| ... | ... | @@ -62,8 +62,17 @@ When constructing a generalized linear model, three major decisions must be made |
|
|
|
target="_blank"><img src="https://latex.codecogs.com/svg.latex?
|
|
|
|
P(y;&space;\mu)&space;=&space;\frac{e^{-\mu}\mu^y}{y!}" title="P(y; \mu) =
|
|
|
|
\frac{e^{-\mu}\mu^y}{y!}" /></a>
|
|
|
|
* Bernoulli
|
|
|
|
* Binomial
|
|
|
|
|
|
|
|
* Bernoulli: <a href="https://www.codecogs.com/eqnedit.php?
|
|
|
|
latex=P(y;&space;\pi)=\pi^y(1-\pi)^{1-y}" target="_blank"><img
|
|
|
|
src="https://latex.codecogs.com/svg.latex?P(y;&space;\pi)=\pi^y(1-
|
|
|
|
\pi)^{1-y}" title="P(y; \pi)=\pi^y(1-\pi)^{1-y}" /></a>
|
|
|
|
|
|
|
|
* Binomial: <a href="https://www.codecogs.com/eqnedit.php?
|
|
|
|
latex=P(y;&space;\pi,n)=\binom{n}{y}\pi^y&space;(1-\pi)^{n-y}"
|
|
|
|
target="_blank"><img src="https://latex.codecogs.com/svg.latex?
|
|
|
|
P(y;&space;\pi,n)=\binom{n}{y}\pi^y&space;(1-\pi)^{n-y}" title="P(y;
|
|
|
|
\pi,n)=\binom{n}{y}\pi^y (1-\pi)^{n-y}" /></a>
|
|
|
|
|
|
|
|
We should note that this distribution is not the *true* distribution of the population,
|
|
|
|
but is a, approximation of the distribution of response variable. Each natural
|
| ... | ... | |
| ... | ... | |