 40 16 1.000000e+07 
-1.000000e-08 40 16 3.162278e+07 
-1.000000e-08 40 16 1.000000e+08 
-1.000000e-08 45 4 1.000000e+05 
-1.000000e-08 45 4 3.162278e+05 
-1.000000e-08 45 4 1.000000e+06 
-1.000000e-08 45 4 3.162278e+06 
-1.000000e-08 45 4 1.000000e+07 
-1.000000e-08 45 4 3.162278e+07 
-1.000000e-08 45 4 1.000000e+08 
-1.000000e-08 45 6 1.000000e+05 
-1.000000e-08 45 6 3.162278e+05 
-1.000000e-08 45 6 1.000000e+06 
-1.000000e-08 45 6 3.162278e+06 
-1.000000e-08 45 6 1.000000e+07 
-1.000000e-08 45 6 3.162278e+07 
-1.000000e-08 45 6 1.000000e+08 
-1.000000e-08 45 8 1.000000e+05 
-1.000000e-08 45 8 3.162278e+05 
-1.000000e-08 45 8 1.000000e+06 
-1.000000e-08 45 8 3.162278e+06 
-1.000000e-08 45 8 1.000000e+07 
-1.000000e-08 45 8 3.162278e+07 
-1.000000e-08 45 8 1.000000e+08 
-1.000000e-08 45 10 1.000000e+05 
-1.000000e-08 45 10 3.162278e+05 
-1.000000e-08 45 10 1.000000e+06 
-1.000000e-08 45 10 3.162278e+06 
-1.000000e-08 45 10 1.000000e+07 
-1.000000e-08 45 10 3.162278e+07 
-1.000000e-08 45 10 1.000000e+08 
-1.000000e-08 45 12 1.000000e+05 
-1.000000e-08 45 12 3.162278e+05 
-1.000000e-08 45 12 1.000000e+06 
-1.000000e-08 45 12 3.162278e+06 
-1.000000e-08 45 12 1.000000e+07 
-1.000000e-08 45 12 3.162278e+07 
-1.000000e-08 45 12 1.000000e+08 
-1.000000e-08 45 14 1.000000e+05 
-1.000000e-08 45 14 3.162278e+05 
-1.000000e-08 45 14 1.000000e+06 
-1.000000e-08 45 14 3.162278e+06 
-1.000000e-08 45 14 1.000000e+07 
-1.000000e-08 45 14 3.162278e+07 
-1.000000e-08 45 14 1.000000e+08 
-1.000000e-08 45 16 1.000000e+05 
-1.000000e-08 45 16 3.162278e+05 
-1.000000e-08 45 16 1.000000e+06 
-1.000000e-08 45 16 3.162278e+06 
-1.000000e-08 45 16 1.000000e+07 
-1.000000e-08 45 16 3.162278e+07 
-1.000000e-08 45 16 1.000000e+08 
-1.000000e-08 50 4 1.000000e+05 
-1.000000e-08 50 4 3.162278e+05 
-1.000000e-08 50 4 1.000000e+06 
-1.000000e-08 50 4 3.162278e+06 
-1.000000e-08 50 4 1.000000e+07 
-1.000000e-08 50 4 3.162278e+07 
-1.000000e-08 50 4 1.000000e+08 
-1.000000e-08 50 6 1.000000e+05 
-1.000000e-08 50 6 3.162278e+05 
-1.000000e-08 50 6 1.000000e+06 
-1.000000e-08 50 6 3.162278e+06 
-1.000000e-08 50 6 1.000000e+07 
-1.000000e-08 50 6 3.162278e+07 
-1.000000e-08 50 6 1.000000e+08 
-1.000000e-08 50 8 1.000000e+05 
-1.000000e-08 50 8 3.162278e+05 
-1.000000e-08 50 8 1.000000e+06 
-1.000000e-08 50 8 3.162278e+06 
-1.000000e-08 50 8 1.000000e+07 
-1.000000e-08 50 8 3.162278e+07 
-1.000000e-08 50 8 1.000000e+08 
-1.000000e-08 50 10 1.000000e+05 
-1.000000e-08 50 10 3.162278e+05 
-1.000000e-08 50 10 1.000000e+06 
-1.000000e-08 50 10 3.162278e+06 
-1.000000e-08 50 10 1.000000e+07 
-1.000000e-08 50 10 3.162278e+07 
-1.000000e-08 50 10 1.000000e+08 
-1.000000e-08 50 12 1.000000e+05 
-1.000000e-08 50 12 3.162278e+05 
-1.000000e-08 50 12 1.000000e+06 
-1.000000e-08 50 12 3.162278e+06 
-1.000000e-08 50 12 1.000000e+07 
-1.000000e-08 50 12 3.162278e+07 
-1.000000e-08 50 12 1.000000e+08 
-1.000000e-08 50 14 1.000000e+05 
-1.000000e-08 50 14 3.162278e+05 
-1.000000e-08 50 14 1.000000e+06 
-1.000000e-08 50 14 3.162278e+06 
-1.000000e-08 50 14 1.000000e+07 
-1.000000e-08 50 14 3.162278e+07 
-1.000000e-08 50 14 1.000000e+08 
-1.000000e-08 50 16 1.000000e+05 
-1.000000e-08 50 16 3.162278e+05 
-1.000000e-08 50 16 1.000000e+06 
-1.000000e-08 50 16 3.162278e+06 
-1.000000e-08 50 16 1.000000e+07 
-1.000000e-08 50 16 3.162278e+07 
-1.000000e-08 50 16 1.000000e+08 
-1.000000e-08 55 4 1.000000e+05 
-1.000000e-08 55 4 3.162278e+05 
-1.000000e-08 55 4 1.000000e+06 
-1.000000e-08 55 4 3.162278e+06 
-1.000000e-08 55 4 1.000000e+07 
-1.000000e-08 55 4 3.162278e+07 
-1.000000e-08 55 4 1.000000e+08 
-1.000000e-08 55 6 1.000000e+05 
-1.000000e-08 55 6 3.162278e+05 
-1.000000e-08 55 6 1.000000e+06 
-1.000000e-08 55 6 3.162278e+06 
-1.000000e-08 55 6 1.000000e+07 
-1.000000e-08 55 6 3.162278e+07 
-1.000000e-08 55 6 1.000000e+08 
-1.000000e-08 55 8 1.000000e+05 
-1.000000e-08 55 8 3.162278e+05 
-1.000000e-08 55 8 1.000000e+06 
-1.000000e-08 55 8 3.162278e+06 
-1.000000e-08 55 8 1.000000e+07 
-1.000000e-08 55 8 3.162278e+07 
-1.000000e-08 55 8 1.000000e+08 
-1.000000e-08 55 10 1.000000e+05 
-1.000000e-08 55 10 3.162278e+05 
-1.000000e-08 55 10 1.000000e+06 
-1.000000e-08 55 10 3.162278e+06 
-1.000000e-08 55 10 1.000000e+07 
-1.000000e-08 55 10 3.162278e+07 
-1.000000e-08 55 10 1.000000e+08 
-1.000000e-08 55 12 1.000000e+05 
-1.000000e-08 55 12 3.162278e+05 
-1.000000e-08 55 12 1.000000e+06 
-1.000000e-08 55 12 3.162278e+06 
-1.000000e-08 55 12 1.000000e+07 
-1.000000e-08 55 12 3.162278e+07 
-1.000000e-08 55 12 1.000000e+08 
-1.000000e-08 55 14 1.000000e+05 
-1.000000e-08 55 14 3.162278e+05 
-1.000000e-08 55 14 1.000000e+06 
-1.000000e-08 55 14 3.162278e+06 
-1.000000e-08 55 14 1.000000e+07 
-1.000000e-08 55 14 3.162278e+07 
-1.000000e-08 55 14 1.000000e+08 
-1.000000e-08 55 16 1.000000e+05 
-1.000000e-08 55 16 3.162278e+05 
-1.000000e-08 55 16 1.000000e+06 
-1.000000e-08 55 16 3.162278e+06 
-1.000000e-08 55 16 1.000000e+07 
-1.000000e-08 55 16 3.162278e+07 
-1.000000e-08 55 16 1.000000e+08 
-1.000000e-08 60 4 1.000000e+05 
-1.000000e-08 60 4 3.162278e+05 
-1.000000e-08 60 4 1.000000e+06 
-1.000000e-08 60 4 3.162278e+06 
-1.000000e-08 60 4 1.000000e+07 
-1.000000e-08 60 4 3.162278e+07 
-1.000000e-08 60 4 1.000000e+08 
-1.000000e-08 60 6 1.000000e+05 
-1.000000e-08 60 6 3.162278e+05 
-1.000000e-08 60 6 1.000000e+06 
-1.000000e-08 60 6 3.162278e+06 
-1.000000e-08 60 6 1.000000e+07 
-1.000000e-08 60 6 3.162278e+07 
-1.000000e-08 60 6 1.000000e+08 
-1.000000e-08 60 8 1.000000e+05 
-1.000000e-08 60 8 3.162278e+05 
-1.000000e-08 60 8 1.000000e+06 
-1.000000e-08 60 8 3.162278e+06 
-1.000000e-08 60 8 1.000000e+07 
-1.000000e-08 60 8 3.162278e+07 
-1.000000e-08 60 8 1.000000e+08 
-1.000000e-08 60 10 1.000000e+05 
-1.000000e-08 60 10 3.162278e+05 
-1.000000e-08 60 10 1.000000e+06 
-1.000000e-08 60 10 3.162278e+06 
-1.000000e-08 60 10 1.000000e+07 
-1.000000e-08 60 10 3.162278e+07 
-1.000000e-08 60 10 1.000000e+08 
-1.000000e-08 60 12 1.000000e+05 
-1.000000e-08 60 12 3.162278e+05 
-1.000000e-08 60 12 1.000000e+06 
-1.000000e-08 60 12 3.162278e+06 
-1.000000e-08 60 12 1.000000e+07 
-1.000000e-08 60 12 3.162278e+07 
-1.000000e-08 60 12 1.000000e+08 
-1.000000e-08 60 14 1.000000e+05 
-1.000000e-08 60 14 3.162278e+05 
-1.000000e-08 60 14 1.000000e+06 
-1.000000e-08 60 14 3.162278e+06 
-1.000000e-08 60 14 1.000000e+07 
-1.000000e-08 60 14 3.162278e+07 
-1.000000e-08 60 14 1.000000e+08 
-1.000000e-08 60 16 1.000000e+05 
-1.000000e-08 60 16 3.162278e+05 
-1.000000e-08 60 16 1.000000e+06 
-1.000000e-08 60 16 3.162278e+06 
-1.000000e-08 60 16 1.000000e+07 
-1.000000e-08 60 16 3.162278e+07 
-1.000000e-08 60 16 1.000000e+08 
diff --git a/Metafor/models/bord01/numericalSATrainingPoints2.ascii b/Metafor/models/bord01/numericalSATrainingPoints2.ascii
deleted file mode 100644
index 1e0037ba..00000000
--- a/Metafor/models/bord01/numericalSATrainingPoints2.ascii
+++ /dev/null
@@ -1,500 +0,0 @@
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-06 60 6 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-06 80 8 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-06 100 10 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-06 120 12 
-1.000000e-04 1.000000e+05 1.000000e+04 5.623413e-07 60 6 
-1.000000e-04 1.000000e+05 1.000000e+04 5.623413e-07 80 8 
-1.000000e-04 1.000000e+05 1.000000e+04 5.623413e-07 100 10 
-1.000000e-04 1.000000e+05 1.000000e+04 5.623413e-07 120 12 
-1.000000e-04 1.000000e+05 1.000000e+04 3.162278e-07 60 6 
-1.000000e-04 1.000000e+05 1.000000e+04 3.162278e-07 80 8 
-1.000000e-04 1.000000e+05 1.000000e+04 3.162278e-07 100 10 
-1.000000e-04 1.000000e+05 1.000000e+04 3.162278e-07 120 12 
-1.000000e-04 1.000000e+05 1.000000e+04 1.778279e-07 60 6 
-1.000000e-04 1.000000e+05 1.000000e+04 1.778279e-07 80 8 
-1.000000e-04 1.000000e+05 1.000000e+04 1.778279e-07 100 10 
-1.000000e-04 1.000000e+05 1.000000e+04 1.778279e-07 120 12 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-07 60 6 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-07 80 8 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-07 100 10 
-1.000000e-04 1.000000e+05 1.000000e+04 1.000000e-07 120 12 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-06 60 6 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-06 80 8 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-06 100 10 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-06 120 12 
-1.000000e-04 1.778279e+05 1.778279e+04 5.623413e-07 60 6 
-1.000000e-04 1.778279e+05 1.778279e+04 5.623413e-07 80 8 
-1.000000e-04 1.778279e+05 1.778279e+04 5.623413e-07 100 10 
-1.000000e-04 1.778279e+05 1.778279e+04 5.623413e-07 120 12 
-1.000000e-04 1.778279e+05 1.778279e+04 3.162278e-07 60 6 
-1.000000e-04 1.778279e+05 1.778279e+04 3.162278e-07 80 8 
-1.000000e-04 1.778279e+05 1.778279e+04 3.162278e-07 100 10 
-1.000000e-04 1.778279e+05 1.778279e+04 3.162278e-07 120 12 
-1.000000e-04 1.778279e+05 1.778279e+04 1.778279e-07 60 6 
-1.000000e-04 1.778279e+05 1.778279e+04 1.778279e-07 80 8 
-1.000000e-04 1.778279e+05 1.778279e+04 1.778279e-07 100 10 
-1.000000e-04 1.778279e+05 1.778279e+04 1.778279e-07 120 12 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-07 60 6 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-07 80 8 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-07 100 10 
-1.000000e-04 1.778279e+05 1.778279e+04 1.000000e-07 120 12 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-06 60 6 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-06 80 8 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-06 100 10 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-06 120 12 
-1.000000e-04 3.162278e+05 3.162278e+04 5.623413e-07 60 6 
-1.000000e-04 3.162278e+05 3.162278e+04 5.623413e-07 80 8 
-1.000000e-04 3.162278e+05 3.162278e+04 5.623413e-07 100 10 
-1.000000e-04 3.162278e+05 3.162278e+04 5.623413e-07 120 12 
-1.000000e-04 3.162278e+05 3.162278e+04 3.162278e-07 60 6 
-1.000000e-04 3.162278e+05 3.162278e+04 3.162278e-07 80 8 
-1.000000e-04 3.162278e+05 3.162278e+04 3.162278e-07 100 10 
-1.000000e-04 3.162278e+05 3.162278e+04 3.162278e-07 120 12 
-1.000000e-04 3.162278e+05 3.162278e+04 1.778279e-07 60 6 
-1.000000e-04 3.162278e+05 3.162278e+04 1.778279e-07 80 8 
-1.000000e-04 3.162278e+05 3.162278e+04 1.778279e-07 100 10 
-1.000000e-04 3.162278e+05 3.162278e+04 1.778279e-07 120 12 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-07 60 6 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-07 80 8 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-07 100 10 
-1.000000e-04 3.162278e+05 3.162278e+04 1.000000e-07 120 12 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-06 60 6 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-06 80 8 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-06 100 10 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-06 120 12 
-1.000000e-04 5.623413e+05 5.623413e+04 5.623413e-07 60 6 
-1.000000e-04 5.623413e+05 5.623413e+04 5.623413e-07 80 8 
-1.000000e-04 5.623413e+05 5.623413e+04 5.623413e-07 100 10 
-1.000000e-04 5.623413e+05 5.623413e+04 5.623413e-07 120 12 
-1.000000e-04 5.623413e+05 5.623413e+04 3.162278e-07 60 6 
-1.000000e-04 5.623413e+05 5.623413e+04 3.162278e-07 80 8 
-1.000000e-04 5.623413e+05 5.623413e+04 3.162278e-07 100 10 
-1.000000e-04 5.623413e+05 5.623413e+04 3.162278e-07 120 12 
-1.000000e-04 5.623413e+05 5.623413e+04 1.778279e-07 60 6 
-1.000000e-04 5.623413e+05 5.623413e+04 1.778279e-07 80 8 
-1.000000e-04 5.623413e+05 5.623413e+04 1.778279e-07 100 10 
-1.000000e-04 5.623413e+05 5.623413e+04 1.778279e-07 120 12 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-07 60 6 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-07 80 8 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-07 100 10 
-1.000000e-04 5.623413e+05 5.623413e+04 1.000000e-07 120 12 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-06 60 6 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-06 80 8 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-06 100 10 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-06 120 12 
-1.000000e-04 1.000000e+06 1.000000e+05 5.623413e-07 60 6 
-1.000000e-04 1.000000e+06 1.000000e+05 5.623413e-07 80 8 
-1.000000e-04 1.000000e+06 1.000000e+05 5.623413e-07 100 10 
-1.000000e-04 1.000000e+06 1.000000e+05 5.623413e-07 120 12 
-1.000000e-04 1.000000e+06 1.000000e+05 3.162278e-07 60 6 
-1.000000e-04 1.000000e+06 1.000000e+05 3.162278e-07 80 8 
-1.000000e-04 1.000000e+06 1.000000e+05 3.162278e-07 100 10 
-1.000000e-04 1.000000e+06 1.000000e+05 3.162278e-07 120 12 
-1.000000e-04 1.000000e+06 1.000000e+05 1.778279e-07 60 6 
-1.000000e-04 1.000000e+06 1.000000e+05 1.778279e-07 80 8 
-1.000000e-04 1.000000e+06 1.000000e+05 1.778279e-07 100 10 
-1.000000e-04 1.000000e+06 1.000000e+05 1.778279e-07 120 12 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-07 60 6 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-07 80 8 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-07 100 10 
