
University of Liège - School of Engineering and
Computer Science

OpenRoaming:
Evaluation of the potential of e-ID as an Identity

Provider in the OpenRoaming federation and
implementation of a prototype

Academic supervisor :
Prof. Benoit DONNET

Cisco supervisors :
Mr. Bart BRINCKMAN

Mr. Hugues DE PRA
Mr. Frank DE REYMAEKER

Master’s thesis completed in order to obtain the degree of Master of Science
in Computer Science and Engineering, professional focus in computer

systems and networks by

Marie Maes

Academic year 2024-2025

Acknowledgements

First, I would like to thank my promoter, Professor Benoit Donnet, for his
help in finding this internship, his support throughout the writing of this thesis,
and for introducing me to the fundamentals of security, which is a subject that
I am now particularly passionate about, through his course of Introduction to
Computer Security.

A heartfelt thank you to Bart Brinckman for his huge help throughout
this project. His thoughtful advice, regular calls, and constant guidance were
essential. This thesis would not have been possible without him.

I am also very grateful to Hugues De Pra for introducing me to the world
of Cisco and making me feel so welcome there.

Thank you to Frank De Reymaeker for his weekly check-in comments,
which helped me stay on track.

Thanks to the Cisco team, especially Sebastien Marchal, Raphael Lienard
and Guilian Deflandre for always letting me know they’re available if I need
them.

I would also like to thank Frédéric Pampalone for sharing with me his
passion for IT and computer security. I am also deeply thankful to him and the
CHC team for introducing me to my first tech-oriented student job, which was
a really important experience in my journey.

I want to thank Florian Dekinder for his big support and its advices about
the thesis writing process.

I also wish to express my gratitude to my parents. Thank you for your
unconditional support during this TFE and these five years. Without you, nothing
would have been possible. You are the best parents in the world.

Lastly, a big thank you to my family: my two big brothers and my big
sister, for always being there and supporting me through everything.

Finally, I would like to acknowledge the use of generative AI tools in the
writing process of this document. Specifically, Bridge i.t. [62], the Cisco AI
assistant that answers questions relating to Cisco-internal content and built on
OpenAI’s ChatGPT, was used to help with drafting, bibliography, and editing
content, and DeepL Write [31] was used for translation, writing and language
support.

i

Abstract

University of Liège - School of Engineering and Computer Science
OpenRoaming: Evaluation of the potential of e-ID as an Identity Provider

in the OpenRoaming federation and implementation of a prototype
Marie Maes

Supervisor: Prof. Benoit Donnet
Co-Supervisors: Mr. Bart Brinckman, Mr. Hugues De Pra, and Mr. Franck De Reymaeker

Academic Year 2024-2025

In an era of growing need for network connectivity, traditional public Wi-Fi infrastructures face
major limitation as they are either insecure or inconvenient if they require manual logins. To address
these security and accessibility challenges, many Wi-Fi networks are now integrating with Identity
Providers (IDP) and Access Network Providers (ANP). The IDP securely manages user identities
and credentials, enabling more reliable and secure Wi-Fi access using user authentication, while
the ANP manages network resources. OpenRoaming is a federation that enables easy Wi-Fi access
across IDPs and ANPs.

The goal of this project is to evaluate how e-ID, the Belgian electronic identity card, can become
an IDP in the OpenRoaming federation so that citizens can get seamless and secure Wi-Fi access
using their e-ID credentials. This integration enables citizens who authenticate with their e-ID
credentials via a mobile application to gain secure Wi-Fi access in government buildings and private
venues without any manual configuration or interaction with their phone’s Wi-Fi settings.

The project consists of three phases: (1) a theoretical study of OpenRoaming, e-ID, and related
technologies, (2) the evaluation of potential approaches to integrate e-ID as an IDP, and finally
(3) the development of a prototype. The components involved in this prototype include (a) a
mobile application for the user to authenticate with e-ID, (b) an access point for managing Wi-Fi
connections and forwarding authentication requests from the users, (c) a AAA server that includes
an EAP/RADIUS server to communicate with the access point and a back-end server that will
communicate with the IDP, and finally, (d) the IDP.

The final prototype demonstrates a secure and user-friendly system in which an Android device,
after successfully being authenticated via the mobile application, seamlessly connects to previously
unknown Wi-Fi networks in a safe environment. This is achieved through a robust configuration
involving WPA2 Enterprise, EAP-TTLS with PAP over a RADSEC tunnel, OpenID Connect, and
the use of certificates across all components.

This project successfully highlights how e-ID can become a reliable IDP in the OpenRoaming
federation, addressing modern connectivity challenges while ensuring a secure user experience.
Keywords: OpenRoaming; e-ID, Identity Provider, Wi-Fi.

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Goal of this project . 3
1.3 Implementation of the prototype: Resources 4
1.4 Roadmap . 4

2 Theoretical Background: OpenRoaming 6
2.1 OpenRoaming . 6
2.2 Wi-Fi and IEEE 802.11 Standards . 7
2.3 Wi-Fi Network Components and Management 8

2.3.1 Wireless local-area network (WLAN) 8
2.3.2 Access Point (AP) . 8
2.3.3 Service Set Identifier (SSID) . 9
2.3.4 Beacon Frames . 9
2.3.5 Wi-Fi Protected Access (WPA) . 10

2.4 OpenRoaming federation . 10
2.4.1 Access network Provider (ANP) . 11
2.4.2 Identity Provider (IDP) . 12

2.5 AAA framework, RADIUS and RADSEC . 13
2.5.1 AAA framework . 13
2.5.2 RADIUS . 14
2.5.3 RADSEC (RADIUS over TLS and TCP) 15

2.6 TLS . 16
2.7 IEEE 802.1X and EAP protocol . 17

2.7.1 User authentication . 19
2.7.2 LEAP . 22
2.7.3 PEAP . 22
2.7.4 EAP-FAST . 24
2.7.5 EAP-TLS . 26
2.7.6 EAP-TTLS . 27
2.7.7 EAP-PPT . 29

2.8 Wireless Broadband Alliance (WBA) . 31

iii

CONTENTS

2.8.1 WBA-based Public key infrastructure (PKI) 31
2.9 Passpoint . 33

2.9.1 Access Network Query Protocol (ANQP) 34
2.9.2 Roaming Consortium Organization Identifier (RCOI) 34

3 Theoretical Background: e-ID 37
3.1 Electronic identification (e-ID) . 37

3.1.1 Multi-factor Authentication . 38
3.2 OAuth 2.0 protocol and OpenID Connect (OIDC) 39

3.2.1 OAuth 2.0 protocol . 39
41section*.18

3.2.2 OpenID Connect (OIDC) . 42
3.2.3 Tokens format . 42

4 Solution investigation 44
4.1 Context for this project . 44
4.2 Device (User’s phone) . 44

4.2.1 Programming language selection . 45
4.2.2 Passpoint profile . 45

4.3 Access Point . 47
4.3.1 Meraki . 47
4.3.2 OpenRoaming considerations: Cisco Spaces 48

4.4 RADIUS Server . 48
4.4.1 Technologies used . 48
4.4.2 EAP method selection . 49

4.5 Auth server . 50
4.5.1 Programming language selection . 50
4.5.2 Database selection . 51

4.6 IDP . 54
4.6.1 Authentication method . 54
4.6.2 Google credentials: Firebase/Google Identity 54
4.6.3 e-ID: FOD BOSA’s FAS . 57
4.6.4 IDP on-boarding . 60

