| ... | ... | @@ -170,7 +170,7 @@ In this linear predictor, we can also use transformation of the predictors as we |
|
|
|
|
|
|
|
In summary, a generalized linear model can be expressed as:
|
|
|
|
|
|
|
|
<img src="https://latex.codecogs.com/svg.latex?y_i&space;\sim&space;f(y|\mu_i,\phi)\\&space;\indent&space;g(\mu_i)=\eta_i\\&space;\indent&space;\eta_i=\sum_q{\beta_qx_{iq}}=\boldmath\beta^{'}x_i" title="y_i \sim f(y|\mu_i,\phi)\\ \indent g(\mu_i)=\eta_i\\ \indent \eta_i=\sum_q{\beta_qx_{iq}}=\boldmath\beta^{'}x_i" />
|
|
|
|
<img src="https://latex.codecogs.com/svg.latex?y_i&space;\sim&space;f(y|\mu_i,\phi)\\&space;\indent&space;g(\mu_i)=\eta_i\\&space;\indent&space;\eta_i=\sum_q{\beta_qx_{iq}}=\boldsymbol{\beta^{'}x}_i" title="y_i \sim f(y|\mu_i,\phi)\\ \indent g(\mu_i)=\eta_i\\ \indent \eta_i=\sum_q{\beta_qx_{iq}}=\boldsymbol{\beta^{'}x}_i" />
|
|
|
|
|
|
|
|
|
|
|
|
|
| ... | ... | |
| ... | ... | |