-1.000000e-04 1.000000e+06 1.000000e+05 1.000000e-07 120 12 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-06 60 6 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-06 80 8 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-06 100 10 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-06 120 12 
-5.623413e-05 1.000000e+05 1.000000e+04 5.623413e-07 60 6 
-5.623413e-05 1.000000e+05 1.000000e+04 5.623413e-07 80 8 
-5.623413e-05 1.000000e+05 1.000000e+04 5.623413e-07 100 10 
-5.623413e-05 1.000000e+05 1.000000e+04 5.623413e-07 120 12 
-5.623413e-05 1.000000e+05 1.000000e+04 3.162278e-07 60 6 
-5.623413e-05 1.000000e+05 1.000000e+04 3.162278e-07 80 8 
-5.623413e-05 1.000000e+05 1.000000e+04 3.162278e-07 100 10 
-5.623413e-05 1.000000e+05 1.000000e+04 3.162278e-07 120 12 
-5.623413e-05 1.000000e+05 1.000000e+04 1.778279e-07 60 6 
-5.623413e-05 1.000000e+05 1.000000e+04 1.778279e-07 80 8 
-5.623413e-05 1.000000e+05 1.000000e+04 1.778279e-07 100 10 
-5.623413e-05 1.000000e+05 1.000000e+04 1.778279e-07 120 12 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-07 60 6 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-07 80 8 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-07 100 10 
-5.623413e-05 1.000000e+05 1.000000e+04 1.000000e-07 120 12 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-06 60 6 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-06 80 8 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-06 100 10 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-06 120 12 
-5.623413e-05 1.778279e+05 1.778279e+04 5.623413e-07 60 6 
-5.623413e-05 1.778279e+05 1.778279e+04 5.623413e-07 80 8 
-5.623413e-05 1.778279e+05 1.778279e+04 5.623413e-07 100 10 
-5.623413e-05 1.778279e+05 1.778279e+04 5.623413e-07 120 12 
-5.623413e-05 1.778279e+05 1.778279e+04 3.162278e-07 60 6 
-5.623413e-05 1.778279e+05 1.778279e+04 3.162278e-07 80 8 
-5.623413e-05 1.778279e+05 1.778279e+04 3.162278e-07 100 10 
-5.623413e-05 1.778279e+05 1.778279e+04 3.162278e-07 120 12 
-5.623413e-05 1.778279e+05 1.778279e+04 1.778279e-07 60 6 
-5.623413e-05 1.778279e+05 1.778279e+04 1.778279e-07 80 8 
-5.623413e-05 1.778279e+05 1.778279e+04 1.778279e-07 100 10 
-5.623413e-05 1.778279e+05 1.778279e+04 1.778279e-07 120 12 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-07 60 6 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-07 80 8 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-07 100 10 
-5.623413e-05 1.778279e+05 1.778279e+04 1.000000e-07 120 12 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-06 60 6 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-06 80 8 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-06 100 10 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-06 120 12 
-5.623413e-05 3.162278e+05 3.162278e+04 5.623413e-07 60 6 
-5.623413e-05 3.162278e+05 3.162278e+04 5.623413e-07 80 8 
-5.623413e-05 3.162278e+05 3.162278e+04 5.623413e-07 100 10 
-5.623413e-05 3.162278e+05 3.162278e+04 5.623413e-07 120 12 
-5.623413e-05 3.162278e+05 3.162278e+04 3.162278e-07 60 6 
-5.623413e-05 3.162278e+05 3.162278e+04 3.162278e-07 80 8 
-5.623413e-05 3.162278e+05 3.162278e+04 3.162278e-07 100 10 
-5.623413e-05 3.162278e+05 3.162278e+04 3.162278e-07 120 12 
-5.623413e-05 3.162278e+05 3.162278e+04 1.778279e-07 60 6 
-5.623413e-05 3.162278e+05 3.162278e+04 1.778279e-07 80 8 
-5.623413e-05 3.162278e+05 3.162278e+04 1.778279e-07 100 10 
-5.623413e-05 3.162278e+05 3.162278e+04 1.778279e-07 120 12 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-07 60 6 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-07 80 8 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-07 100 10 
-5.623413e-05 3.162278e+05 3.162278e+04 1.000000e-07 120 12 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-06 60 6 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-06 80 8 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-06 100 10 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-06 120 12 
-5.623413e-05 5.623413e+05 5.623413e+04 5.623413e-07 60 6 
-5.623413e-05 5.623413e+05 5.623413e+04 5.623413e-07 80 8 
-5.623413e-05 5.623413e+05 5.623413e+04 5.623413e-07 100 10 
-5.623413e-05 5.623413e+05 5.623413e+04 5.623413e-07 120 12 
-5.623413e-05 5.623413e+05 5.623413e+04 3.162278e-07 60 6 
-5.623413e-05 5.623413e+05 5.623413e+04 3.162278e-07 80 8 
-5.623413e-05 5.623413e+05 5.623413e+04 3.162278e-07 100 10 
-5.623413e-05 5.623413e+05 5.623413e+04 3.162278e-07 120 12 
-5.623413e-05 5.623413e+05 5.623413e+04 1.778279e-07 60 6 
-5.623413e-05 5.623413e+05 5.623413e+04 1.778279e-07 80 8 
-5.623413e-05 5.623413e+05 5.623413e+04 1.778279e-07 100 10 
-5.623413e-05 5.623413e+05 5.623413e+04 1.778279e-07 120 12 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-07 60 6 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-07 80 8 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-07 100 10 
-5.623413e-05 5.623413e+05 5.623413e+04 1.000000e-07 120 12 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-06 60 6 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-06 80 8 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-06 100 10 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-06 120 12 
-5.623413e-05 1.000000e+06 1.000000e+05 5.623413e-07 60 6 
-5.623413e-05 1.000000e+06 1.000000e+05 5.623413e-07 80 8 
-5.623413e-05 1.000000e+06 1.000000e+05 5.623413e-07 100 10 
-5.623413e-05 1.000000e+06 1.000000e+05 5.623413e-07 120 12 
-5.623413e-05 1.000000e+06 1.000000e+05 3.162278e-07 60 6 
-5.623413e-05 1.000000e+06 1.000000e+05 3.162278e-07 80 8 
-5.623413e-05 1.000000e+06 1.000000e+05 3.162278e-07 100 10 
-5.623413e-05 1.000000e+06 1.000000e+05 3.162278e-07 120 12 
-5.623413e-05 1.000000e+06 1.000000e+05 1.778279e-07 60 6 
-5.623413e-05 1.000000e+06 1.000000e+05 1.778279e-07 80 8 
-5.623413e-05 1.000000e+06 1.000000e+05 1.778279e-07 100 10 
-5.623413e-05 1.000000e+06 1.000000e+05 1.778279e-07 120 12 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-07 60 6 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-07 80 8 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-07 100 10 
-5.623413e-05 1.000000e+06 1.000000e+05 1.000000e-07 120 12 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-06 60 6 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-06 80 8 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-06 100 10 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-06 120 12 
-3.162278e-05 1.000000e+05 1.000000e+04 5.623413e-07 60 6 
-3.162278e-05 1.000000e+05 1.000000e+04 5.623413e-07 80 8 
-3.162278e-05 1.000000e+05 1.000000e+04 5.623413e-07 100 10 
-3.162278e-05 1.000000e+05 1.000000e+04 5.623413e-07 120 12 
-3.162278e-05 1.000000e+05 1.000000e+04 3.162278e-07 60 6 
-3.162278e-05 1.000000e+05 1.000000e+04 3.162278e-07 80 8 
-3.162278e-05 1.000000e+05 1.000000e+04 3.162278e-07 100 10 
-3.162278e-05 1.000000e+05 1.000000e+04 3.162278e-07 120 12 
-3.162278e-05 1.000000e+05 1.000000e+04 1.778279e-07 60 6 
-3.162278e-05 1.000000e+05 1.000000e+04 1.778279e-07 80 8 
-3.162278e-05 1.000000e+05 1.000000e+04 1.778279e-07 100 10 
-3.162278e-05 1.000000e+05 1.000000e+04 1.778279e-07 120 12 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-07 60 6 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-07 80 8 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-07 100 10 
-3.162278e-05 1.000000e+05 1.000000e+04 1.000000e-07 120 12 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-06 60 6 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-06 80 8 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-06 100 10 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-06 120 12 
-3.162278e-05 1.778279e+05 1.778279e+04 5.623413e-07 60 6 
-3.162278e-05 1.778279e+05 1.778279e+04 5.623413e-07 80 8 
-3.162278e-05 1.778279e+05 1.778279e+04 5.623413e-07 100 10 
-3.162278e-05 1.778279e+05 1.778279e+04 5.623413e-07 120 12 
-3.162278e-05 1.778279e+05 1.778279e+04 3.162278e-07 60 6 
-3.162278e-05 1.778279e+05 1.778279e+04 3.162278e-07 80 8 
-3.162278e-05 1.778279e+05 1.778279e+04 3.162278e-07 100 10 
-3.162278e-05 1.778279e+05 1.778279e+04 3.162278e-07 120 12 
-3.162278e-05 1.778279e+05 1.778279e+04 1.778279e-07 60 6 
-3.162278e-05 1.778279e+05 1.778279e+04 1.778279e-07 80 8 
-3.162278e-05 1.778279e+05 1.778279e+04 1.778279e-07 100 10 
-3.162278e-05 1.778279e+05 1.778279e+04 1.778279e-07 120 12 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-07 60 6 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-07 80 8 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-07 100 10 
-3.162278e-05 1.778279e+05 1.778279e+04 1.000000e-07 120 12 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-06 60 6 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-06 80 8 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-06 100 10 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-06 120 12 
-3.162278e-05 3.162278e+05 3.162278e+04 5.623413e-07 60 6 
-3.162278e-05 3.162278e+05 3.162278e+04 5.623413e-07 80 8 
-3.162278e-05 3.162278e+05 3.162278e+04 5.623413e-07 100 10 
-3.162278e-05 3.162278e+05 3.162278e+04 5.623413e-07 120 12 
-3.162278e-05 3.162278e+05 3.162278e+04 3.162278e-07 60 6 
-3.162278e-05 3.162278e+05 3.162278e+04 3.162278e-07 80 8 
-3.162278e-05 3.162278e+05 3.162278e+04 3.162278e-07 100 10 
-3.162278e-05 3.162278e+05 3.162278e+04 3.162278e-07 120 12 
-3.162278e-05 3.162278e+05 3.162278e+04 1.778279e-07 60 6 
-3.162278e-05 3.162278e+05 3.162278e+04 1.778279e-07 80 8 
-3.162278e-05 3.162278e+05 3.162278e+04 1.778279e-07 100 10 
-3.162278e-05 3.162278e+05 3.162278e+04 1.778279e-07 120 12 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-07 60 6 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-07 80 8 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-07 100 10 
-3.162278e-05 3.162278e+05 3.162278e+04 1.000000e-07 120 12 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-06 60 6 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-06 80 8 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-06 100 10 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-06 120 12 
-3.162278e-05 5.623413e+05 5.623413e+04 5.623413e-07 60 6 
-3.162278e-05 5.623413e+05 5.623413e+04 5.623413e-07 80 8 
-3.162278e-05 5.623413e+05 5.623413e+04 5.623413e-07 100 10 
-3.162278e-05 5.623413e+05 5.623413e+04 5.623413e-07 120 12 
-3.162278e-05 5.623413e+05 5.623413e+04 3.162278e-07 60 6 
-3.162278e-05 5.623413e+05 5.623413e+04 3.162278e-07 80 8 
-3.162278e-05 5.623413e+05 5.623413e+04 3.162278e-07 100 10 
-3.162278e-05 5.623413e+05 5.623413e+04 3.162278e-07 120 12 
-3.162278e-05 5.623413e+05 5.623413e+04 1.778279e-07 60 6 
-3.162278e-05 5.623413e+05 5.623413e+04 1.778279e-07 80 8 
-3.162278e-05 5.623413e+05 5.623413e+04 1.778279e-07 100 10 
-3.162278e-05 5.623413e+05 5.623413e+04 1.778279e-07 120 12 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-07 60 6 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-07 80 8 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-07 100 10 
-3.162278e-05 5.623413e+05 5.623413e+04 1.000000e-07 120 12 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-06 60 6 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-06 80 8 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-06 100 10 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-06 120 12 
-3.162278e-05 1.000000e+06 1.000000e+05 5.623413e-07 60 6 
-3.162278e-05 1.000000e+06 1.000000e+05 5.623413e-07 80 8 
-3.162278e-05 1.000000e+06 1.000000e+05 5.623413e-07 100 10 
-3.162278e-05 1.000000e+06 1.000000e+05 5.623413e-07 120 12 
-3.162278e-05 1.000000e+06 1.000000e+05 3.162278e-07 60 6 
-3.162278e-05 1.000000e+06 1.000000e+05 3.162278e-07 80 8 
-3.162278e-05 1.000000e+06 1.000000e+05 3.162278e-07 100 10 
-3.162278e-05 1.000000e+06 1.000000e+05 3.162278e-07 120 12 
-3.162278e-05 1.000000e+06 1.000000e+05 1.778279e-07 60 6 
-3.162278e-05 1.000000e+06 1.000000e+05 1.778279e-07 80 8 
-3.162278e-05 1.000000e+06 1.000000e+05 1.778279e-07 100 10 
-3.162278e-05 1.000000e+06 1.000000e+05 1.778279e-07 120 12 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-07 60 6 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-07 80 8 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-07 100 10 
-3.162278e-05 1.000000e+06 1.000000e+05 1.000000e-07 120 12 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-06 60 6 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-06 80 8 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-06 100 10 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-06 120 12 
-1.778279e-05 1.000000e+05 1.000000e+04 5.623413e-07 60 6 
-1.778279e-05 1.000000e+05 1.000000e+04 5.623413e-07 80 8 
-1.778279e-05 1.000000e+05 1.000000e+04 5.623413e-07 100 10 
-1.778279e-05 1.000000e+05 1.000000e+04 5.623413e-07 120 12 
-1.778279e-05 1.000000e+05 1.000000e+04 3.162278e-07 60 6 
-1.778279e-05 1.000000e+05 1.000000e+04 3.162278e-07 80 8 
-1.778279e-05 1.000000e+05 1.000000e+04 3.162278e-07 100 10 
-1.778279e-05 1.000000e+05 1.000000e+04 3.162278e-07 120 12 
-1.778279e-05 1.000000e+05 1.000000e+04 1.778279e-07 60 6 
-1.778279e-05 1.000000e+05 1.000000e+04 1.778279e-07 80 8 
-1.778279e-05 1.000000e+05 1.000000e+04 1.778279e-07 100 10 