4.7 Final solution . 61

5 Prototype: implementation and demonstration 63
5.1 Source code and other resources . 63
5.2 Device (user’s phone) . 65

5.2.1 MainActivity . 66
5.2.2 AuthScreen . 66
5.2.3 AuthUtils . 67
5.2.4 FMS . 67

iv

CONTENTS

5.3 Access point . 68
5.4 OpenRoaming considerations: Cisco Spaces 69
5.5 EAP/RADIUS server . 70

5.5.1 Certificates generation . 70
5.5.2 RADSEC configuration . 71
5.5.3 EAP module . 73
5.5.4 REST module . 74

5.6 Auth server . 75
5.6.1 Endpoints . 75
5.6.2 Token Handling . 78
5.6.3 External Service: Google OAuth Token Exchange 79
5.6.4 Formats . 79
5.6.5 SSL configuration . 79

5.7 IDP (Firebase, Google) . 80
5.7.1 Firebase set up . 80
5.7.2 Google Identity set up . 81

5.8 IDP (BOSA, e-ID) . 82
5.9 Demonstration . 82
5.10 Use-cases . 90

6 Conclusion 92
6.1 Possible improvements . 93

Bibliography 95

v

List of Tables

2.1 IEEE 802.11 Wireless LAN based on [69] 8

4.1 EAP types comparison . 49
4.2 Key-Value store database comparison based on [37] [29] 53

vi

List of Figures

1.1 Users’ belief in Public Wi-Fi from [107] . 1
1.2 OpenRoaming federation . 2
1.3 OpenRoaming network: eduroam on-boarding based on [102]. 2
1.4 e-ID as an Identity Provider in the OpenRoaming federation 3

2.1 OpenRoaming federation: on-boarding flow taken from [8] 6
2.2 802.11 LAN architecture taken from [69] 9
2.3 Identity federation with many participants taken from [71] 11
2.4 IDP discovery call flow based on [71] . 12
2.5 Workflow for RADIUS Authentication . 15
2.6 TLS connection process based on [69] . 16
2.7 802.1X Authentication Components . 17
2.8 EAP authentication exchange based on [120] 19
2.9 PAP authentication based on [87] . 20
2.10 CHAP authentication based on [87] . 20
2.11 MS-CHAP authentication based on [87] . 21
2.12 MS-CHAPv2 authentication based on [87] 21
2.13 PEAP message sequences for a successful Authentication via MS-CHAPv2

based on [94] . 24
2.14 EAP-FAST message sequences for a successful Authentication based on [98] 25
2.15 EAP-TLS message sequences for a successful Authentication based on [104] 27
2.16 EAP-TTLS message sequences for a successful Authentication via Tunneled

PAP based on [45] . 29
2.17 EAP-PPT message sequences for a successful Authentication taken from [99] 30
2.18 Asymmetric Encryption process based on [36] 32
2.19 OpenRoaming federation architecture: WBA-based PKI taken from [8] . . . 33
2.20 OpenRoaming RCOI format based on [136] [113] 35
2.21 IDP profile and ANP matching scenarios taken from [113] 36

3.1 e-ID-based PKI taken from [38] . 37
3.2 OAuth 2.0 flow and the interaction between the four roles based on [57] . . 40
3.3 Tokens usage based on [57] . 41
3.4 structure of a JWT based on [7] . 43

vii

LIST OF FIGURES

4.1 OpenRoaming: Components of the project 44
4.2 Home page: summary of the clients . 48
4.3 SSID overview with their configuration and computer Wi-Fi settings dis-

playing them . 48
4.4 Meraki dashboard overview [20] . 48
4.5 Key-value store: concept . 52
4.6 The authorization sequence with Google APIs that use the OAuth 2.0

protocol, taken from [34] . 55
4.7 The authorization sequence with BOSA APIs that use the OAuth 2.0

protocol, taken from [44] . 58
4.8 OpenRoaming: Components of the project and associated technologies and

softwares . 61
4.9 Final solution: EAP-TTLS with PAP over RADSEC taken from [27] and slightly

modified to suit this project . 62

5.1 User interface for authentication with two buttons, one for Google and the
other for e-ID . 65

5.2 Wifi suggestion pop-up to add the Passpoint profile 65
5.3 Screenshots of the mobile application . 65
5.4 SSID Test1 configuration page for access control 68
5.5 SSID Test1 configuration page for access control: RADIUS server configuration 68
5.6 Meraki dashboard overview [20] . 68
5.7 The TLS Tunnel establishment, taken from [18] 68
5.8 The TLS Tunnel establishment between the Meraki AP and the RADIUS server 69
5.9 OpenRoaming Setup of the Test1 SSID in Cisco Spaces 69
5.10 The Passpoint profile based on the structure described in [6] 78
5.11 The SHA-1 of the signing certificate using the Gradle signingReport com-

mand in Android Studio . 80
5.12 Web client OAuth 2.0 ID from API Console, taken from [5] 82
5.13 Welcome page of the mobile application that allows the user to authenticate 83
5.14 Google screen to authenticate via the FirebaseAuth application 83
5.15 Screenshots of the mobile application . 83
5.16 Logs of the auth server that show the requests to the auth and to the

generateAndroidProfile endpoint . 84
5.17 Pop-up notification to allow suggested Wi-Fi networks 85
5.18 OpenRoaming components summary . 85
5.19 Probe response information for the OpenRoaming-enabled SSID Test1 . . . 86
5.20 Event logs from the meraki access point 86
5.21 EAP Identity exchange in the Access-Request RADIUS message 87
5.22 Access-Request packet from the RADIUS server 87

viii

FIGURES

5.23 The TLS Tunnel establishment between the Meraki AP and the RADIUS
server, in WireShark . 87

5.24 The TLS Tunnel establishment between the Meraki AP and the RADIUS
server, in the FreeRADIUS logs . 88

5.25 Second phase of the EAP-TTLS exchange: the user sends its credentials . . . 88
5.26 REST call by the RADIUS server to the auth server to check the user credentials 89
5.27 Second phase of the EAP-TTLS exchange: the user sends its credentials . . . 89
5.28 Access-Accept packet from the RADIUS server 89
5.29 Event logs from the meraki access point 90
5.30 Screenshot of the user being connected to an OpenRoaming Wi-Fi 90

ix

Listings

4.1 Profile with a username/password credential (EAP-TTLS) taken from [6] [35] 45
5.1 FreeRadius configuration: RADSEC client 71
5.2 FreeRadius configuration: RADSEC configuration 72
5.3 FreeRadius configuration: EAP module/EAP-TTLS 73
5.4 FreeRadius configuration: PAP and EAP configuration 74
5.5 FreeRadius configuration: REST module 74
5.6 FreeRadius configuration: REST configuration 75

x

List of Acronyms

AAA Authentication, Authorization, and Accounting

ANP Access Network Provider

ANQP Access Network Query Protocol

AP Access Point

API Application Programming Interface

BSS Basic Service Set

CA Certificate Authority

CHAP Challenge Handshake Authentication Protocol

CAG Closed Access Group

DNS Domain Name System

EAP Extensible Authentication Protocol

FAST Flexible Authentication via Secure Tunneling

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDP Identity Provider

IP Internet Protocol

LAN Local area network

LEAP Lightweight Extensible Authentication Protocol

NAI Network Access Identifier

OIDC OpenID Connect

PAP Password Authentication Protocol

xi

PEAP Protected Extensible Authentication Protocol

PKI Public Key Infrastructure

RCOI Roaming Consortium Organisation Identifier

REST Representational State Transfer

SSID Service Set Identifier

SSL Secure Sockets Layer

TLS Transport Layer Security

TTLS Tunneled Transport Layer Security

WBA Wireless Broadband Alliance

Wi-Fi Wireless Fidelity

WLAN wireless local-area network

WPA Wi-Fi Protected Access

xii

Chapter 1

Introduction

1.1 Context

The demand for network access is constantly growing these days [123]. When people go out,
they either turn on their mobile data or try to find a public Wi-Fi (section 2.2). Typically,
when connecting to these Wi-Fi, a pop-up page appears and people are asked for a lot of
information before they actually get access to the network. An alternative is to ask for the
Wi-Fi name (called SSID) and the password when people are in a hotel, venue, enterprise,
hospital, or any other location that offers Wi-Fi.

Needless to say, this is neither convenient nor secure, as these wireless networks are
vulnerable to SSID name spoofing [59], network sniffing, and many other security threats.
As can be seen in Figure 1.1, the problem is that one-third of the people connect with a
public Wi-Fi daily. Even worse, almost 40% of the respondents are not concerned about
the security of these Wi-Fi and think they are somewhat safe. The need for a secure and
easy solution is thus a big challenge in this era of smartphone predominance.

Figure 1.1: Users’ belief in Public Wi-Fi from [107]

To address these security and accessibility challenges, many Wi-Fi networks are
integrating with Identity Providers (IDPs) and Access Network Providers (ANPs). The

1

CHAPTER 1. INTRODUCTION

IDP securely manages user identities and credentials, enabling more reliable and secure
Wi-Fi access using user authentication, while the ANP manages network resources and is
the physical link between user’s devices and the network. The relationship between IDPs
and ANPs is critical, as it enables the establishment of federated networks, where users can
authenticate across multiple networks seamlessly.

One of the solutions to manage this relationship between IDPs and ANPs is OpenRoaming
(Section section 2.1), as represented in Figure 1.2. Developed and maintained by a global
alliance called the Wireless Broadband Alliance (WBA) [135], OpenRoaming enables easy
Wi-Fi access between identity providers (IDP) and access network providers (ANP). It
allows users to connect to multiple Wi-Fi networks that are OpenRoaming-capable with a
single initial connection. Once successfully authenticated, users do not need to re-enter
their credentials when moving from one network to another.

Figure 1.2: OpenRoaming federation

OpenRoaming is thus a framework that enables seamless and secure Wi-Fi access
across different networks without requiring users to manually log in each time they change
networks [135]. Its primary goal is to simplify the user experience by enabling automatic
and secure Wi-Fi connections. This is particularly useful in environments such as airports,
shopping centers and government buildings where users frequently move between different
networks.

A well-known example of an OpenRoaming-enabled Wi-Fi network is the eduroam
[127] [3] service, widely used in academic institutions, as shown in Figure 1.3. It is a wide

Figure 1.3: OpenRoaming network: eduroam on-boarding based on [102].

infrastructure including 28000 wired connection points and 1900 Wi-Fi access points [102].
Eduroam allows students, researchers, and staff to connect securely to the Wi-Fi network
of any participating institution without needing to re-enter their credentials. For instance,
a university student authenticated on their home campus can visit another university,

2

CHAPTER 1. INTRODUCTION

possibly in a different country, and automatically connect to the local eduroam network.
This eliminates the need for manual logins, providing both convenience and security, even
in unfamiliar locations.

1.2 Goal of this project

As mentioned above, OpenRoaming is based on an Identity federation with Access Network
Providers (ANP) and Identity Providers (IDP) as members.

The goal of this project is to evaluate how e-ID, the Belgian electronic identity card,
can become an IDP in the OpenRoaming federation, as can be seen in Figure 1.4, so that
citizens can get seamless and secure Wi-Fi access using their e-ID credentials in government
buildings or in private venues that want to offer connectivity to citizens.

Figure 1.4: e-ID as an Identity Provider in the OpenRoaming federation

e-ID is a PKI-based solution that assigns authentication and signing certificates to
citizens. The private keys of these certificates are securely stored on the chip card of
the citizen’s identity card. These certificates can be used to authenticate to government
services or other services (e.g. banks) that accept the citizen’s identity. The e-ID identity
management solution supports OpenID Connect (OIDC) to authenticate to these web
services. The e-ID can also be used to bootstrap 2-factor authentication using applications
such as myGov [109] or Itsme [11].

The project consists of 3 phases:

1. The study phase: It consists of a theoretical study of OpenRoaming, e-ID and related
technologies.

2. The solution investigation: This phase evaluates the potential approaches for inte-
grating e-ID as an IDP, ranging from direct integration with EAP-TLS to a proxy
between EAP and OIDC. It should also evaluate client-side approaches and possible
integration with myGov application. Other aspects will also be evaluated, such as
the choice of database and programming language.

3. The prototype: The final phase highlights the development of a demonstrable proto-
type of an e-ID IDP and a client that authenticates with e-ID credentials.

3

CHAPTER 1. INTRODUCTION

My personal contributions to this project include the 3 phases mentioned above, i.e. an
in-depth study of the OpenRoaming technologies as well as the e-ID principles, then work
towards a concept for a reliable solution to integrate e-ID as an IDP in the OpenRoaming
federation, and finally implement this solution.

Through this work, several components are essential. It includes a mobile application for
users to be able to authenticate with e-ID, an access point to manage the Wi-Fi connection
and forward authentication requests, an AAA server that includes an EAP/RADIUS server
and a back-end server to authenticate users and manage communication with an IDP, and
finally the IDP.

The final prototype is a device that, after downloading the mobile application and
successfully authenticating with the IDP, is able to seamlessly connect to a Wi-Fi that it
had never visited before, while remaining in a safe environment.