-1.778279e-05 1.000000e+05 1.000000e+04 1.778279e-07 120 12 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-07 60 6 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-07 80 8 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-07 100 10 
-1.778279e-05 1.000000e+05 1.000000e+04 1.000000e-07 120 12 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-06 60 6 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-06 80 8 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-06 100 10 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-06 120 12 
-1.778279e-05 1.778279e+05 1.778279e+04 5.623413e-07 60 6 
-1.778279e-05 1.778279e+05 1.778279e+04 5.623413e-07 80 8 
-1.778279e-05 1.778279e+05 1.778279e+04 5.623413e-07 100 10 
-1.778279e-05 1.778279e+05 1.778279e+04 5.623413e-07 120 12 
-1.778279e-05 1.778279e+05 1.778279e+04 3.162278e-07 60 6 
-1.778279e-05 1.778279e+05 1.778279e+04 3.162278e-07 80 8 
-1.778279e-05 1.778279e+05 1.778279e+04 3.162278e-07 100 10 
-1.778279e-05 1.778279e+05 1.778279e+04 3.162278e-07 120 12 
-1.778279e-05 1.778279e+05 1.778279e+04 1.778279e-07 60 6 
-1.778279e-05 1.778279e+05 1.778279e+04 1.778279e-07 80 8 
-1.778279e-05 1.778279e+05 1.778279e+04 1.778279e-07 100 10 
-1.778279e-05 1.778279e+05 1.778279e+04 1.778279e-07 120 12 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-07 60 6 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-07 80 8 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-07 100 10 
-1.778279e-05 1.778279e+05 1.778279e+04 1.000000e-07 120 12 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-06 60 6 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-06 80 8 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-06 100 10 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-06 120 12 
-1.778279e-05 3.162278e+05 3.162278e+04 5.623413e-07 60 6 
-1.778279e-05 3.162278e+05 3.162278e+04 5.623413e-07 80 8 
-1.778279e-05 3.162278e+05 3.162278e+04 5.623413e-07 100 10 
-1.778279e-05 3.162278e+05 3.162278e+04 5.623413e-07 120 12 
-1.778279e-05 3.162278e+05 3.162278e+04 3.162278e-07 60 6 
-1.778279e-05 3.162278e+05 3.162278e+04 3.162278e-07 80 8 
-1.778279e-05 3.162278e+05 3.162278e+04 3.162278e-07 100 10 
-1.778279e-05 3.162278e+05 3.162278e+04 3.162278e-07 120 12 
-1.778279e-05 3.162278e+05 3.162278e+04 1.778279e-07 60 6 
-1.778279e-05 3.162278e+05 3.162278e+04 1.778279e-07 80 8 
-1.778279e-05 3.162278e+05 3.162278e+04 1.778279e-07 100 10 
-1.778279e-05 3.162278e+05 3.162278e+04 1.778279e-07 120 12 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-07 60 6 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-07 80 8 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-07 100 10 
-1.778279e-05 3.162278e+05 3.162278e+04 1.000000e-07 120 12 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-06 60 6 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-06 80 8 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-06 100 10 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-06 120 12 
-1.778279e-05 5.623413e+05 5.623413e+04 5.623413e-07 60 6 
-1.778279e-05 5.623413e+05 5.623413e+04 5.623413e-07 80 8 
-1.778279e-05 5.623413e+05 5.623413e+04 5.623413e-07 100 10 
-1.778279e-05 5.623413e+05 5.623413e+04 5.623413e-07 120 12 
-1.778279e-05 5.623413e+05 5.623413e+04 3.162278e-07 60 6 
-1.778279e-05 5.623413e+05 5.623413e+04 3.162278e-07 80 8 
-1.778279e-05 5.623413e+05 5.623413e+04 3.162278e-07 100 10 
-1.778279e-05 5.623413e+05 5.623413e+04 3.162278e-07 120 12 
-1.778279e-05 5.623413e+05 5.623413e+04 1.778279e-07 60 6 
-1.778279e-05 5.623413e+05 5.623413e+04 1.778279e-07 80 8 
-1.778279e-05 5.623413e+05 5.623413e+04 1.778279e-07 100 10 
-1.778279e-05 5.623413e+05 5.623413e+04 1.778279e-07 120 12 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-07 60 6 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-07 80 8 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-07 100 10 
-1.778279e-05 5.623413e+05 5.623413e+04 1.000000e-07 120 12 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-06 60 6 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-06 80 8 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-06 100 10 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-06 120 12 
-1.778279e-05 1.000000e+06 1.000000e+05 5.623413e-07 60 6 
-1.778279e-05 1.000000e+06 1.000000e+05 5.623413e-07 80 8 
-1.778279e-05 1.000000e+06 1.000000e+05 5.623413e-07 100 10 
-1.778279e-05 1.000000e+06 1.000000e+05 5.623413e-07 120 12 
-1.778279e-05 1.000000e+06 1.000000e+05 3.162278e-07 60 6 
-1.778279e-05 1.000000e+06 1.000000e+05 3.162278e-07 80 8 
-1.778279e-05 1.000000e+06 1.000000e+05 3.162278e-07 100 10 
-1.778279e-05 1.000000e+06 1.000000e+05 3.162278e-07 120 12 
-1.778279e-05 1.000000e+06 1.000000e+05 1.778279e-07 60 6 
-1.778279e-05 1.000000e+06 1.000000e+05 1.778279e-07 80 8 
-1.778279e-05 1.000000e+06 1.000000e+05 1.778279e-07 100 10 
-1.778279e-05 1.000000e+06 1.000000e+05 1.778279e-07 120 12 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-07 60 6 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-07 80 8 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-07 100 10 
-1.778279e-05 1.000000e+06 1.000000e+05 1.000000e-07 120 12 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-06 60 6 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-06 80 8 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-06 100 10 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-06 120 12 
-1.000000e-05 1.000000e+05 1.000000e+04 5.623413e-07 60 6 
-1.000000e-05 1.000000e+05 1.000000e+04 5.623413e-07 80 8 
-1.000000e-05 1.000000e+05 1.000000e+04 5.623413e-07 100 10 
-1.000000e-05 1.000000e+05 1.000000e+04 5.623413e-07 120 12 
-1.000000e-05 1.000000e+05 1.000000e+04 3.162278e-07 60 6 
-1.000000e-05 1.000000e+05 1.000000e+04 3.162278e-07 80 8 
-1.000000e-05 1.000000e+05 1.000000e+04 3.162278e-07 100 10 
-1.000000e-05 1.000000e+05 1.000000e+04 3.162278e-07 120 12 
-1.000000e-05 1.000000e+05 1.000000e+04 1.778279e-07 60 6 
-1.000000e-05 1.000000e+05 1.000000e+04 1.778279e-07 80 8 
-1.000000e-05 1.000000e+05 1.000000e+04 1.778279e-07 100 10 
-1.000000e-05 1.000000e+05 1.000000e+04 1.778279e-07 120 12 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-07 60 6 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-07 80 8 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-07 100 10 
-1.000000e-05 1.000000e+05 1.000000e+04 1.000000e-07 120 12 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-06 60 6 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-06 80 8 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-06 100 10 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-06 120 12 
-1.000000e-05 1.778279e+05 1.778279e+04 5.623413e-07 60 6 
-1.000000e-05 1.778279e+05 1.778279e+04 5.623413e-07 80 8 
-1.000000e-05 1.778279e+05 1.778279e+04 5.623413e-07 100 10 
-1.000000e-05 1.778279e+05 1.778279e+04 5.623413e-07 120 12 
-1.000000e-05 1.778279e+05 1.778279e+04 3.162278e-07 60 6 
-1.000000e-05 1.778279e+05 1.778279e+04 3.162278e-07 80 8 
-1.000000e-05 1.778279e+05 1.778279e+04 3.162278e-07 100 10 
-1.000000e-05 1.778279e+05 1.778279e+04 3.162278e-07 120 12 
-1.000000e-05 1.778279e+05 1.778279e+04 1.778279e-07 60 6 
-1.000000e-05 1.778279e+05 1.778279e+04 1.778279e-07 80 8 
-1.000000e-05 1.778279e+05 1.778279e+04 1.778279e-07 100 10 
-1.000000e-05 1.778279e+05 1.778279e+04 1.778279e-07 120 12 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-07 60 6 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-07 80 8 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-07 100 10 
-1.000000e-05 1.778279e+05 1.778279e+04 1.000000e-07 120 12 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-06 60 6 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-06 80 8 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-06 100 10 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-06 120 12 
-1.000000e-05 3.162278e+05 3.162278e+04 5.623413e-07 60 6 
-1.000000e-05 3.162278e+05 3.162278e+04 5.623413e-07 80 8 
-1.000000e-05 3.162278e+05 3.162278e+04 5.623413e-07 100 10 
-1.000000e-05 3.162278e+05 3.162278e+04 5.623413e-07 120 12 
-1.000000e-05 3.162278e+05 3.162278e+04 3.162278e-07 60 6 
-1.000000e-05 3.162278e+05 3.162278e+04 3.162278e-07 80 8 
-1.000000e-05 3.162278e+05 3.162278e+04 3.162278e-07 100 10 
-1.000000e-05 3.162278e+05 3.162278e+04 3.162278e-07 120 12 
-1.000000e-05 3.162278e+05 3.162278e+04 1.778279e-07 60 6 
-1.000000e-05 3.162278e+05 3.162278e+04 1.778279e-07 80 8 
-1.000000e-05 3.162278e+05 3.162278e+04 1.778279e-07 100 10 
-1.000000e-05 3.162278e+05 3.162278e+04 1.778279e-07 120 12 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-07 60 6 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-07 80 8 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-07 100 10 
-1.000000e-05 3.162278e+05 3.162278e+04 1.000000e-07 120 12 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-06 60 6 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-06 80 8 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-06 100 10 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-06 120 12 
-1.000000e-05 5.623413e+05 5.623413e+04 5.623413e-07 60 6 
-1.000000e-05 5.623413e+05 5.623413e+04 5.623413e-07 80 8 
-1.000000e-05 5.623413e+05 5.623413e+04 5.623413e-07 100 10 
-1.000000e-05 5.623413e+05 5.623413e+04 5.623413e-07 120 12 
-1.000000e-05 5.623413e+05 5.623413e+04 3.162278e-07 60 6 
-1.000000e-05 5.623413e+05 5.623413e+04 3.162278e-07 80 8 
-1.000000e-05 5.623413e+05 5.623413e+04 3.162278e-07 100 10 
-1.000000e-05 5.623413e+05 5.623413e+04 3.162278e-07 120 12 
-1.000000e-05 5.623413e+05 5.623413e+04 1.778279e-07 60 6 
-1.000000e-05 5.623413e+05 5.623413e+04 1.778279e-07 80 8 
-1.000000e-05 5.623413e+05 5.623413e+04 1.778279e-07 100 10 
-1.000000e-05 5.623413e+05 5.623413e+04 1.778279e-07 120 12 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-07 60 6 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-07 80 8 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-07 100 10 
-1.000000e-05 5.623413e+05 5.623413e+04 1.000000e-07 120 12 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-06 60 6 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-06 80 8 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-06 100 10 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-06 120 12 
-1.000000e-05 1.000000e+06 1.000000e+05 5.623413e-07 60 6 
-1.000000e-05 1.000000e+06 1.000000e+05 5.623413e-07 80 8 
-1.000000e-05 1.000000e+06 1.000000e+05 5.623413e-07 100 10 
-1.000000e-05 1.000000e+06 1.000000e+05 5.623413e-07 120 12 
-1.000000e-05 1.000000e+06 1.000000e+05 3.162278e-07 60 6 
-1.000000e-05 1.000000e+06 1.000000e+05 3.162278e-07 80 8 
-1.000000e-05 1.000000e+06 1.000000e+05 3.162278e-07 100 10 
-1.000000e-05 1.000000e+06 1.000000e+05 3.162278e-07 120 12 
-1.000000e-05 1.000000e+06 1.000000e+05 1.778279e-07 60 6 
-1.000000e-05 1.000000e+06 1.000000e+05 1.778279e-07 80 8 
-1.000000e-05 1.000000e+06 1.000000e+05 1.778279e-07 100 10 
-1.000000e-05 1.000000e+06 1.000000e+05 1.778279e-07 120 12 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-07 60 6 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-07 80 8 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-07 100 10 
-1.000000e-05 1.000000e+06 1.000000e+05 1.000000e-07 120 12 
diff --git a/Metafor/models/bord01/numericalSATrainingPoints3.ascii b/Metafor/models/bord01/numericalSATrainingPoints3.ascii
deleted file mode 100644
index 15b2624a..00000000
--- a/Metafor/models/bord01/numericalSATrainingPoints3.ascii
+++ /dev/null
@@ -1,4 +0,0 @@
-1.000000e-02 1.000000e+02 1.000000e+02 1.000000e-02 10 6
-1.000000e-02 1.000000e+02 1.000000e+02 1.000000e-02 10 8
-1.000000e-02 1.000000e+02 1.000000e+02 1.000000e-02 10 10
-1.000000e-02 1.000000e+02 1.000000e+02 1.000000e-02 10 12
diff --git a/Metafor/models/bord01/numericalSAWeights.ascii b/Metafor/models/bord01/numericalSAWeights.ascii
deleted file mode 100644
index f6474b4e..00000000
--- a/Metafor/models/bord01/numericalSAWeights.ascii
+++ /dev/null
@@ -1,3087 +0,0 @@
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
diff --git a/Metafor/models/bord01/numericalSAWeights2.ascii b/Metafor/models/bord01/numericalSAWeights2.ascii
deleted file mode 100644
index 5e6de452..00000000
--- a/Metafor/models/bord01/numericalSAWeights2.ascii
+++ /dev/null
@@ -1,500 +0,0 @@
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
diff --git a/Metafor/models/bord01/numericalSAWeights3.ascii b/Metafor/models/bord01/numericalSAWeights3.ascii
deleted file mode 100644
index 4bb72405..00000000
--- a/Metafor/models/bord01/numericalSAWeights3.ascii
+++ /dev/null
@@ -1,4 +0,0 @@
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
-   1.0000000000000000e+00
diff --git a/Metafor/models/bord01/tombeBord.py b/Metafor/models/bord01/tombeBord.py
deleted file mode 100644
index 6ac138a0..00000000
--- a/Metafor/models/bord01/tombeBord.py
+++ /dev/null
@@ -1,268 +0,0 @@
-# -*- coding: utf-8; -*-
-# $Id: tombeBordEas2D.py 1422 2011-03-24 08:38:18Z papeleux $
-#################################################