1.3 Implementation of the prototype: Resources

The implementation of the prototype and various other resources is hosted in a gitlab
directory:

https://gitlab.uliege.be/Marie.Maes/openroaming

A video demonstrating the whole solution is available at the following link:

OpenRoaming thesis - Demo and progress (Marie Maes)-20241219 1405-1.mp4

The solution presented in this video uses Google credentials instead of e-ID credentials.
This is because integration with the e-ID IDP requires a special setup that should have
been provided by the IDP providers. Unfortunately, it was not possible for them to do
so in time for the delivery of this project. These credentials work almost identically, so
switching from one authentication method to another is not a big adjustment.

1.4 Roadmap

The remainder of this report is divided into 4 chapters.
The chapter 2 discusses all the theoretical background required about OpenRoaming

for this thesis. In particular, it focuses on Wi-Fi, OpenRoaming, identity providers (IDP)
and related technologies.

The chapter 3 discusses the e-ID authentication method and related protocols. It
focuses on e-ID, OAuth 2.0, OIDC and tokens.

The chapter 4 reviews the possible approaches available to implement the final solution,
including the best EAP method for this use case and how to integrate e-ID.

The chapter 5 focuses on the implementation characteristics and peculiarities of the
prototype.

4

https://gitlab.uliege.be/Marie.Maes/openroaming
https://mseduculiegebe-my.sharepoint.com/:v:/g/personal/marie_maes_student_uliege_be/EaXOccveMkJPl4hKcOZVH_4BjZO7yJjZnGzWQXEpQpMBrA

CHAPTER 1. INTRODUCTION

Finally, a conclusion will be drawn about this work and its possible improvements in
chapter 6.

5

Chapter 2

Theoretical Background: OpenRoaming

This chapter describes OpenRoaming and related technologies in more details to provide a
foundation for the subsequent phases of this project.

2.1 OpenRoaming

The OpenRoaming [136] federation, as depicted in Figure 2.1, is composed of a few key
components that interact with each other to enable secure and seamless Wi-Fi roaming. A
reminder about Wi-Fi is given in section 2.2 and section 2.3.

OpenRoaming is developed and maintained by the WBA, an Alliance that will be
described in section 2.8.

Figure 2.1: OpenRoaming federation: on-boarding flow taken from [8]

First, a device (for example, a smartphone) will automatically discover Wi-Fi networks
that are PassPoint-enabled. The device uses the Access Network Query Protocol (ANQP)
[112] to discover network details, including supported authentication methods and the
identity of the network operator. The ANQP protocol is used in the Passpoint service

6

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

to help connect seamlessly. Passpoint technology and ANQP protocol are explained in
section section 2.9.

For this thesis, the authentication method will be e-ID, which is described in section 3.1.
This authentication method supports OpenID Connect (OIDC), described in section 3.2.

Once the ANQP protocol discovers the network, it triggers the 802.1X [100] [70]
authentication process to ensure that only authorized users can access the network. The
802.1X protocol relies on the Extensible Authentication Protocol (EAP) [120] to perform
secure authentication between a supplicant (e.g., a user’s smartphone) and an authentication
server. The section 2.7 clarifies the 802.1x standard and the EAP protocol.

Note that there are several EAP types, but in the OpenRoaming case, EAP-TTLS [45]
[8], which leverages TLS, is often selected. TLS [69] [95] is explained in section 2.6 and
EAP-TTLS in section 2.7, along with other EAP types.

Figure 2.1 then represents the physical Wi-Fi infrastructure provided by the Access
Provider (e.g., an airport, hotel, or ISP). This physical infrastructure includes the Wi-Fi
Access Point (AP) to which users connect for internet access. The network is secured by
enterprise security protocols, and more specifically the WPA2 Entreprise [101] protocol.
Typically, with WPA2 Enterprise, an authentication server is used. It is usually a RADIUS
server that is used to authenticate users and devices. The Access Providers and the WPA2
protocol are described in section 2.3. RADIUS concepts are explained in section 2.5.

After that, to ensure that the user can connect seamlessly, the Wi-Fi Access Network
needs to be part of the OpenRoaming federation as an Access Network Provider (ANP).
Once it has joined the federation, it can participate in the OpenRoaming network, allowing
its users to roam between different Wi-Fi networks easily.

The Federation also need on-boarded Identity Providers (IDP) to manage user authen-
tication. Indeed, authentication requests are routed through the OpenRoaming federation
to the appropriate IDP, which then verifies the user’s credentials and grants access to
the network. The details about the federation are presented in section 2.4 along with the
concepts related to ANP’s and IDP’s.

2.2 Wi-Fi and IEEE 802.11 Standards

As Wi-Fi [125] and the IEEE 802.11 Standards [130] are the heart of this project, this
section will briefly review these concepts [49] [70].

Wi-Fi is a wireless networking technology that allows devices to communicate over
a wireless signal. It is based on the IEEE 802.11 standards that define the technical
specifications for wireless local area networks (WLANs) and is widely used in local area
networks (LAN). Wi-Fi operates on different channels that are at different frequencies,
usually 2.4 and 5 GHz.

Table 2.1 shows the key versions of the Wi-Fi generations.

7

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

IEEE 802.11 standards Year
Max data rate

(Mb/s)
Range
(m)

Frequency
(GHz)

802.11b 1999 11 30 2.4
802.11a 1999 54 30 5
802.11g 2003 54 30 2.4

802.11n (Wi-Fi 4) 2009 600 70 2.4, 5
802.11ac (Wi-Fi 5) 2013 3470 70 5
802.11ax (Wi-Fi 6) 2021 14000 70 2.4, 5

802.11-2012 2012 54 2.4, 5

802.11af 2014 35-560 1000
unused TV bands

(54-790 MHz)
802.11ah 2017 347 1000 900 MHz

Table 2.1: IEEE 802.11 Wireless LAN based on [69]

Also note that the IEEE 802.11u standard published in 2011 (which is included in
802.11-2012) will be used for SSID discovery and selection as it defines the Access Network
Query Protocol (ANQP). ANPQ will be discussed in subsection 2.9.1.

2.3 Wi-Fi Network Components and Management

This section dives into some of the important Wi-Fi Network Components [70] that will
be used for this project.

2.3.1 Wireless local-area network (WLAN)

A Wireless local-area network (WLAN) [22] is a wireless network that allows wireless devices
like smartphones, laptops, and other Wi-Fi-enabled devices to connect and communicate
between each other and with wired infrastructures. A WLAN is a limited area like a home,
office, or school and operates under Wi-Fi standards.

2.3.2 Access Point (AP)

Access Points (AP’s) are essential components of Wi-Fi networks as they are the link
between the wireless and the wired networks. It allows devices to connect to the wired
infrastructure.

8

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.2: 802.11 LAN architecture taken from [69]

Figure 2.2 illustrate the 802.11 LAN architecture. The wireless host along with the AP
form a Basic Service Set (BSS), also called a cell. These cells are connected from an AP to
a router or a switch that then connects them to other cells and to the wired Internet.

AP’s role is thus to allow wireless devices to connect to anything outside of their cell.