-#       Tombe de bord                           #
-#===============================================#
-#################################################
-
-from wrap import *
-import math
-
-metafor = None
-
-def getMetafor(_parameters={}):
-    global metafor
-    if not metafor :
-        '''
-        params = {'npgdy':50}
-        params.update(_parameters)
-        metafor = buildMetafor(params)
-        '''
-        metafor = buildMetafor(_parameters)
-    return metafor
-
-def buildMetafor(p={}):
-    #-- parametres par defaut :
-    parameters = {
-    'NIPDETA'   : 2,       # nbre de pts de Gauss selon l'epaisseur
-    'Young'     : 210000.0,
-    'Poisson'   : 0.3,
-    'sigEl0'    : 420.0,
-    'ih_H'      : 1500.0,
-    'nx'        : 60,
-    'ny'        : 6,
-    'Thickness' : 1.0,
-    'Rm'        : 3.0,     # rayon matrice
-    'Rt'        : 1.0,     # rayon outil
-    'Gap'       : 1.0,
-    'nbArch'    : 1,
-    'peno'      : 5e+05,
-    'peta'      : 5e+04,
-    'mu_sta'    : 0.1,
-    'mu_dyn'    : 0.1,
-    'NRTol'     : 1e-04,
-    'PEAS'     : 1e-06
-    }
-
-    print(p)
-    parameters.update(p)
-    metafor = Metafor()
-    domain  = metafor.getDomain()
-
-    geometry = domain.getGeometry()
-    geometry.setDimPlaneStrain(1.0)
-    #-- dimension du maillage
-    X0  = -3.0
-    Y0  =  0.0
-    Z0  =  0.0
-    Lx  = 20.0
-    Th  = parameters['Thickness']
-    nx1 = parameters['nx']
-    nx2 =  parameters['nx']
-    ny  = parameters['ny']
-    # Tool
-    Rm  = parameters['Rm']     # Rm : rayon Matrice
-    Rt  = parameters['Rt']     # Rt : rayon Tool
-    Gap = parameters['Gap']    # Jeu matrice - poincon
-    Lp  = 3.0                  # longueur du poincon
-
-    #-- maillage --
-    Lx1 = Lx / 2.0 #-2*X0 + (math.pi/2.0) * Rm
-    Lx2 = Lx - Lx1
-    from toolbox.meshedGeometry2D import createRectangleSameId
-    createRectangleSameId(domain, nx1, ny, Lx1, Th, X0, Y0,   0)
-    from toolbox.meshedGeometry2D import addQuadrangle2X
-    addQuadrangle2X(domain, 100, nx2, ny, Lx2, Th, X0+Lx1, Y0,
-                    2, 3, 2)
-    #-- Fonctions d'evolution --
-    FCT_CHA = PieceWiseLinearFunction()
-    FCT_CHA.setData(0.0, 0.0)
-    FCT_CHA.setData(10.0, 1.0)
-    FCT_CHA.setData(20.0 ,  0.0)
-    #Outils de mise a forme
-    from apps.toolbox.formingTools import createFlangingTools2D
-    createFlangingTools2D(domain, 1000, (X0-1), Y0, Rm, Rt, Gap, Th, Lp, Lx,-Lx, FCT_CHA)
-
-    prp_c1 = ElementProperties(Contact2DElement)
-    prp_c1.put(MATERIAL, 1001)
-    prp_c1.put(AREAINCONTACT,AIC_ONCE)
-
-    interactionset = domain.getInteractionSet()
-    curveset = geometry.getCurveSet()
-    wireset = geometry.getWireSet()
-    sideset  = geometry.getSideSet()
-
-    wireset.add( Wire(201, [curveset(1), curveset(101)]) )
-    wireset.add( Wire(202, [curveset(3), curveset(103)]) )
-
-    #Outil 1 : Matrice
-    ci1 = RdContactInteraction(1)
-    ci1.setTool(wireset(1001))
-    ci1.push(wireset(201))
-    ci1.addProperty(prp_c1)
-    interactionset.add(ci1)
-
-    #Outil 2 : Poincon
-    ci2 = RdContactInteraction(2)
-    ci2.setTool(wireset(1101))
-    ci2.push(wireset(202))
-    ci2.addProperty(prp_c1)
-    interactionset.add(ci2)
-
-    #Outil 3 : Serre-Flanc
-    ci3 = RdContactInteraction(3)
-    ci3.setTool(wireset(1201))
-    ci3.push(curveset(3))
-    ci3.addProperty(prp_c1)
-    interactionset.add(ci3)
-
-    #-- FieldApplicator --
-    app001 = FieldApplicator(99)
-    app001.push(sideset(  1))
-    interactionset.add(app001)
-
-    app101 = FieldApplicator(101)
-    app101.push(sideset(101))
-    interactionset.add(app101)
-
-    #-- Fnn - Loadings --
-    loadingset = domain.getLoadingSet()
-    loadingset.define(curveset(4), Field1D(TX,RE))
-    loadingset.define(curveset(4), Field1D(TY,RE))
-
-    #-- Materiaux --
-    materset = domain.getMaterialSet()
-    materlawset = domain.getMaterialLawSet()
-    materset.define(1, EvpIsoHHypoMaterial)
-    materset(1).put(MASS_DENSITY, 8900.0E-12)
-    materset(1).put(ELASTIC_MODULUS, parameters['Young'])
-    materset(1).put(POISSON_RATIO, parameters['Poisson'])
-    materset(1).put(YIELD_NUM, 2)
-    '''
-    materlawset.define(1, RambergOsgoodIsotropicHardening)
-    materlawset(1).put(IH_SIGEL, 330.3)
-    materlawset(1).put(IH_A, 591.72)
-    materlawset(1).put(IH_N, 5.35)
-    '''
-    materlawset.define(2, LinearIsotropicHardening)
-    materlawset(2).put(IH_SIGEL, parameters['sigEl0'])
-    materlawset(2).put(IH_H, parameters['ih_H'])
-
-
-    materset.define(1001, CoulombContactMaterial)
-    mat1001 = materset(1001)
-    mat1001.put(PEN_NORMALE, parameters['peno'])
-    mat1001.put(PEN_TANGENT, parameters['peta'])
-    mat1001.put(PROF_CONT, 0.9)
-    mat1001.put(COEF_FROT_STA, parameters['mu_sta']) # usually between 0.3 and 0.6 for dry materials
-    mat1001.put(COEF_FROT_DYN, parameters['mu_dyn'])
-
-    #-- Propelem --
-    prp001 = ElementProperties(Volume2DElement)
-    prp001.put(CAUCHYMECHVOLINTMETH, VES_CMVIM_EAS)
-    prp001.put(MATERIAL, 1)
-    prp001.put(NIPDETA, parameters['NIPDETA'])
-    prp001.put(EASS, 2)
-    prp001.put(EASV, 2)
-    prp001.put(PEAS, parameters['PEAS'])
-    prp001.put(VERBOSE, True)
-    interactionset(99).addProperty(prp001)
-
-    prp101 = ElementProperties(Volume2DElement)
-    prp101.put(CAUCHYMECHVOLINTMETH, VES_CMVIM_EAS)
-    prp101.put(MATERIAL, 1)
-    prp101.put(NIPDETA, parameters['NIPDETA'])
-    prp101.put(EASS, 2)
-    prp101.put(EASV, 2)
-    prp101.put(PEAS, parameters['PEAS'])
-    prp101.put(VERBOSE, True)
-    interactionset(101).addProperty(prp101)
-
-    #
-
-    mim = metafor.getMechanicalIterationManager()
-    mim.setResidualComputationMethod(Method4ResidualComputation())
-    mim.setResidualTolerance(parameters['NRTol'])
-
-    #-- tsm --
-    tsm = metafor.getTimeStepManager()
-    tsm.setInitialTime(0.0, 1e-4)
-    tsm.setNextTime(10.0, parameters['nbArch'], 1.0)
-    tsm.setNextTime(20.0, parameters['nbArch'], 1.0)
-
-    # Time Integration
-    ti = AlphaGeneralizedTimeIntegration(metafor)
-    metafor.setTimeIntegration(ti)
-
-    # Courbes
-    valuesmanager = metafor.getValuesManager()
-    pointset = geometry.getPointSet()
-    curveset = geometry.getCurveSet()
-    valuesmanager.add(1, MiscValueExtractor(metafor,EXT_T),'time')
-    ave1 = AngleValueExtractor(Axe(curveset(1003)),Axe(pointset(2),pointset(102)))
-    valuesmanager.add(11,ave1,'Angle1')
-
-    # Objective Function
-    # ------------------
-    objectivefunctionset = metafor.getObjectiveFunctionSet()
-
-    Index = 2000
-    X0    = -10.0
-    dX0   =  3.0
-    Y0    = -10.0
-    Z0    =  0.0
-    Rm    =  4.0
-    Ll    = 50.0
-    alphaDeg = 80.0
-
-    alphaRad = alphaDeg * math.pi / 180.0
-    cosAlphaDemi = math.cos(alphaRad / 2.0)
-    sinAlphaDemi = math.sin(alphaRad / 2.0)
-    cosAlpha     = math.cos(alphaRad)
-    sinAlpha     = math.sin(alphaRad)
-    cos90moinsAlpha = math.cos(math.pi / 2.0 - alphaRad)
-    sinAlpha     = math.sin(alphaRad)
-
-    from toolbox.domainTools import getGeoReferences
-    [pointset, curveset, wireset, surfaceset, sideset, skinset, volumeset] = getGeoReferences(domain)
-    piDemi = math.asin(1)
-    C45 = math.cos(piDemi / 2.0)
-    Z0 = 0.0
-
-    # Outil 1 : matrice
-    pointset.define(Index + 1, X0 - dX0,                              Y0,                                          Z0)
-    pointset.define(Index + 2, X0,                                    Y0,                                          Z0)
-    pointset.define(Index + 3, X0 + (Rm * sinAlphaDemi),             (Y0 - Rm * (1.0-cosAlphaDemi)),               Z0)
-    pointset.define(Index + 4, X0 + (Rm * sinAlpha),                 (Y0 - Rm * (1.0-cosAlpha)),                   Z0)
-    pointset.define(Index + 5, X0 + (Rm * sinAlpha + Ll * cosAlpha), (Y0 - Rm * (1.0 - cosAlpha) - Ll * sinAlpha), Z0)
-    pointset.define(Index + 6, X0 - dX0 , (Y0 + 2.0), Z0)
-
-    curveset.add( Line(Index + 1, pointset(Index + 1), pointset(Index + 2) ))
-    curveset.add( Arc(Index + 2, pointset(Index + 2), pointset(Index + 3), pointset(Index + 4) ))
-    curveset.add( Line(Index + 3, pointset(Index + 4), pointset(Index + 5) ))
-    curveset.add( Line(Index + 4, pointset(Index + 6), pointset(Index + 1) ))
-
-    wireset.add(MultiProjWire(Index + 1, [curveset(Index+i) for i in (1, 2, 3)]))
-    wireset.add(Wire(Index+2, [curveset(1), curveset(101)]))
-
-    sve1 = ShapeValueExtractor(wireset(Index+1), wireset(Index+2))
-    sve1.setTriedreRef(Triedre(pointset(Index+1),pointset(Index+2),pointset(Index+6)))
-    sve1.setTriedreMesh(Triedre(pointset(1),pointset(1002),pointset(4)))
-
-    valuesmanager.add(12,sve1,'shape1')
-    valuesmanager.add(13,sve1,NormOperator(),'shape2')
-
-    sof1 = ValueExtractorObjectiveFunction(1,ave1)
-    objectivefunctionset.add(sof1)
-    sof2 = ValueExtractorObjectiveFunction(2,sve1)
-    objectivefunctionset.add(sof2)
-
-    # Verification des Objective Function in .res File
-    testSuite = metafor.getTestSuiteChecker()
-    testSuite.checkObjectiveFunction(2)
-    testSuite.checkExtractor(11)
-    testSuite.checkExtractor(12,0)
-    testSuite.checkExtractor(12,5)
-    testSuite.checkExtractor(13)
-
-    return metafor
diff --git a/Metafor/models/bord01/tombeBord_old.py b/Metafor/models/bord01/tombeBord_old.py
deleted file mode 100644
index af42c8e4..00000000
--- a/Metafor/models/bord01/tombeBord_old.py
+++ /dev/null
@@ -1,248 +0,0 @@
-# -*- coding: utf-8; -*-
-# $Id: tombeBordEas2D.py 1422 2011-03-24 08:38:18Z papeleux $
-#################################################
-#       Tombe de bord                           #
-#===============================================#
-#################################################
-
-from wrap import *
-import math
-
-metafor = None
-
-def getMetafor(_parameters={}):
-    global metafor
-    if not metafor :
-        '''
-        params = {'npgdy':50}
-        params.update(_parameters)
-        metafor = buildMetafor(params)
-        '''
-        metafor = buildMetafor(_parameters)
-    return metafor
-
-def buildMetafor(p={}):
-    #-- parametres par defaut :
-    parameters = {'NIPDETA': 6, 'Young':210000.0,'Poisson':0.3,
-                  'sigEl0':420.0,'ih_H':1500.0,
-                  'npgdy': 16,'nx':35,'ny':8,
-                  'Thickness':1.0,'Rm':3.0,'Rt':1.0,
-                  'Gap':1.0,'nbArch':1,
-                  'peno':1e+08, 'mu_sta':0.6, 'mu_dyn':0.6,
-                  'NRTol':1e-07}
-
-    print(p)
-    parameters.update(p)
-    metafor = Metafor()
-    domain  = metafor.getDomain()
-
-    geometry = domain.getGeometry()
-    geometry.setDimPlaneStrain(1.0)
-    #-- dimension du maillage
-    X0  = -3.0
-    Y0  =  0.0
-    Z0  =  0.0
-    Lx  = 20.0
-    Th  = parameters['Thickness']
-    nx1 = parameters['nx']
-    nx2 =  parameters['nx']
-    ny  = parameters['ny']
-    # Tool
-    Rm  = parameters['Rm']     #Rm : rayon Matrice
-    Rt  = parameters['Rt']     #Rt : rayon Tool
-    Gap = parameters['Gap']    #Jeu matrice - poincon
-    Lp  = 3.0                  #longueur du poincon
-
-    #-- maillage --
-    Lx1 = -2*X0 + (math.pi / 2.0) * Rm
-    Lx2 = Lx - Lx1
-    from toolbox.meshedGeometry2D import createRectangleSameId
-    createRectangleSameId(domain, nx1, ny, Lx1, Th, X0, Y0,   0)
-    from toolbox.meshedGeometry2D import addQuadrangle2X
-    addQuadrangle2X(domain, 100, nx2, ny, Lx2, Th, X0+Lx1, Y0,
-                    2, 3, 2)
-    #-- Fonctions d'evolution --
-    FCT_CHA = PieceWiseLinearFunction()
-    FCT_CHA.setData(0.0, 0.0)
-    FCT_CHA.setData(10.0, 1.0)
-    FCT_CHA.setData(20.0 ,  0.0)
-    #Outils de mise a forme
-    from apps.toolbox.formingTools import createFlangingTools2D
-    createFlangingTools2D(domain, 1000, (X0-1), Y0, Rm, Rt, Gap, Th, Lp, Lx,-Lx, FCT_CHA)
-
-    prp_c1 = ElementProperties(Contact2DElement)
-    prp_c1.put(MATERIAL, 1001)
-    prp_c1.put(AREAINCONTACT,AIC_ONCE)
-
-    interactionset = domain.getInteractionSet()
-    curveset = geometry.getCurveSet()
-    wireset = geometry.getWireSet()
-    sideset  = geometry.getSideSet()
-
-    wireset.add( Wire(201, [curveset(1), curveset(101)]) )
-    wireset.add( Wire(202, [curveset(3), curveset(103)]) )
-    #Outil 1 : Matrice
-    ci1 = RdContactInteraction(1)
-    ci1.setTool(wireset(1001))
-    ci1.push(wireset(201))
-    ci1.addProperty(prp_c1)
-    interactionset.add(ci1)
-    #Outil 2 : Poincon
-    ci2 = RdContactInteraction(2)
-    ci2.setTool(wireset(1101))
-    ci2.push(wireset(202))
-    ci2.addProperty(prp_c1)
-    interactionset.add(ci2)
-    #Outil 3 : Serre-Flanc
-    ci3 = RdContactInteraction(3)
-    ci3.setTool(wireset(1201))
-    ci3.push(curveset(3))
-    ci3.addProperty(prp_c1)
-    interactionset.add(ci3)
-    #-- FieldApplicator --
-    app001 = FieldApplicator(99)
-    app001.push(sideset(  1))
-    interactionset.add(app001)
-
-    app101 = FieldApplicator(101)
-    app101.push(sideset(101))
-    interactionset.add(app101)
-    #-- Fnn - Loadings --
-    loadingset = domain.getLoadingSet()
-    loadingset.define(curveset(4), Field1D(TX,RE))
-    loadingset.define(curveset(4), Field1D(TY,RE))
-
-    #-- Materiaux --
-    materset = domain.getMaterialSet()
-    materlawset = domain.getMaterialLawSet()
-    materset.define(1, EvpIsoHHypoMaterial)
-    materset(1).put(MASS_DENSITY, 8900.0E-12)
-    materset(1).put(ELASTIC_MODULUS, parameters['Young'])
-    materset(1).put(POISSON_RATIO, parameters['Poisson'])
-    materset(1).put(YIELD_NUM, 2)
-    '''
-    materlawset.define(1, RambergOsgoodIsotropicHardening)
-    materlawset(1).put(IH_SIGEL, 330.3)
-    materlawset(1).put(IH_A, 591.72)
-    materlawset(1).put(IH_N, 5.35)
-    '''
-    materlawset.define(2, LinearIsotropicHardening)
-    materlawset(2).put(IH_SIGEL, parameters['sigEl0'])
-    materlawset(2).put(IH_H, parameters['ih_H'])
-
-
-    materset.define(1001, CoulombContactMaterial)
-    mat1001 = materset(1001)
-    mat1001.put(PEN_NORMALE, parameters['peno'])
-    mat1001.put(PEN_TANGENT, 1e+06)
-    mat1001.put(PROF_CONT, 0.9)
-    mat1001.put(COEF_FROT_STA, parameters['mu_sta']) # usually between 0.3 and 0.6 for dry materials
-    mat1001.put(COEF_FROT_DYN, parameters['mu_dyn'])
-
-    #-- Propelem --
-    prp001 = ElementProperties(Volume2DElement)
-    prp001.put(CAUCHYMECHVOLINTMETH, VES_CMVIM_EAS)
-    prp001.put(MATERIAL, 1)
-    prp001.put(NIPDETA, parameters['NIPDETA'])
-    prp001.put(EASS, 2)
-    prp001.put(EASV, 4)
-    prp001.put(VERBOSE, True)
-    interactionset(99).addProperty(prp001)
-
-    prp101 = ElementProperties(Volume2DElement)
-    prp101.put(CAUCHYMECHVOLINTMETH, VES_CMVIM_EAS)
-    prp101.put(MATERIAL, 1)
-    prp101.put(NIPDETA, parameters['NIPDETA'])
-    prp101.put(EASS, 2)
-    prp101.put(EASV, 4)
-    prp101.put(VERBOSE, True)
-    interactionset(101).addProperty(prp101)
-
-    #
-
-    mim = metafor.getMechanicalIterationManager()
-    mim.setResidualTolerance(parameters['NRTol'])
-
-    #-- tsm --
-    tsm = metafor.getTimeStepManager()
-    tsm.setInitialTime(0.0, 0.1)
-    tsm.setNextTime(10.0, parameters['nbArch'], 1.0)
-    tsm.setNextTime(20.0, parameters['nbArch'], 1.0)
-
-    #Time Integration
-    ti = AlphaGeneralizedTimeIntegration(metafor)
-    ti.setAlphaM(-0.97)
-    ti.setAlphaF(0.01)
-    metafor.setTimeIntegration(ti)
-
-    #Courbes
-    valuesmanager = metafor.getValuesManager()
-    pointset = geometry.getPointSet()
-    curveset = geometry.getCurveSet()
-    valuesmanager.add(1, MiscValueExtractor(metafor,EXT_T),'time')
-    ave1 = AngleValueExtractor(Axe(curveset(1003)),Axe(pointset(2),pointset(102)))
-    valuesmanager.add(11,ave1,'Angle1')
-
-    # Objective Function :
-    #---------------------
-    objectivefunctionset = metafor.getObjectiveFunctionSet()
-
-    Index = 2000
-    X0    = -10.0
-    dX0   =  3.0
-    Y0    = -10.0
-    Z0    =  0.0
-    Rm    =  4.0
-    Ll    = 50.0
-    alphaDeg = 80.0
-
-    alphaRad = alphaDeg * math.pi / 180.0
-    cosAlphaDemi = math.cos(alphaRad / 2.0)
-    sinAlphaDemi = math.sin(alphaRad / 2.0)
-    cosAlpha     = math.cos(alphaRad)
-    sinAlpha     = math.sin(alphaRad)
-    cos90moinsAlpha     = math.cos(math.pi / 2.0 - alphaRad)
-    sinAlpha     = math.sin(alphaRad)
-
-    from toolbox.domainTools import getGeoReferences
-    [pointset, curveset, wireset, surfaceset, sideset, skinset, volumeset] = getGeoReferences(domain)
-    piDemi = math.asin(1)
-    C45 = math.cos(piDemi / 2.0)
-    Z0 = 0.0
-    # Outil 1 : matrice
-    pointset.define(Index + 1, X0 - dX0,                              Y0,                                          Z0)
-    pointset.define(Index + 2, X0,                                    Y0,                                          Z0)
-    pointset.define(Index + 3, X0 + (Rm * sinAlphaDemi),             (Y0 - Rm * (1.0-cosAlphaDemi)),               Z0)
-    pointset.define(Index + 4, X0 + (Rm * sinAlpha),                 (Y0 - Rm * (1.0-cosAlpha)),                   Z0)
-    pointset.define(Index + 5, X0 + (Rm * sinAlpha + Ll * cosAlpha), (Y0 - Rm * (1.0 - cosAlpha) - Ll * sinAlpha), Z0)
-    pointset.define(Index + 6, X0 - dX0 , (Y0 + 2.0), Z0)
-
-    curveset.add( Line(Index + 1, pointset(Index + 1), pointset(Index + 2) ))
-    curveset.add( Arc(Index + 2, pointset(Index + 2), pointset(Index + 3), pointset(Index + 4) ))
-    curveset.add( Line(Index + 3, pointset(Index + 4), pointset(Index + 5) ))
-    curveset.add( Line(Index + 4, pointset(Index + 6), pointset(Index + 1) ))
-
-    wireset.add(MultiProjWire(Index + 1, [curveset(Index+i) for i in (1, 2, 3)]))
-    wireset.add(Wire(Index+2, [curveset(1), curveset(101)]))
-
-    sve1 = ShapeValueExtractor(wireset(Index+1), wireset(Index+2))
-    sve1.setTriedreRef(Triedre(pointset(Index+1),pointset(Index+2),pointset(Index+6)))
-    sve1.setTriedreMesh(Triedre(pointset(1),pointset(1002),pointset(4)))
-
-    valuesmanager.add(12,sve1,'shape1')
-    valuesmanager.add(13,sve1,NormOperator(),'shape2')
-
-    sof1 = ValueExtractorObjectiveFunction(1,ave1)
-    objectivefunctionset.add(sof1)
-    sof2 = ValueExtractorObjectiveFunction(2,sve1)
-    objectivefunctionset.add(sof2)
-
-    # Verification des Objective Function in .res File
-    testSuite = metafor.getTestSuiteChecker()
-    testSuite.checkObjectiveFunction(2)
-    testSuite.checkExtractor(11)
-    testSuite.checkExtractor(12,0)
-    testSuite.checkExtractor(12,5)
-    testSuite.checkExtractor(13)
-
-    return metafor
diff --git a/Metafor/models/mirror01/__init__.py b/Metafor/models/mirror01/__init__.py
deleted file mode 100644
index 0b4a1527..00000000
--- a/Metafor/models/mirror01/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# -*- coding: utf-8; -*-
-# mirrors MODULE initialization file
-
-import tbox
-from mirrorsw import *
diff --git a/Metafor/models/mirror01/mirror.geo b/Metafor/models/mirror01/mirror.geo
deleted file mode 100644
index 5c4c4e77..00000000
--- a/Metafor/models/mirror01/mirror.geo
+++ /dev/null
@@ -1,86 +0,0 @@
-// a mirror+holder meshed with hex
-
-
-DefineConstant[ L   = {  1, Min 50, Max 500, Step 1, Name "Lengths/L"   }  ];
-DefineConstant[ L_1 = {  1, Min 50, Max 250, Step 1, Name "Lengths/L_1" }  ];
-DefineConstant[ H   = {  1, Min 10, Max 100, Step 1, Name "Lengths/H"   }  ];
-DefineConstant[ H_1 = {  1, Min  1, Max  20, Step 1, Name "Lengths/H_1" }  ];
-DefineConstant[ W   = {  1, Min 25, Max 250, Step 1, Name "Lengths/W"   }  ];
-
-DefineConstant[ nL   = {   1, Min 1, Max 51, Step 1, Name "Mesh/nL"   }  ];
-DefineConstant[ nL_1 = {   1, Min 1, Max 51, Step 1, Name "Mesh/nL_1" }  ];
-DefineConstant[ nH   = {   1, Min 1, Max 51, Step 1, Name "Mesh/nH"   }  ];
-DefineConstant[ nH_1 = {   1, Min 1, Max 51, Step 1, Name "Mesh/nH_1" }  ];
-DefineConstant[ nW   = {   1, Min 1, Max 51, Step 1, Name "Mesh/nW"   }  ];
-
-lc = 1; // useless
-
-Point(1) = { 0,   0, 0, lc};
-Point(2) = { 0,   0, H, lc};
-Point(3) = { L_1, 0, 0, lc};
-Point(4) = { L_1, 0, H, lc};
-Point(5) = { L_1, 0, H+H_1, lc};
-Point(6) = { L+L_1, 0, 0, lc};
-Point(7) = { L+L_1, 0, H, lc};
-Point(8) = { L+L_1, 0, H+H_1, lc};
-
-Line(1) = {2, 1};
-Line(2) = {1, 3};
-Line(3) = {4, 2};
-Line(4) = {3, 4};
-Line(5) = {4, 5};
-Line(6) = {3, 6};
-Line(7) = {7, 4};
-Line(8) = {5, 8};
-Line(9) = {6, 7};
-Line(10) = {8, 7};
-
-Transfinite Line {6,7,8} = nL Using Progression 1;
-Transfinite Line {2,3} = nL_1 Using Progression 1;
-Transfinite Line {1,4,9} = nH Using Progression 1;
-Transfinite Line {5,10} = nH_1 Using Progression 1;
-
-Line Loop(11) = {2, 4, 3, 1};
-Plane Surface(12) = {11};
-Transfinite Surface {12};
-Recombine Surface {12};
-
-Line Loop(13) = {6,9,7,-4};
-Plane Surface(14) = {13};
-Transfinite Surface {14};
-Recombine Surface {14};
-
-Line Loop(15) = {7, 10, 8, 5};
-Plane Surface(16) = {15};
-Transfinite Surface {16};
-Recombine Surface {16};
-
-
-Extrude {0, W, 0} 
-{
-  Surface{12}; Layers{nW}; Recombine;
-}
-
-Extrude {0, W, 0} 
-{
-  Surface{14}; Layers{nW}; Recombine;
-}
-
-Extrude {0, W, 0} 
-{
-  Surface{16}; Layers{nW}; Recombine;
-}
-
-// physical entities
-
-Physical Line("Vertical clamped line") = {1};
-Physical Line("Horizontal clamped line") = {23};
-Physical Surface("Clamped Side") = {37};
-Physical Surface("Mirror Side") = {77};
-Physical Surface("Contact") = {55};
-Physical Volume("Holder") = {1, 2};
-Physical Volume("Mirror") = {3};
-
-
-
-
diff --git a/Metafor/models/mirror01/mirror.py b/Metafor/models/mirror01/mirror.py
deleted file mode 100644
index 4e7ca016..00000000
--- a/Metafor/models/mirror01/mirror.py
+++ /dev/null
@@ -1,197 +0,0 @@
-# -*- coding: utf-8; -*-
-#
-# $Id: TestThermExpan.py 2424 2015-10-11 21:09:13Z wautelet $
-#
-#
-
-
-
-from wrap import *
-metafor = None
-
-
-#======================================================================#
-#                       Definition des parametres                      #
-#======================================================================#
-
-
-def getMetafor(_parameters):
-    global metafor
-    if metafor: return metafor
-    metafor = Metafor()
-    from .parameters_file import *	
-    parameters = getParameters(_parameters)
-
-    domain    = metafor.getDomain()
-    geometry  = domain.getGeometry()
-    geometry.setDim3D()
-
-
-    #==================================================================#
-    #                      import du fichier .msh                      #
-    #==================================================================#	
-    from toolbox.gmsh import GmshImport
-    #f = os.path.join(os.path.dirname(__file__), 'mirrors03.msh')
-    f = parameters['mesh'] 
-    importer = GmshImport(f, domain)
-    importer.setOrder(order=1)   
-    importer.setOpti(opti=True)
-    importer.setAlgo(algo='default') 
-    importer.execute()
-
-    groupset = domain.getGeometry().getGroupSet()
-
-    #==================================================================#
-    #                     Visualisation du maillage                    #
-    #==================================================================#
-    if 0:
-        winMesh = VizWin()
-        winMesh.add(geometry.getMesh().getPointSet())
-        winMesh.add(geometry.getMesh().getCurveSet())
-        winMesh.open()
-        input("pause : Visualisation du maillage")
-
-
-    #==================================================================#
-    #                       Lois de comportement                       #
-    #==================================================================#
-    #  ----------------------------  #
-    # Definition des materiaux
-    materialset = domain.getMaterialSet()
-    noMat = 1
-    noMatLaw = 1	
-            
-    materialset.define (noMat, TmEvpIsoHHypoMaterial)
-    material = materialset(noMat)
-    material.put(MASS_DENSITY,     8.93e-9)
-    material.put(ELASTIC_MODULUS, 200000.0)
-    material.put(POISSON_RATIO,        0.3)
-    material.put(YIELD_NUM,            noMatLaw)
-    material.put(CONDUCTIVITY,        30.0)
-    material.put(DISSIP_TE,            1.0)
-    material.put(DISSIP_TQ,            0.0)
-    material.put(THERM_EXPANSION,     1.0);  material.depend(THERM_EXPANSION, parameters['fct_TExp'], Field1D(TO,RE))
-    material.put(HEAT_CAPACITY,    4.6E+08)
-
-    materialLawset = domain.getMaterialLawSet()
-    materialLawset.define (noMatLaw, LinearIsotropicHardening)
-    materialLawset(noMatLaw).put(IH_SIGEL, 400.0)
-    materialLawset(noMatLaw).put(IH_H,    0.0)
-
-    noMat = 2
-    noMatLaw = 2
-    materialset.define (noMat, TmEvpIsoHHypoMaterial)
-    material = materialset(noMat)
-    material.put(MASS_DENSITY,     8.93e-9)
-    material.put(ELASTIC_MODULUS, 200000.0)
-    material.put(POISSON_RATIO,        0.3)
-    material.put(YIELD_NUM,            noMatLaw)
-    material.put(CONDUCTIVITY,        30.0)
-    material.put(DISSIP_TE,            1.0)
-    material.put(DISSIP_TQ,            0.0)
-    material.put(THERM_EXPANSION,     0.5);  material.depend(THERM_EXPANSION, parameters['fct_TExp'], Field1D(TO,RE))
-    material.put(HEAT_CAPACITY,    4.6E+08)
-
-    materialLawset = domain.getMaterialLawSet()
-    materialLawset.define (noMatLaw, LinearIsotropicHardening)
-    materialLawset(noMatLaw).put(IH_SIGEL, 400.0)
-    materialLawset(noMatLaw).put(IH_H,    0.0)
-
-
-    #==================================================================#
-    #                       Schema d integration                       #
-    #==================================================================#
-    #  ----------------------------  #
-    # Gestion des pas de temps
-    tsm = metafor.getTimeStepManager()
-    tsm.setInitialTime(0.0, parameters['dtinit'])   #t = 0 <-> stage 0
-    tsm.setNextTime(parameters['tmax'], 1, parameters['dtmax'])
-
-    #  ----------------------------  #
-    # Gestion des iterations mechaniques
-    mim = metafor.getMechanicalIterationManager()
-    mim.setResidualTolerance(1.0e-5)
-
-    #  ----------------------------  #
-    # Gestion des iterations thermiques
-    tim = metafor.getThermalIterationManager()
-    tim.setResidualTolerance(1.0e-5)
-
-    #  ----------------------------  #
-    # Time Integration
-    tiMech = QuasiStaticTimeIntegration(metafor)