2.3.3 Service Set Identifier (SSID)

The Service Set Identifier (SSID) is a unique identifier assigned to a Wi-Fi network. It
serves as a Wi-Fi network’s "name" and is used to distinguish one wireless network from
another. When a device (e.g., a smartphone) scans for available networks, it receives a
list of SSID’s from nearby access points. Users can then select the appropriate SSID to
connect to the desired network. The screen on the left in Figure 1.3 shows a list of SSIDs,
including eduroam, to which the user is connecting.

When a device arrives in a BSS, it needs to associate with an AP as this will be its link
to the wired infrastructure. The AP’s are used to broadcast a wireless signal containing
an SSID so that devices can connect to it.

2.3.4 Beacon Frames

Beacons are a type of management frame in IEEE 802.11 networks, transmitted periodically
by an AP to announce the presence of a wireless network. These beacon frames contain
essential information about the network, including the SSID, supported data rates, and
other network capabilities and details.

In the context of OpenRoaming, beacon frames play an additional role by advertising
the Roaming Consortium Organization Identifier [136] [113] (RCOI), which signals that
the AP is OpenRoaming-capable. RCOI’s also allow to enforce different policies in the
OpenRoaming federation. Depending on the RCOI, a user will be automatically rejected if
he does not match the policy. The RCOI is provisioned via the OpenRoaming Passpoint
profile and will thus be explained in more depth in the Passpoint section (section 2.9).

9

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

2.3.5 Wi-Fi Protected Access (WPA)

Wi-Fi Protected Access (WPA) [101] is a wireless security protocol developed by the Wi-Fi
Alliance [125] to secure wireless networks. It provides robust encryption and authentication
mechanisms to protect data transmitted over Wi-Fi networks, as these networks are
unsecure channels.

The first version of WPA uses TKIP (Temporary Key Integrity Protocol) [132] as
the encryption method. TKIP dynamically changes its key after they are used to encrypt.
This ensures that a stolen key cannot be used for too long. WPA is now outdated as it has
some limitations and vulnerabilities. Instead, WPA2 is used.

WPA2 [101][133] (IEEE 802.11i standard) provides stronger security by using a stronger
encryption method than TKIP called AES [36][48] (Advanced Encryption Standard). AES
uses a symmetric encryption algorithm [36] that is resistant to brute-force attacks. WPA2
supports two types of authentication modes:

• WPA2-Personal (WPA2-PSK): This mode uses a pre-shared key as a shared secret
for authentication between the client and the access point. No AAA server is involved.
When a user wants to get access to the network, he simply needs to enter the
pre-configured password.

• WPA2-Enterprise: Typically, an AAA server is used (usually a RADIUS server). WPA2-
Enterprise supports various EAP methods to provide secure user authentication and
dynamic key generation. AAA servers are explained in section 2.5.

One of the key components of WPA2 is the Pairwise Transient Key (PTK). The PTK is
derived during the WPA2 authentication process through a four-way handshake between the
client and the access point using the EAPOL [86] [119] (Extensible Authentication Protocol
over LAN) protocol. EAPOL is briefly explained in section 2.7. In WPA2-Enterprise, a
Master Session Key (MSK) is generated during the EAP authentication phase between the
client and the RADIUS server. The MSK is then used to derive the PTK and the PTK will
be used with AES to encrypt data, ensuring secure data transmission.

2.4 OpenRoaming federation

The OpenRoaming federation is the core of the OpenRoaming architecture [136]. It is a
federation of trusted IDP’s and ANP’s that enables seamless authentication and roaming
between different Wi-Fi networks. IDP’s and ANP’s are combined under a same PKI-based
trust architecture. The goal is to bring together a network of Wi-Fi networks [61], as
shown in Figure 2.3. It also has a certificate authority and a revocation service running on
openroaming.org.

The federation provides dynamic discovery based on DNS, and TLS-based [95] authenti-
cation and encryption, based on WBA-managed PKI which is described in subsection 2.8.1.
Once an ANP has discovered a serving IDP for a user, and the ANP and IDP have mutually
authenticated each other, the federation supports TLS-based services such as authentication,

10

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

accounting, settlement and metric exchange. In principle, any protocol can run across
the federation, but in practice, the Extensible Authentication Protocol (EAP, explained in
section 2.7) is used for network authentication. EAP can be leveraged to authenticate many
credentials such as username/password, certificate, SIM card, token, etc. In this project,
e-ID credentials will be used. e-ID will be explained in more details in section 3.1.

Figure 2.3: Identity federation with many participants taken from [71]

When a user connects to an OpenRoaming-enabled ANP, its device authenticates them
with their IDP via the federation, which facilitates secure and trusted authentication
without the user needing to log in manually.

TLS is used to protect the data in transit between the Access Network (ANP) and
the Identity Provider (IDP). It ensures that sensitive information, such as authentication
credentials, is encrypted during transmission. Before data exchange, the ANP must discover
which IDP to use for a given user. The network uses DNS to find out which IDP is responsible
for authenticating a user based on their domain or credentials. DNS also plays a role in
routing authentication requests by resolving the domain name of the user IDP. This is part
of the IDP discovery process.

2.4.1 Access network Provider (ANP)

An Access Network Provider (ANP) [136] in the OpenRoaming framework is an entity
that operates a Wi-Fi network and provides users with internet access. To become an
OpenRoaming ANP, an organization must apply to the Wireless Broadband Alliance (WBA)
and agree to the terms of the OpenRoaming legal contract.

After receiving the certificate, the ANP configures its access points with the OpenRoaming
Roaming Consortium Organization Identifier (RCOI). The RCOI is a global identifier
advertised in beacons sent by AP’s, indicating that the network is part of the OpenRoaming
framework, and is described in more depth in subsection 2.9.2. This configuration allows
mobile devices to easily discover and connect to the ANP’s network.

ANP’s then handles the on-boarding of mobile devices, which involves creating Wi-Fi
profiles that enable devices to auto-connect to Wi-Fi networks. This can be done using the
Passpoint mechanism (explained in section 2.9). When a device receives an OpenRoaming
profile from an IDP, it can discover nearby OpenRoaming Wi-Fi networks through the
RCOI. The device then starts a secure authentication process with the ANP using the
information from the OpenRoaming profile.

11

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

2.4.2 Identity Provider (IDP)

An Identity Provider (IDP) [136] in the OpenRoaming framework is an entity that manages
the identity and privacy of users. It authenticates the users with the given credentials
and returns an authentication token upon successful authentication. It should also include
OpenRoaming-related information called RCOI in the Passpoint profile of its users.

Any IDP should be on-boarded to become a member of the OpenRoaming federation
[16]. Indeed, it needs to register with the OpenRoaming Domain Name System (DNS) to
ensure that the associated realms are able to be discovered by the ANP’s.

IDP discovery process [134]

Realms are part of the Network Access Identifier (NAI) [10]. NAI is a standardized identifier
for users trying to get access to a network. The NAI structure consists of a username
(or an anonymous identifier if the user wishes to remain anonymous) followed by an "@"
symbol and a realm (e.g., username@realm.com).

In the OpenRoaming context, the NAI allows networks to identify where to forward
authentication requests, ensuring that they reach the correct IDP. For example, the NAI
user123@exampleidp.com is used as user identification (user123) and to route the authen-
tication request to the right IDP (exempleidp.com).

In order to achieve this objective, NAPTR [72] and SRV [56] DNS records will be
used. A NAPTR (Naming Authority Pointer) record is a type of DNS record that helps to
dynamically discover services by specifying the preferred service, protocol, and additional
lookup records. It defines rules that allow the system to find additional records (usually
SRV records) needed to contact the right service. An SRV record is another type of DNS
record that is used to specify the exact server and port where a specific service is hosted.
SRV records identify the hostname (fully qualified domain name [129]) and port of the
server that provides a particular service.

Figure 2.4: IDP discovery call flow based on [71]

12

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

As shown in Figure 2.4, 3 main queries are performed to discover the IDP:

1. The NAPTR Query: When the ANP receives an authentication request from a user
(e.g., user123@exampleIDP.com), it extracts the realm (exampleIDP.com) from
the user’s NAI. The ANP sends an NAPTR query for the realm exampleIDP.com to
discover which service and protocol to use when connecting to the IDP. The IDP’s
DNS server responds to the NAPTR query by providing a protocol and SRV record.
The protocol tells the ANP how to communicate with the IDP’s server.

2. The SRV Query: Using the protocol information, the ANP then sends an SRV query
to find the exact server that provides the service for exampleIDP.com. The SRV
query response returns the fully qualified domain name (FQDN) of the server along
with the port number. This allows the ANP to locate the IDP authentication server
precisely.

3. The FQDN Query: The ANP performs a DNS lookup for the FQDN received in the
SRV response to get the IP address of the IDP server. The DNS server returns the
IP address of the AAA server of the IDP, enabling the ANP to establish a connection
with the IDP for the user’s authentication request.

2.5 AAA framework, RADIUS and RADSEC

This section explains in more depth what is the AAA framework, RADIUS and RADSEC [111].
AAA (Authentication, Authorization, and Accounting) ensures secure access to network
resources by verifying user identities, managing permissions, and tracking activity and
metrics. RADIUS is a widely used protocol within this framework that relies on the unreliable
UDP protocol. RADSEC improves RADIUS by leveraging TLS and TCP, providing encryption
and reliable delivery, which improves security for modern networks.

2.5.1 AAA framework

AAA [13] stands for Authentication, Authorization, and Accounting and is a framework
that helps manage users and their access to a network based on the user identity and the
network policies implemented. It also helps keep track of user activity.

The first component of the framework is the authentication. It helps authenticating a
user via credentials such as username and password to verify the identity of the user.

If the user is correctly authenticated, the second component of the framework, Au-
thorization enters the scene. Its purpose is to grant some privileges to the user. These
privileges include what the user is allowed to do and which resources and services he can
access.

The last component is accounting. It is used to log the user’s activity, for example,
which resources were used and for how long. This tracking can be used for billing or
building statistics.

13

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

2.5.2 RADIUS

Remote Authentication Dial-In User Service (RADIUS) [96] is an implementation of the
AAA framework. RADIUS is a client-server protocol that is used to authenticate, authorize
and account users.

There are 4 main types of RADIUS packets:

1. Access-Request: It is sent to the RADIUS server when a client initiates the authen-
tication process and can contain information such as the username and password of
the user.

2. Access-Accept: It is used when the RADIUS server grants access to the network to
the user.

3. Access-Reject: It denies the user access to the network.

4. Access-Challenge: It is sent by the RADIUS server in response to an Access-Request
if the request requires additional information from the user to accept it. Access-
Challenge is often triggered by protocols such as EAP (Extensible Authentication
Protocol) [45], which can require multiple message exchanges between the client
and the RADIUS server for successful authentication [12]. EAP will be described in
section 2.7.

As confidential information such as passwords can be transmitted via the RADIUS
protocol, some mechanisms are implemented to secure the RADIUS communication, such
as a secret. The RADIUS secret is a shared password that must be configured identically on
both the RADIUS client and the RADIUS server and is never transmitted over the network.
Instead, it is used to verify the authenticity of each device. When a RADIUS client sends an
Access-Request to the RADIUS server, it includes an Authenticator field that is encrypted
using the RADIUS secret. The RADIUS server then uses the shared secret to decrypt and
verify the Authenticator, confirming that the request came from a trusted client. The
RADIUS secret is used to encrypt sensitive parts of RADIUS packets, particularly the user’s
password in Access-Request packets.

Typically, users do not connect directly to the RADIUS server, but rather to an AP
that is the link between the users and the RADIUS server. The AP is then responsible for
routing authentication requests from the users to the server. A typical RADIUS flow is
shown in Figure 2.5.

14

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.5: Workflow for RADIUS Authentication

The client initiates the connection through an access point that then sends an Access-
Request packet with the user’s identity information (such as a username) to the RADIUS
server. The RADIUS server can then determine that further information (like a password
or encrypted credentials) is needed to complete the authentication and responds with an
Access-Challenge packet. The client provides the requested information (e.g., password,
certificate) in response to the challenge via a new Access-Request packet sent back to the
RADIUS server. The RADIUS server then verifies the credentials from the second Access-
Request and valid them or not. If valid, the AP grants network access to the user.

2.5.3 RADSEC (RADIUS over TLS and TCP)

A weakness of the RADIUS protocol is that is runs on the unreliable transport protocol UDP
[1]. This lack of reliability can be problematic in network environments where security and
reliability are critical, such as the authentication process in the RADIUS environment.

To address these issues, RADSEC (RADIUS over TLS and TCP) [126] [55] was introduced.
RADSEC uses TLS (Transport Layer Security) [95] and TCP (Transmission Control Protocol)
[2] to add encryption and reliable transport to RADIUS communications. Indeed, TLS
provides strong encryption, ensuring data confidentiality and integrity, while TCP, unlike
UDP, enhances reliability as it guarantees packet delivery and maintains packet order. A
well-known service that uses RADSEC is the roaming environment eduroam [127] [3].

The default destination port number for RADSEC is 2083. RADSEC works in the same
way as RADIUS, but first establishes a TCP connection. After the TCP handshake is done,
a TLS session is negotiated. TLS is explained in more details in section 2.6. The server
certificate is thus validated by the client assuming that the client is configured to trust the
CA that signed the server certificate. This prevents wireless devices from connecting to a
malicious server.

15

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

2.6 TLS

The TLS [69] [95] protocol, as can be seen on Figure 2.6, is a protocol on top of TCP that
provides security and data integrity, usually between a client and a server.

Figure 2.6: TLS connection process based on [69]

After a successful TCP connection between the client and the server using the three-
way handshake (SYN, SYN-ACK, and ACK), there are four phases to the TLS Handshake
Protocol [69]:

1. Establish Security Capabilities: the client and server negotiate the cryptographic
parameters they will use during the session using the ClientHello and ServerHello
messages. This will allow them to select a common cryptographic algorithm.