-    tiTher = TrapezoidalThermalTimeIntegration(metafor)
-    ti = StaggeredTmTimeIntegration(metafor)
-    ti.setIsAdiabatic(False)
-    ti.setWithStressReevaluation(False)
-    ti.setMechanicalTimeIntegration(tiMech)
-    ti.setThermalTimeIntegration(tiTher)
-    metafor.setTimeIntegration(ti) 
-
-
-    #==================================================================#
-    #             Definition des elements finis volumiques             #
-    #==================================================================#
-    #  ----------------------------  #
-    # Definition des proprietes des elements finis volumiques
-    prp1 = ElementProperties( TmVolume3DElement )
-    prp1.put( MATERIAL, 1 )
-
-    prp2 = ElementProperties( TmVolume3DElement )
-    prp2.put( MATERIAL, 2 )
-
-    #  ----------------------------  #
-    # Generation des elements finis volumiques sur le maillage
-
-    interactionset = domain.getInteractionSet()
-    app1 = FieldApplicator(1)
-    app1.push( groupset(6) )
-    interactionset.add( app1 )
-
-    app2 = FieldApplicator(2)
-    app2.push( groupset(7) )
-    interactionset.add( app2 )
-
-    interactionset(1).addProperty( prp1 )
-    interactionset(2).addProperty( prp2 )
-    #==================================================================#
-    #                       Conditions initiales                       #
-    #==================================================================#
-    initialconditionset = metafor.getInitialConditionSet()
-    initialconditionset.define(groupset(6),Field1D(TO,AB), parameters['TempInit'])
-    initialconditionset.define(groupset(7),Field1D(TO,AB), parameters['TempInit'])
-
-    #==================================================================#
-    #                             Fixations                            #
-    #==================================================================#
-    loadingset = domain.getLoadingSet()
-    loadingset.define(groupset(1),Field1D(TY,RE),0.0)
-    loadingset.define(groupset(2),Field1D(TZ,RE),0.0)
-    loadingset.define(groupset(3),Field1D(TX,RE),0.0)
-
-    fct = PieceWiseLinearFunction()
-    fct.setData(0.0,                 parameters['TempInit'])
-    fct.setData(parameters['tmax'],  parameters['TempFinal'])
-    # Chargements
-    loadingset.define(groupset(6), Field1D(TO,RE), 1.0, fct)
-    loadingset.define(groupset(7), Field1D(TO,RE), 1.0, fct)
-
-    #==================================================================#
-    #                            Archivages                            #
-    #==================================================================#
-    valuesmanager = metafor.getValuesManager()
-
-    valuesmanager.add(1, MiscValueExtractor(metafor,EXT_T),'time')
-    valuesmanager.add(2, DbNodalValueExtractor(groupset(4), Field1D(TO,RE)), 'mirror_Temperature')
-    valuesmanager.add(3, DbNodalValueExtractor(groupset(4), Field1D(TX,RE)), 'mirror_displacementX')
-    valuesmanager.add(4, DbNodalValueExtractor(groupset(4), Field1D(TY,RE)), 'mirror_displacementY')
-    valuesmanager.add(5, DbNodalValueExtractor(groupset(4), Field1D(TZ,RE)), 'mirror_displacementZ')
-    valuesmanager.add(6, IFNodalValueExtractor(groupset(4), IF_EVMS), 'mirror_EVMS')
-    valuesmanager.add(7, DbNodalValueExtractor(groupset(4), Field1D(TX,AB)), 'mirror_X')
-    valuesmanager.add(8, DbNodalValueExtractor(groupset(4), Field1D(TY,AB)), 'mirror_Y')
-    valuesmanager.add(9, DbNodalValueExtractor(groupset(4), Field1D(TZ,AB)), 'mirror_Z')
-    valuesmanager.add(10, IFNodalValueExtractor(groupset(4), IF_EVMS), 'contact_EVMS')
-    valuesmanager.add(11, DbNodalValueExtractor(groupset(4), Field1D(TX,AB)), 'contact_X')
-    valuesmanager.add(12, DbNodalValueExtractor(groupset(4), Field1D(TY,AB)), 'contact_Y')
-    valuesmanager.add(13, DbNodalValueExtractor(groupset(4), Field1D(TZ,AB)), 'contact_Z')
-    return metafor
\ No newline at end of file
diff --git a/Metafor/models/mirror01/model.py b/Metafor/models/mirror01/model.py
deleted file mode 100644
index 8c85d1ea..00000000
--- a/Metafor/models/mirror01/model.py
+++ /dev/null
@@ -1,51 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-import numpy as np
-import os
-import shutil
-
-import fwk
-
-from Metafor.Mparams.Metafor_call import Metafor_call
-
-isUnix = lambda: os.name == 'posix'
-
-def model(d):
-    # modify the mesh
-    import tbox.gmsh as gmsh
-
-    pars={ 'L' : d['L'] , 'L_1' : d['L_1'], 'H' : d['H'], 'H_1' : d['H_1'], 'W' : d['W'], 'nL' : d['nL'], 'nL_1' : d['nL_1'], 'nH' : d['nH'], 'nH_1' : d['nH_1'], 'nW' : d['nW'] }
-
-    gmsh.MeshLoader(d['geo'],__file__).execute(**pars)
-   
-    # clean the mesh
-    
-    print_line = True
-    
-    with open("mirror.msh","r") as input:
-        with open("mirror2.msh","w") as output: 
-            for line in input:
-                if line=="$PhysicalNames"+"\n":
-                    print_line = False
-                if print_line:
-                    output.write(line)
-                if line=="$EndPhysicalNames"+"\n":
-                    print_line = True   
-    
-    d['mesh'] = os.getcwd() + '/mirror2.msh'
-    # end of mesh part
-    
-    d['Metafor_model_name'] = 'mirror'
-    Metafor_call(d)
-    
-    mirror_X = np.genfromtxt("mirror_X.ascii", dtype=None)
-    mirror_Y = np.genfromtxt("mirror_X.ascii", dtype=None)
-    mirror_Z = np.genfromtxt("mirror_X.ascii", dtype=None)
-    mirror_displacementZ = np.genfromtxt("mirror_displacementZ.ascii", dtype=None)
-    contact_EVMS = np.genfromtxt("contact_EVMS.ascii", dtype=None)
-
-    sol = np.amax(contact_EVMS)
-    
-    return sol  
-
diff --git a/Metafor/models/mirror01/parameters_file.py b/Metafor/models/mirror01/parameters_file.py
deleted file mode 100644
index 3a591667..00000000
--- a/Metafor/models/mirror01/parameters_file.py
+++ /dev/null
@@ -1,38 +0,0 @@
-# -*- coding: utf-8; -*-
-# parameters_file.py:
-
-from wrap import *
-
-def getParameters(_parameters):
-    parameters = {}
-    parameters['tmax']          = 1.          #sec
-    parameters['dtinit']        = 0.01         #sec
-    parameters['dtmax']         = 0.1          #sec
-
-    parameters['TempInit']      = 70.0         #°
-    parameters['TempFinal']     = 500.0        #°
-
-    parameters['fct_TExp']      = PieceWiseLinearFunction()
-
-    eps=0.0001
-    parameters['fct_TExp'].setData(        0.,  1.61572E-005)
-    parameters['fct_TExp'].setData(  902.-eps,  1.61572E-005)
-
-    parameters['fct_TExp'].setData(  902.+eps,  8.333333E-06)
-    parameters['fct_TExp'].setData(  998.-eps,  8.333333E-06)
-
-    parameters['fct_TExp'].setData(  998.+eps, -2.727273E-05)
-    parameters['fct_TExp'].setData( 1053.-eps, -2.727273E-05)
-
-    parameters['fct_TExp'].setData( 1053.+eps,  4.347826E-06)
-    parameters['fct_TExp'].setData( 1076.-eps,  4.347826E-06)
-
-    parameters['fct_TExp'].setData( 1076.+eps,  2.371134E-05)
-    parameters['fct_TExp'].setData( 1173.-eps,  2.371134E-05)
-
-    parameters['fct_TExp'].setData( 1173.+eps,  2.371134E-05)
-    parameters['fct_TExp'].setData(       1e5,  2.371134E-05)
-
-
-    parameters.update(_parameters)
-    return parameters
\ No newline at end of file
diff --git a/Metafor/models/omega01/EmboutOmega.py b/Metafor/models/omega01/EmboutOmega.py
deleted file mode 100644
index c477515d..00000000
--- a/Metafor/models/omega01/EmboutOmega.py
+++ /dev/null
@@ -1,583 +0,0 @@
-# -*- coding: utf-8; -*-
-# $Id:  $
-#################################################
-#
-#################################################
-#-- Initialisation python
-
-from wrap import *
-import math
-metafor = None
-
-#=========================================================================
-#
-def getParameters(_parameters):
-    parameters = {}
-    # Param�tres serre-Flanc
-    parameters['forceSF']  = 1500.0 # Force de serrage du serre-Flanc
-    parameters['amortissement'] = 5.0e-7 # Param�tre d'amortissement
-    #param�tres contact 
-    parameters['peno']   = 1.0e4
-    parameters['mu']     = 0.12     
-    # Donn�es mat�riau t�le
-    parameters['rho']      = 7.8e-9   # densit�
-    parameters['Young']    = 210000.0 # Module de Young
-    parameters['poisson']  = 0.3      # Coef Poisson
-    
-    parameters['trac_Rm']  = 625      # Donn�es mat�riau
-    parameters['trac_R02'] = 369      # Donn�es mat�riau
-    parameters['trac_n']   = 0.194    # Donn�es mat�riau
-    
-    # G�om�trie - maillage du Flanc
-    parameters['nx'] = 135
-    parameters['ny'] = 2
-    parameters['Lx'] = 135.
-    parameters['Ly'] = 1.
-    parameters['nipX'] = 2
-    parameters['nipY'] = 2
-
-    # G�om�trie de la Matrice
-    parameters['Y0M']      = 0.0 
-    parameters['LxM1']     = 50.0
-    #parameters['LxM2']    =  post trait�    
-    parameters['LxM3']     = 140.0 
-    parameters['LyM']      = 61.1
-    parameters['rM1']      = 10.0 
-    parameters['rM2']      = 10.0 
-    parameters['thetaM']   = 80.0     
-    parameters['ddyM']     = 1.0
-    
-    # G�om�trie du Poincon
-    parameters['Y0P']      = parameters['Ly']
-    parameters['LxP1']      = 49.9 
-    parameters['rP1']      =  8.9
-    parameters['rP2']      = 11.1 
-    parameters['rP3']      =  5.0    
-    parameters['LyP']      = 61.1  #0.110000002E+01+0.590441971E+02
-    parameters['thetaP']   = 80.0   
-    parameters['ddyP']   = parameters['LyP']
-
-    # G�om�trie du Serre Flanc
-    parameters['X0SF']      = 85.8
-    parameters['rSF']       = 2.0 
-    parameters['Y0SF']      = parameters['Ly'] + parameters['rSF']
-    parameters['LxSF']      = 50.0    
-    parameters['ddySF']    = 0.01 # d�placement initial du serre-Flanc 
-    
-    # Param�tres du calcul 
-    #parameters['ndyn'] = 0 
-    parameters['ndyn'] = 2
-    parameters['prec']   = 1.0e-4
-	
-    parameters['cmvim']   = VES_CMVIM_SRI
-    parameters['PEAS']    = 1.0e-8
-    
-
-
-    # Mise � jour des parametres par defaut avec les parametres pass�s
-    parameters.update(_parameters)
-    #
-    #Ne pas remonter ce qui est ci dessous au dessus  parameters.update(_parameters)
-    parameters['ih_n']     = parameters['trac_n']     # Krupkowsky    
-    parameters['ih_k']     = parameters['trac_Rm']*math.exp(parameters['trac_n'])/ math.pow(parameters['trac_n'], parameters['trac_n'])  # Krupkowsky
-    parameters['ih_evpl0'] = math.pow(((parameters['trac_R02'] / parameters['ih_k'])), ((1.0 / parameters['trac_n'])) )-0.002  # Krupkowsky : evpl0
-    
-    print("ih_n = ", parameters['ih_n']) 
-    print("ih_k = ", parameters['ih_k']) 
-    print("ih_evpl0 = ", parameters['ih_evpl0']) 
-    
-    parameters['thetaMRad'] = parameters['thetaM'] * math.pi / 180.0
-    parameters['thetaPRad'] = parameters['thetaP'] * math.pi / 180.0
-    
-    lxm2  = parameters['LxM1'] + parameters['rM1'] * math.sin(parameters['thetaMRad'])
-    lxm2 += ((parameters['LyM'] - (parameters['rM1'] + parameters['rM2']) * (1.0-math.cos(parameters['thetaMRad']))) / math.tan(parameters['thetaMRad']))
-    lxm2 += parameters['rM2'] * math.sin(parameters['thetaMRad'])
-    parameters['LxM2'] = lxm2
-    
-    lxp2  = parameters['LxP1'] + parameters['rP1'] * math.sin(parameters['thetaPRad'])
-    lxp2 += ((parameters['LyP'] - (parameters['rP1'] + parameters['rP2']) * (1.0-math.cos(parameters['thetaPRad']))) / math.tan(parameters['thetaPRad']))
-    lxp2 += parameters['rP2'] * math.sin(parameters['thetaPRad'])
-    parameters['LxP2'] = lxp2
-    #parameters['LxM2'] = parameters['LxM1'] + (parameters['LyM'] - parameters['rM2'] * (1.0-math.cos(parameters['thetaMRad']))) / math.tan(parameters['thetaMRad']) + parameters['rM1']*math.sin(parameters['thetaMRad'])
-    # Calcul des param�tres d�pendant des param�tres de base    
-    return parameters
-#=========================================================================
-
-
-def getMetafor(_parameters={}):
-    global metafor
-    if metafor: return metafor
-    p = getParameters(_parameters)
-    metafor    = Metafor()
-    domain     = metafor.getDomain()
-    geometry = domain.getGeometry()
-    geometry.setDimPlaneStrain(1.0)
-
-    #-- maillage --
-    from toolbox.meshedGeometry2D import createRectangleSameId
-    createRectangleSameId(domain, p['nx'], p['ny'], p['Lx'], p['Ly'], 0.0,   0.0,   0)
-
-    # G�om�trie des outils : matrice
-    pset = geometry.getPointSet()
-    p1001 = pset.define(1001, -1.0,                                             p['Y0M']-p['LyM'])
-    p1002 = pset.define(1002, p['LxM1'],                                        p['Y0M']-p['LyM'])
-    p1003 = pset.define(1003, p['LxM1']+p['rM1']*math.sin((p['thetaMRad']/2.0)),  p['Y0M']-p['LyM']+p['rM1']*(1.-math.cos((p['thetaMRad']/2.0))))
-    p1004 = pset.define(1004, p['LxM1']+p['rM1']*math.sin(p['thetaMRad']),      p['Y0M']-p['LyM']+p['rM1']*(1.-math.cos(p['thetaMRad'])))
-    p1005 = pset.define(1005, p['LxM2']-p['rM2']*math.sin(p['thetaMRad']),      p['Y0M']-p['rM2']*(1.-math.cos(p['thetaMRad'])))
-    p1006 = pset.define(1006, p['LxM2']-p['rM2']*math.sin((p['thetaMRad']/2.0)),  p['Y0M']-p['rM2']*(1.-math.cos((p['thetaMRad']/2.))))