2. Server Authentication (and Key Exchange): The server sends its certificate to
the client who will check its validity. In some cases, the server may also send a
ServerKeyExchange message that contains additional information for the key ex-
change. Once the server has completed these steps, it sends a ServerHelloDone
message to notify the client that it has finished.

3. (Client Authentication and) key exchange: If the server has requested client authenti-
cation (which is optional), the client may send its certificate to the server. The client
then generates a pre-master secret (PMS), encrypted with the server’s public key
and sends it as a ClientKeyExchange message.

16

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

4. Finish: It starts with a ChangeCipherSpec message from both the client and the
server that indicates that everything is now encrypted and that integrity is protected.
Both of them then send a Finished message that is encrypted and that verifies that
the key exchange and authentication processes were successful.

After the TLS handshake is completed successfully, the encrypted channel is ready for
application data exchange. An Alert message (from the TLS Alert Protocol) can be sent to
report errors or notify the closure of the TCP connection.

2.7 IEEE 802.1X and EAP protocol

802.1X [100] [70] is a set of standards specified for Wi-Fi, and works using a three-part
framework, whose components are represented on Figure 2.7:

• The supplicant: The device (for example, a smartphone) that is trying to access
the network and therefore must provide its credentials to the authenticator.

• The authenticator: The access point (AP) that requests the credentials of the
supplicant and that manages communication between the supplicant and the authen-
tication server.

• The authentication Server: An AAA server that stores and manages the credentials
for users. Typically, it is a RADIUS server that is responsible for validating the user
credentials and granting or denying access.

Figure 2.7: 802.1X Authentication Components

Between the suppliant and the authenticator, EAPOL [86] [119] is used, while between
the authenticator and the authentication server, RADIUS is used. EAPOL is used in wired and
wireless networks to facilitate communication between a supplicant and an authenticator
as it encapsulates EAP messages and transports them over Ethernet frames (EAPOL-
EAP packet). Other types of packets can also be used for initiating user authentication
(EAPOL-Start packet), and for key management in WPA2 (EAPOL-Key packet).

The 802.1X protocol relies on the Extensible Authentication Protocol (EAP) [120] to
perform secure authentication between a supplicant and an authentication server.

There are 4 types of EAP packets:

1. Request: Sent by the authenticator to the client to request some information

2. Response: Sent by the client to provide some information to the authenticator

17

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

3. Success: Sent by the authenticator to the client to notify the client that he is
authenticated successfully

4. Failure: Sent by the authenticator to the client to notify the client that he cannot
be authenticated

The EAP exchange is shown in Figure 2.8. The client begins the authentication process
by sending an EAPOL-Start message to the access point. The access point responds
to the client with an EAP-Request for Identity and the client responds with an EAP-
Response/Identity, sending its identity to the access point. The access point forwards
the client’s EAP-Response/Identity to the RADIUS server by encapsulating it in a RADIUS
Access-Request message. The access point essentially passes the EAP message through to
the RADIUS server. The RADIUS server processes the identity and sends an EAP-Request in
the form of a RADIUS Access-Challenge message back to the access point. This challenge
starts an EAP authentication exchange. The client responds to the challenge with an EAP-
Response, which may contain additional authentication information, such as a password
or a response to a challenge. Depending on the type of EAP authentication method used,
this challenge step might be repeated as many time as needed. Once the RADIUS server
has verified the client’s identity, it sends an EAP-Success message within a RADIUS Accept
message to the access point and the access point forwards the EAP-Success message to the
client, indicating that authentication has been successfully completed.

18

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.8: EAP authentication exchange based on [120]

EAP is able to carry a lot of different user authentication methods (known as EAP
types), such as LEAP, EAP-FAST, PEAP, EAP-TLS, and EAP-TTLS. For the OpenRoaming setup,
EAP-TTLS is often selected due to its balance between security, scalability and flexibility
[137] [127]. For this project, the EAP method selected will be discussed in section 4.4.2. Let
us first dive into the different methods and their characteristics.

2.7.1 User authentication

In many EAP methods, some inner user authentication protocols such as PAP, CHAP, and
MS-CHAPv2 are commonly used to verify a client’s identity. These protocols provide
a way to securely authenticate the user by exchanging credentials within an encrypted
channel, ensuring that only authorized users get access to the network. Originally devel-
oped for the use in PPP (Point-to-Point Protocol) [106] connections, which enable direct
communication between two nodes, these authentication protocols are necessary to secure
network authentication. Let us focus on them before explaining the different EAP methods.

19

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

PAP

Figure 2.9: PAP authentication based on [87]

The Password Authentication Protocol (PAP) [105] is the simplest authentication protocol
used to authenticate a supplicant (that is, the client) within the EAP exchange. The
supplicant sends its username and password (referred to as an Id/Password pair) in
plaintext to the authenticator, which then passes these credentials to the authentication
server. This simple method allows the server to verify the provided credentials against its
user database and either accepts or rejects the connection. This is thus a simple 2-way
handshake. PAP by itself is not a strong authentication method as the password are sent
in plaintext and its utilization is expected to be done within a secure environment, such
as a TLS tunnel.

However, security mechanisms are implemented. In certain configurations, PAP can be
adapted to improve security by using a one-way hash. Instead of sending the plaintext
password, the supplicant hashes the password using a cryptographic hash function and
transmits this hash as the credential. The authentication server stores the hashed version
of each user’s password in its database. When it receives the hashed password from the
supplicant, it directly compares it with the stored hash value to authenticate the client.
This approach ensures that the actual password is never transmitted, and only the hash is
exchanged [87].

CHAP

Figure 2.10: CHAP authentication based on [87]

Challenge-Handshake Authentication Protocol (CHAP) [105] is a protocol that is consid-
ered more secure than PAP because it does not transmit passwords in plaintext. CHAP
uses a challenge-response process, which is often described as a three-way handshake to
authenticate users.

When a client (supplicant) initiates a connection, the authenticator generates a unique
challenge and sends it to the client. The client then combines the received challenge with
its password to compute a hash value. This hash value is sent back to the authenticator.

20

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Upon receiving the response, the authenticator retrieves the stored client password
from its database and performs the same hashing operation using the received challenge
and the stored password. If the hash values match, the client is authenticated successfully.

To perform this comparison, CHAP therefore requires the authenticator to retrieve
the client’s password from storage to compute the expected response. Because CHAP’s
challenge-response mechanism relies on combining the challenge with the actual client’s
password (or its hash), two-way encryption is necessary for the authenticator to get access
to the stored password securely.

MS-CHAP and MS-CHAP-V2

Microsoft Challenge-Handshake Authentication Protocol (MS-CHAP) [139] and its im-
proved version, MS-CHAPv2 [138], are authentication protocols developed by Microsoft
to address some of the security limitations of CHAP and are often used in environments
that require compatibility with Windows systems (but are also supported on Linux and
macOS).