-    p1007 = pset.define(1007, p['LxM2'],                                        p['Y0M'])
-    p1008 = pset.define(1008, p['LxM3'],                                        p['Y0M'])
-
-    # curves
-    cset = geometry.getCurveSet()
-    c1001 = cset.add(Line(1001, p1001, p1002))
-    c1002 = cset.add(Arc( 1002, p1002, p1003, p1004))
-    c1003 = cset.add(Line(1003, p1004, p1005))
-    c1004 = cset.add(Arc( 1004, p1005, p1006, p1007))
-    c1005 = cset.add(Line(1005, p1007, p1008))
-
-    wset    = geometry.getWireSet()
-    #w1001   = wset.add(Wire(1001,[c1001, c1002, c1003, c1004]))
-    w1001   = wset.add(Wire(1001,[c1005, c1004, c1003, c1002, c1001]))
-    sidset  = geometry.getSideSet()
-    sid1001 = sidset.add(Side(1001,[w1001, ]))
-
-    # G�om�trie des outils : poincon
-    p2001 = pset.define(2001, -1.0,                                                  p['Y0P'])
-    p2002 = pset.define(2002, p['LxP1'],                                             p['Y0P'])
-    p2003 = pset.define(2003, p['LxP1']+p['rP1']*math.sin((p['thetaPRad']/2.0)),       p['Y0P']+p['rP1']*(1.-math.cos((p['thetaPRad']/2.0))))
-    p2004 = pset.define(2004, p['LxP1']+p['rP1']*math.sin(p['thetaPRad']),           p['Y0P']+p['rP1']*(1.-math.cos(p['thetaPRad'])) )
-    #p2005 = pset.define(2005, p['LxP1']+p['rP1']*math.sin(p['thetaPRad'])+p['LyP']*math.cos(p['thetaPRad']),       p['Y0P']+p['rP1']*(1.-math.cos(p['thetaPRad']))+p['LyP']*math.sin(p['thetaPRad']))
-    p2005 = pset.define(2005, p['LxP2']-p['rP2']*math.sin(p['thetaPRad']),           p['Y0P']+p['LyP']-p['rP2']*(1.-math.cos(p['thetaPRad'])))
-    p2006 = pset.define(2006, p['LxP2']-p['rP2']*math.sin((p['thetaPRad']/2.0)),       p['Y0P']+p['LyP']-p['rP2']*(1.-math.cos((p['thetaPRad']/2.))))
-    p2007 = pset.define(2007, p['LxP2'],                                             p['Y0P']+p['LyP'])
-    p2008 = pset.define(2008, p['LxP2']+p['rP3']*math.sin((math.pi/4.0)),              p['Y0P']+p['LyP']+p['rP3']*(1.-math.cos((math.pi/4.0))))
-    p2009 = pset.define(2009, p['LxP2']+p['rP3']*math.sin((math.pi/2.0)),              p['Y0P']+p['LyP']+p['rP3']*(1.-math.cos((math.pi/2.0))))
-
-
-    # curves
-    cset = geometry.getCurveSet()
-    c2001 = cset.add(Line(2001, p2001, p2002))
-    c2002 = cset.add(Arc( 2002, p2002, p2003, p2004))
-    c2003 = cset.add(Line(2003, p2004, p2005))
-    c2004 = cset.add(Arc( 2004, p2005, p2006, p2007))
-    c2005 = cset.add(Arc( 2005, p2007, p2008, p2009))
-    wset    = geometry.getWireSet()
-    w2001   = wset.add(Wire(2001,[c2001, c2002, c2003, c2004, c2005]))
-    sidset  = geometry.getSideSet()
-    sid2001 = sidset.add(Side(2001,[w2001, ]))
-
-    # G�om�trie des outils : Serre-Flanc
-
-    p3001 = pset.define(3001, p['X0SF'],                                                 p['Y0SF'])
-    p3002 = pset.define(3002, p['X0SF']+p['rSF']*(1.0-math.cos((math.pi/3.))),             p['Y0SF']-p['rSF']*math.sin((math.pi/3.)))
-    p3003 = pset.define(3003, p['X0SF']+p['rSF'],                                        p['Y0SF']-p['rSF'])
-    p3004 = pset.define(3004, p['X0SF']+p['LxSF']-p['rSF'],                              p['Y0SF']-p['rSF'])
-    p3005 = pset.define(3005, p['X0SF']+p['LxSF']-p['rSF']*(1.0-math.cos((math.pi/3.))),   p['Y0SF']-p['rSF']*math.sin((math.pi/3.)))
-    p3006 = pset.define(3006, p['X0SF']+p['LxSF'],                                       p['Y0SF'])
-
-    # curves
-    cset = geometry.getCurveSet()
-    c3001 = cset.add(Arc(3001, p3001, p3002, p3003))
-    c3002 = cset.add(Line(3002, p3003, p3004))
-    c3003 = cset.add(Arc( 3003, p3004, p3005, p3006))
-    wset    = geometry.getWireSet()
-    w3001   = wset.add(Wire(3001,[c3001, c3002, c3003]))
-    sidset  = geometry.getSideSet()
-    sid3001 = sidset.add(Side(3001,[w3001, ]))
-
-    # == SCHEMA D'INTEGRATION ======================================================================
-    # Sch�ma d'int�gration  0 : QS / 1 : Expl / 2 : Implicite dynamique
-    # Time Integration
-    if p['ndyn'] == 0 :
-        ti=QuasiStaticTimeIntegration(metafor)
-        metafor.setTimeIntegration(ti)
-    elif p['ndyn'] == 2 :
-        ti = AlphaGeneralizedTimeIntegration(metafor)
-        metafor.setTimeIntegration(ti)
-    else:
-        raise Exception("Unknown time integration")
-    mim = metafor.getMechanicalIterationManager()
-    mim.setResidualComputationMethod(Method4ResidualComputation(100.0))
-    mim.setResidualTolerance(p['prec'] )
-    mim.setMaxNbOfIterations(10)
-    #mim.setVerbose()
-
-
-    tsm = metafor.getTimeStepManager()
-    stages = metafor.getStageManager()
-    tsm.setInitialTime(0.0, 0.01)
-    tsm.setNextTime(0.1, 1, 0.01)
-    tsm.setNextTime(1., 1, 0.01)
-    tsm.setNextTime(2., 1, 0.1)
-    tsm.setNextTime(3., 1, 0.01)
-    tsm.setNextTime(10., 1, 0.1)
-
-    # == Mat�riaux ==
-    materials = domain.getMaterialSet()
-    mat1 = materials.define (1, EvpIsoHHypoMaterial)
-    mat1.put(MASS_DENSITY,     p['rho']) # tonne/mm^3
-    mat1.put(ELASTIC_MODULUS, p['Young']) # MPa
-    mat1.put(POISSON_RATIO,   p['poisson'])
-    mat1.put(YIELD_NUM,     1)
-    matLawSet = domain.getMaterialLawSet()
-    matlaw = matLawSet.define(1, KrupkowskyIsotropicHardening)
-    matlaw.put(IH_EVPL0, p['ih_evpl0'])
-    matlaw.put(IH_K,     p['ih_k'])
-    matlaw.put(IH_N,     p['ih_n'])
-
-    # Elements
-    prp1 = ElementProperties(Volume2DElement)
-    prp1.put(MATERIAL, 1)
-    prp1.put(CAUCHYMECHVOLINTMETH , p['cmvim'])
-    if p['cmvim'] == VES_CMVIM_EAS:
-        prp1.put(EASS, 2)
-        prp1.put(EASV, 2)
-    app = FieldApplicator(1)
-    app.push(sidset(1))
-    app.addProperty(prp1)
-    domain.getInteractionSet().add(app)
-    '''
-    # Elements
-    mat2 = materials.define (2, DampingMaterial)
-    mat2.put(SPRING_FC,     0.0) #.0001)
-
-    prp2 = ElementProperties(Damping2DElement)
-    prp2.put(MATERIAL, 2)
-    prp2.put(STIFFMETHOD, STIFF_NUMERIC)
-    app2 = FieldApplicator(2)
-    app2.push(sidset(1))
-    app2.addProperty(prp2)
-    domain.getInteractionSet().add(app2)
-
-    app2.deactivate(stages[0])
-    app2.activate(stages[4])
-    '''
-
-    # == FIXATION ==================================================================================
-    fctM = PieceWiseLinearFunction()
-    fctM.setData(0.0, 0.0)
-    fctM.setData(1.0, 0.0)
-    fctM.setData(2.0, 0.0)
-    fctM.setData(3.0, 0.0)
-
-    fctP = PieceWiseLinearFunction()
-    fctP.setData(0.0, -0.01)
-    fctP.setData(0.1, -0.01)
-    fctP.setData(1.0, 1.0)
-    fctP.setData(2.0, 0.0)
-    fctP.setData(3.0, 0.0)
-
-
-    inicond = metafor.getInitialConditionSet()
-    loads = domain.getLoadingSet()
-    loads.define(cset(4),Field1D(TX,RE))
-    fP1 = loads.define(pset(1),Field1D(TY,RE))
-    fP1.deactivate(stages[0])
-    fP1.activate(stages[3])
-
-
-    loads.define(w1001,Field1D(TY,RE), -p['ddyM'], fctM , TOTAL_LOAD)
-    loads.define(w2001,Field1D(TY,RE), -p['ddyP'], fctP , TOTAL_LOAD)
-
-    p['pilotF'] = True
-    if p['pilotF'] :
-
-        mesher = RigidToolMesher(w3001)
-        mesher.execute()
-        loads.define(w3001,Field1D(TX,RE))
-
-        fctSF = PieceWiseLinearFunction()
-        fctSF.setData(0.0,  0.0)
-        fctSF.setData(0.1,  1.0)
-        fctSF.setData(1.0,  1.0)
-        fctSF.setData(1.5,  1.0)
-        fctSF.setData(2.0,  1.0)
-        fctSF.setData(3.0,  1.0)
-
-        TYSFLoad = loads.define(w3001,Field1D(TY,RE), -p['ddySF'],fctSF, INCREMENTAL_LOAD)
-        TYSFLoad.deactivate(stages[0])
-        TYSFLoad.activate(stages[2])
-
-        fctForceSF = PieceWiseLinearFunction()
-        fctForceSF.setData(0.0, 0.0)
-        fctForceSF.setData(0.1, 1.0)
-        fctForceSF.setData(1.0, 1.0)
-        fctForceSF.setData(2.0, 1.0)
-        fctForceSF.setData(3.0, 1.0)
-
-        GYFSLoad = loads.define(w3001,Field1D(TY,GF2), p['forceSF'], fctForceSF, TOTAL_LOAD)# force driven
-
-        #GYFSLoad.deactivate(stages[0])
-        #GYFSLoad.activate(stages[1])
-        GYFSLoad.deactivate(stages[2])
-
-    else :
-        fctSF = PieceWiseLinearFunction()
-        fctSF.setData(0.0, 0.0)
-        fctSF.setData(0.1, 1.0)
-        fctSF.setData(1.0, 1.0)
-        fctSF.setData(2.0, 1.0)
-        fctSF.setData(3.0, 1.0)
-        TYSFLoad = loads.define(w3001,Field1D(TY,RE), -p['ddySF'],fctSF, TOTAL_LOAD)
-
-    # == Contact ==
-
-    fctPeno = PieceWiseLinearFunction()
-    fctPeno.setData(0.0, 0.5)
-    fctPeno.setData(0.1, 1.0)
-    fctPeno.setData(1.0, 1.0)
-    fctPeno.setData(2.0, 1.0)
-    fctPeno.setData(3.0, 0.0)
-    fctPeno.setData(4.0, 0.0)
-
-    mat1001 = materials.define(1001, CoulombContactMaterial)
-    mat1001.put(PEN_NORMALE, p['peno'])
-    mat1001.depend(PEN_NORMALE, fctPeno, Field(TM))
-    mat1001.put(PEN_TANGENT, p['peno']*p['mu'])
-    mat1001.depend(PEN_TANGENT, fctPeno, Field(TM))
-    mat1001.put(COEF_FROT_STA, p['mu'])
-    mat1001.put(COEF_FROT_DYN, p['mu'])
-    mat1001.put(PROF_CONT, 0.95*p['rM2'] )
-
-    prp_c1 = ElementProperties(Contact2DElement)
-    prp_c1.put(MATERIAL, 1001)
-    prp_c1.put(AREAINCONTACT,AIC_ONCE)
-
-
-    fctPeno2 = PieceWiseLinearFunction()
-    fctPeno2.setData(0.0, 0.5)
-    fctPeno2.setData(0.1, 1.0)
-    fctPeno2.setData(2.0, 1.0)
-    fctPeno2.setData(2.5, 0.01)
-    fctPeno2.setData(3.0, 0.0)
-    fctPeno2.setData(4.0, 0.0)
-
-    mat1002 = materials.define(1002, CoulombContactMaterial)
-    mat1002.put(PEN_NORMALE, p['peno'])
-    mat1002.depend(PEN_NORMALE, fctPeno2, Field(TM))
-    mat1002.put(PEN_TANGENT, p['peno']*p['mu'])
-    mat1002.depend(PEN_TANGENT, fctPeno, Field(TM))
-    mat1002.put(COEF_FROT_STA, p['mu'])
-    mat1002.put(COEF_FROT_DYN, p['mu'])
-    mat1002.put(PROF_CONT, 0.95*p['rSF'] )
-    prp_c2 = ElementProperties(Contact2DElement)
-    prp_c2.put(MATERIAL, 1002)
-    prp_c2.put(AREAINCONTACT,AIC_ONCE)
-
-    fctPeno3 = PieceWiseLinearFunction()
-    fctPeno3.setData(0.0, 0.5)
-    fctPeno3.setData(0.1, 1.0)
-    fctPeno3.setData(2.0, 1.0)
-    fctPeno3.setData(2.5, 0.0)
-    fctPeno3.setData(3.0, 0.0)
-    fctPeno3.setData(4.0, 0.0)
-
-    mat1003 = materials.define(1003, CoulombContactMaterial)
-    mat1003.put(PEN_NORMALE, p['peno'])
-    mat1003.depend(PEN_NORMALE, fctPeno3, Field(TM))
-    mat1003.put(PEN_TANGENT, p['peno']*p['mu'])
-    mat1003.depend(PEN_TANGENT, fctPeno, Field(TM))
-    mat1003.put(COEF_FROT_STA, p['mu'])
-    mat1003.put(COEF_FROT_DYN, p['mu'])
-    mat1003.put(PROF_CONT, 0.95*p['rP3'] )
-    prp_c3 = ElementProperties(Contact2DElement)
-    prp_c3.put(MATERIAL, 1003)
-    prp_c3.put(AREAINCONTACT,AIC_ONCE)
-
-
-    #Outil 1 : Matrice
-
-    ci1 = RdContactInteraction(1001)
-    ci1.setTool(w1001)
-    ci1.push(cset(1))
-    ci1.addProperty(prp_c1)
-    domain.getInteractionSet().add(ci1)
-    #Outil 2 : Poincon
-    ci2 = RdContactInteraction(2001)
-    ci2.setTool(w2001)
-    ci2.push(cset(3))
-    ci2.addProperty(prp_c2)
-    domain.getInteractionSet().add(ci2)
-    #Outil 3 : Serre-Flanc
-    if p['pilotF'] :
-        ci3 = FdRdContactInteraction(3001)
-    else :
-        ci3 = RdContactInteraction(3001)
-    ci3.setTool(w3001)
-    ci3.push(cset(3))
-    ci3.addProperty(prp_c3)
-    domain.getInteractionSet().add(ci3)
-
-
-    ci1.deactivate(stages[4])
-    ci2.deactivate(stages[4])
-    ci3.deactivate(stages[4])
-
-    valuesmanager = metafor.getValuesManager()
-    valuesmanager.add(1, MiscValueExtractor(metafor,EXT_T),'time')
-    valuesmanager.add(2, IFNodalValueExtractor(pset(1), IF_EVMS), 'evms_p1')
-    valuesmanager.add(11, DbNodalValueExtractor(pset(2), Field1D(TX,RE)), 'TX_p2')
-    valuesmanager.add(12, DbNodalValueExtractor(pset(2), Field1D(TY,RE)), 'TY_p2')
-    valuesmanager.add(13, DbNodalValueExtractor(pset(2), Field1D(TX,GV)), 'VX_p2')
-    valuesmanager.add(14, DbNodalValueExtractor(pset(2), Field1D(TY,GV)), 'VY_p2')
-
-    valuesmanager.add(16, DbNodalValueExtractor(pset(2001), Field1D(TY,RE)), 'TY_Poincon')
-    valuesmanager.add(17, DbNodalValueExtractor(pset(3001), Field1D(TY,RE)), 'TY_SerreFlanc')
-
-
-    objFSet = metafor.getObjectiveFunctionSet()
-    objFSet.add(SpringBackObjF(1, metafor, 11, 12, 1, 2.0, 10.0) )
-    objFSet.add(LastVelocity(2, metafor, 13, 14, 1, 10.0) )
-
-    testSuite = metafor.getTestSuiteChecker()
-    testSuite.checkObjectiveFunction(1)
-    testSuite.checkObjectiveFunction(2)
-
-#    valuesmanager.add(21, InteractionValueExtractor(ci1, TX, GEN_EXT_FORC), 'FX_Matrice')
-#    valuesmanager.add(22, InteractionValueExtractor(ci1, TY, GEN_EXT_FORC), 'FY_Matrice')
-#    valuesmanager.add(23, InteractionValueExtractor(ci2, TX, GEN_EXT_FORC), 'FX_Poincon')
-#    valuesmanager.add(24, InteractionValueExtractor(ci2, TY, GEN_EXT_FORC), 'FY_Poincon')
-#    valuesmanager.add(25, InteractionValueExtractor(ci3, TX, GEN_EXT_FORC), 'FX_SerreFlan')
-#    valuesmanager.add(26, InteractionValueExtractor(ci3, TY, GEN_EXT_FORC), 'FY_SerreFlan')
-    valuesmanager.add(21, ContactForceValueExtractor(ci1, TX, TOTAL_FORCE), SumOperator(), 'FX_Matrice')
-    valuesmanager.add(22, ContactForceValueExtractor(ci1, TY, TOTAL_FORCE), SumOperator(), 'FY_Matrice')
-    valuesmanager.add(23, ContactForceValueExtractor(ci2, TX, TOTAL_FORCE), SumOperator(), 'FX_Poincon')
-    valuesmanager.add(24, ContactForceValueExtractor(ci2, TY, TOTAL_FORCE), SumOperator(), 'FY_Poincon')
-    valuesmanager.add(25, ContactForceValueExtractor(ci3, TX, TOTAL_FORCE), SumOperator(), 'FX_SerreFlan')
-    valuesmanager.add(26, ContactForceValueExtractor(ci3, TY, TOTAL_FORCE), SumOperator(), 'FY_SerreFlan')
-
-    valuesmanager.add(31, NormalGapValueExtractor(ci1), MaxOperator(), 'GapMaxMatrice')
-    valuesmanager.add(32, NormalGapValueExtractor(ci2), MaxOperator(), 'GapMaxPoincon')
-    valuesmanager.add(33, NormalGapValueExtractor(ci3), MaxOperator(), 'GapMaxSerreFlanc')
-
-    cur1 = VectorDataCurve(1, valuesmanager.getDataVector(1), valuesmanager.getDataVector(11),valuesmanager.getDataVector(11).getName())
-    cur2 = VectorDataCurve(2, valuesmanager.getDataVector(1), valuesmanager.getDataVector(12),valuesmanager.getDataVector(12).getName())
-    cur3 = VectorDataCurve(3, valuesmanager.getDataVector(1), valuesmanager.getDataVector(16),valuesmanager.getDataVector(16).getName())
-    cur4 = VectorDataCurve(4, valuesmanager.getDataVector(1), valuesmanager.getDataVector(17),valuesmanager.getDataVector(17).getName())
-
-    cur11 = VectorDataCurve(1, valuesmanager.getDataVector(1), valuesmanager.getDataVector(21), valuesmanager.getDataVector(21).getName())
-    cur12 = VectorDataCurve(2, valuesmanager.getDataVector(1), valuesmanager.getDataVector(22), valuesmanager.getDataVector(22).getName())
-    cur13 = VectorDataCurve(3, valuesmanager.getDataVector(1), valuesmanager.getDataVector(23), valuesmanager.getDataVector(23).getName())
-    cur14 = VectorDataCurve(4, valuesmanager.getDataVector(1), valuesmanager.getDataVector(24), valuesmanager.getDataVector(24).getName())
-    cur15 = VectorDataCurve(5, valuesmanager.getDataVector(1), valuesmanager.getDataVector(25), valuesmanager.getDataVector(25).getName())
-    cur16 = VectorDataCurve(6, valuesmanager.getDataVector(1), valuesmanager.getDataVector(26), valuesmanager.getDataVector(26).getName())
-
-    cur31 = VectorDataCurve(31, valuesmanager.getDataVector(1), valuesmanager.getDataVector(31),valuesmanager.getDataVector(31).getName())
-    cur32 = VectorDataCurve(32, valuesmanager.getDataVector(1), valuesmanager.getDataVector(32),valuesmanager.getDataVector(32).getName())
-    cur33 = VectorDataCurve(33, valuesmanager.getDataVector(1), valuesmanager.getDataVector(33),valuesmanager.getDataVector(33).getName())
-
-
-    dataCurveSet1 = DataCurveSet()
-    dataCurveSet1.add(cur1)
-    dataCurveSet1.add(cur2)
-    dataCurveSet1.add(cur3)
-    dataCurveSet1.add(cur4)
-
-    dataCurveSet2 = DataCurveSet()
-    dataCurveSet2.add(cur11)
-    dataCurveSet2.add(cur12)
-    dataCurveSet2.add(cur13)
-    dataCurveSet2.add(cur14)
-    dataCurveSet2.add(cur15)
-    dataCurveSet2.add(cur16)
-
-    dataCurveSet3 = DataCurveSet()
-    dataCurveSet3.add(cur31)
-    dataCurveSet3.add(cur32)
-    dataCurveSet3.add(cur33)
-
-    try:
-        winc1 = VizWin()
-        winc1.add(dataCurveSet1)
-        metafor.addObserver(winc1)
-
-        winc2 = VizWin()
-        winc2.add(dataCurveSet2)
-        metafor.addObserver(winc2)
-
-        winc3 = VizWin()
-        winc3.add(dataCurveSet3)
-        metafor.addObserver(winc3)
-    except NameError:
-        pass
-
-
-    solman = metafor.getSolverManager();
-    try:
-        solman.setSolver(DSSolver());
-    except NameError:
-        pass
-
-    return metafor
-    
-    
-class SpringBackObjF(PythonObjectiveFunction):
-    def __init__(self,_no, _meta, _noPtTXRe, _noPtTYRe, _noTime , _time1, _time2) :   
-        print("SpringBackObjF : __init__")
-        PythonObjectiveFunction.__init__(self,_no,_meta)  
-        self.noPtTXRe  = _noPtTXRe   
-        self.noPtTYRe  = _noPtTYRe   
-        self.noTime    = _noTime  
-        self.time1     = _time1
-        self.time2     = _time2
-               
-        print("SpringBackObjF : __init__ finished")
-        
-    def __del__(self):
-        print("SpringBackObjectiveFunction : __del__")
-        print("callToDestructor of SpringBackObjectiveFunction not allowed. Add SpringBackObjectiveFunction.__disown__()")
-        input('')
-        exit(1)
-        
-    def compute(self, meta):    
-        print("entering SpringBackObjF compute")
-        valuesmanager = meta.getValuesManager()
-        curTX = VectorDataCurve(1, valuesmanager.getDataVector(self.noTime), valuesmanager.getDataVector(self.noPtTXRe))
-        curTY = VectorDataCurve(2, valuesmanager.getDataVector(self.noTime), valuesmanager.getDataVector(self.noPtTYRe))
-                
-        DX  = curTX.eval(self.time2) - curTX.eval(self.time1)
-        DY  = curTY.eval(self.time2) - curTY.eval(self.time1)
-        print("TX(%f) = %f \t TX(%f) = %f \t DX = %f "% (self.time1, curTX.eval(self.time1), self.time2, curTX.eval(self.time2), DX))
-        print("TY(%f) = %f \t TY(%f) = %f \t DY = %f "% (self.time1, curTY.eval(self.time1), self.time2, curTY.eval(self.time2), DY))
-        springBack  = math.sqrt(DX*DX+DY*DY)        
-        print("SpringBack = ", springBack)
-
-
-        SpringBackfile = open('SpringBack.ascii','w')
-        SpringBackfile.write(str(springBack))
-        SpringBackfile.close()
-
-        return springBack    
-         
-class LastVelocity(PythonObjectiveFunction):
-    def __init__(self,_no, _meta, _noPtTXGV, _noPtTYGV, _noTime, _time) :   
-        print("LastVelocity : __init__")
-        PythonObjectiveFunction.__init__(self,_no,_meta)  
-        self.noPtTXGV  = _noPtTXGV   
-        self.noPtTYGV  = _noPtTYGV  
-        self.noTime    = _noTime  
-        self.time      = _time
-               
-        print("LastVelocity : __init__ finished")
-        
-    def __del__(self):
-        print("LastVelocity : __del__")
-        print("callToDestructor of LastVelocity not allowed. Add LastVelocity.__disown__()")
-        input('')
-        exit(1)
-        
-    def compute(self, meta):    
-        print("entering LastVelocity compute")
-        valuesmanager = meta.getValuesManager()
-        curVX = VectorDataCurve(1, valuesmanager.getDataVector(self.noTime), valuesmanager.getDataVector(self.noPtTXGV))
-        curVY = VectorDataCurve(2, valuesmanager.getDataVector(self.noTime), valuesmanager.getDataVector(self.noPtTYGV))
-                
-        VX  = curVX.eval(self.time)
-        VY  = curVY.eval(self.time)
-        print("VX(%f) = %f "% (self.time, VX))
-        print("VY(%f) = %f "% (self.time, VY))
-        Veloc  = math.sqrt(VX*VX+VY*VY)        
-        print("Veloc = ", Veloc)
-        return Veloc    
-        
diff --git a/Metafor/models/omega01/model.py b/Metafor/models/omega01/model.py
deleted file mode 100644
index d1bcb320..00000000
--- a/Metafor/models/omega01/model.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-import numpy as np
-import os
-import shutil
-
-import fwk
-
-from Metafor.Mparams.Metafor_call import Metafor_call
-
-isUnix = lambda: os.name == 'posix'
-
-def model(d):    
-
-    d['Metafor_model_name'] = 'EmboutOmega'
-    Metafor_call(d)    
-    try:
-        sol = np.genfromtxt("SpringBack.ascii", dtype=None)
-    except:
-        sol = -1
-    return sol  
-
diff --git a/Metafor/models/tube01/model.py b/Metafor/models/tube01/model.py
deleted file mode 100644
index 3b4f6e6c..00000000
--- a/Metafor/models/tube01/model.py
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8; -*-
-
-import numpy as np
-import os
-import shutil
-
-import fwk
-
-from Metafor.Mparams.Metafor_call import Metafor_call
-
-isUnix = lambda: os.name == 'posix'
-
-def model(d):        
-    d['Metafor_model_name'] = 'tube'
-    Metafor_call(d)
-
-    FcZ = np.genfromtxt("FcZ.ascii", dtype=None)
-
-    sol = np.amax(FcZ)
-
-    return sol  
-
diff --git a/Metafor/models/tube01/tube.py b/Metafor/models/tube01/tube.py
deleted file mode 100644
index 4a1fe334..00000000
--- a/Metafor/models/tube01/tube.py
+++ /dev/null
@@ -1,19 +0,0 @@
-# -*- coding: utf-8; -*-
-# $Id: tube.py 2356 2015-08-25 07:43:43Z papeleux $
-
-import math
-
-def getMetafor(p={}):
-    d={}
-    import wrap
-    wrap.StrVectorBase.useTBB()
-    wrap.StrMatrixBase.useTBB()
-    #wrap.IntelTBB.setNumThreads(2)
-    #wrap.Blas.setPardisoNumThreads(2)
-    d['therm'] = False
-    d['alp1']  = 0.01          # facilite la convergence
-    d['alp2']  = math.pi-0.01
-    d['nr']    = 2
-    d.update(p)
-    import apps.iso.tubeT as m
-    return m.getMetafor(d)
-- 
GitLab