MS-CHAP

Figure 2.11: MS-CHAP authentication based on [87]

MS-CHAP is based on the basic CHAP challenge-response mechanism, except that it
uses a variant of the MD4 hash instead of MD5, and the responses are encrypted with
DES. MS-CHAP has known vulnerabilities [87] such as offline dictionary attacks, and
lacks mutual authentication, meaning only the client is authenticated, not the server. This
version is no longer used and MS-CHAPv2 is preferred.

MS-CHAPv2

Figure 2.12: MS-CHAPv2 authentication based on [87]

MS-CHAPv2 is similar to CHAP, but introduces mutual authentication in addition. When
the client receives the challenge from the server, it combines the server’s challenge, the

21

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

client’s challenge, and the hashed password to create a response. It then sends back the
username, the client challenge, and the response to the server. The server retrieves the
hashed password associated with the username from its database but does not directly
compare it to the response from the client. Before, it hashes the database hash using
a hash of the username, client challenge and server challenge via several cryptographic
steps that are not detailed here. The server compares the result of its encryption with the
response received from the client. If they match, the authentication is successful.

2.7.2 LEAP

LEAP (Lightweight Extensible Authentication Protocol) [121] [67] is a Wi-Fi authentication
mechanism developed by Cisco. LEAP is considered lightweight as it does not use any
certificate on the client or server side. It authenticates users through a username and
password that must be validated before the user gets access to the network.

Concerning its security, LEAP uses mechanisms such as Wired Equivalent Privacy
(WEP) [101] which uses dynamic keys that prevent an attacker from using a stolen key
indefinitely. Despite this, WEP is the ancestor of WPA and WPA2 and is now considered
obsolete as it presents huge security vulnerabilities. Indeed, LEAP is prone to dictionary
attacks [36] which is a type of brute-force attack where the goal is to try all possible
passwords until you get a match. As LEAP transmits cleartext usernames and encrypted
passwords, an attacker can simply intercept them and perform a dictionary attack on the
encrypted password until he gets a match.

Although obsolete, LEAP is sometimes used for its simplicity for applications that do
not require security mechanisms at all.

2.7.3 PEAP

PEAP (Protected Extensible Authentication Protocol) [67] [91] [94] is a more secure
alternative to LEAP as it uses an encrypted TLS tunnel and certificates on the server side.
This protects the exchange against offline dictionary attacks.

PEAP establishes a secure TLS tunnel between the supplicant and the authentication
server. It requires a server-side PKI certificate to create this tunnel so that public key of
the server can be used for encryption.

Figure 2.13 shows the PEAP message sequence for successful authentication using
MS-CHAPv2, as this is a common inner authentication for PEAP. Note that the sequence
of messages remains the same if CHAP or MS-CHAPv1 were used as the specifics of the
inner EAP method are encapsulated within the secure TLS tunnel and is represented by the
EAP-Response/Identity and EAP-Response/Inner EAP messages. The format of the exchange
is thus made generic as CHAP, MS-CHAPv1 and MS-CHAPv2 all use the same schema of
a connection request (EAP-Response/Identity) from the client, a challenge and a response
to this challenge (EAP-Response/Inner EAP) from the client.

22

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

As soon as the client has initiated the connection, EAP is started with the authenticator
sending an EAP-Request/Identity packet to the client. The client responds with an EAP-
Response/Identity message containing its identity. This identity is typically in the form
of a username or a network access identifier (NAI). The NAI is used to identify the
client and may also indicate the realm or domain to which the client belongs (e.g.,
user123@exampleidp.com). The realm can be used by the authentication server to route
the authentication request to the appropriate domain. The authenticator forwards the
EAP-Response/Identity to the server as part of a RADIUS Access-Request message. The EAP
conversation in PEAP involves two phases:

• Phase 1: Establishing a Secure Tunnel (TLS Handshake). This phase es-
tablishes a secure encrypted TLS tunnel between the client (supplicant) and the
authentication server (RADIUS server). During this phase, TLS is used to authenti-
cate the PEAP server with the client, as already seen in section 2.6. EAP packets are
exchanged between the client and the PEAP server through the access point (authen-
ticator), which simply forwards these packets without modification. This exchange
completes the TLS handshake, establishing a secure encrypted tunnel between the
client and the PEAP server. Once the TLS handshake is complete, the remainder
of the communication, including the inner authentication phase, occurs within this
secure tunnel.

• Phase 2: Inner Authentication (MS-CHAPv2). After the TLS tunnel is es-
tablished, PEAP proceeds to the inner authentication phase, where the client is
authenticated using MS-CHAPv2 on the secure tunnel. The client starts by sending
an EAP-Response/PEAP message containing its inner identity, signaling the initiation
of inner authentication. In response, the PEAP server issues an EAP-Request with
an MS-CHAPv2 challenge, and the client replies with an MS-CHAPv2 response.
This response includes a hashed version of the client’s credentials. The PEAP server
then verifies the client response against its stored information, such as a hashed
password or credentials located on the AAA server. If the credentials match, the client
is successfully authenticated.

23

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.13: PEAP message sequences for a successful Authentication via MS-CHAPv2 based on
[94]

2.7.4 EAP-FAST

EAP-FAST (Flexible Authentication via Secure Tunneling) [98][67] protocol is designed for
secure network authentication without requiring a server-side certificate, making it faster
than PKI-based methods. Instead, EAP-FAST uses Protected Access Credentials (PACs)
[46] to establish a secure tunnel in Phase 1, which can then be used for authentication
exchanges in Phase 2. The key components in this process are the PAC, Type-Length-Value
(TLV) fields, and EAP-GTC (Generic Token Card).

24

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.14: EAP-FAST message sequences for a successful Authentication based on [98]

25

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

The EAP conversation in FAST involves two phases:
• Phase 1: Establishing a Secure Tunnel., the client and the server establish a

secure tunnel using a PAC, which is a set of credentials shared between the client and
the server. The "opaque PAC" field in the ClientHello message contains encrypted
PAC data, allowing the server to verify the client’s identity and establish trust
without requiring certificates. This exchange ensures that the client and the server
have a shared secret, enabling them to establish a secure tunnel for subsequent
communications. After the PAC is exchanged, a TLS handshake occurs within the
established PAC-based tunnel.

• Phase 2: Inner authentication. TLVs are used in Phase 2 to send different types
of data in a structured way, encapsulated within the secure tunnel. For example, TLV
fields can transmit attributes such as authentication tokens, cryptographic binding
information, and intermediate results. Here, TLVs ensure mutual authentication and
integrity by exchanging and verifying identity-related data.
EAP-GTC is a simple authentication method that is used within the secure tunnel.
It allows the client to send a generic token (such as a one-time password or other
credentials) to the server. This method is flexible and can accommodate different
types of token-based authentication mechanism. In this example, EAP-GTC messages
are passed between the client and the server to complete the authentication.
To prevent man-in-the-middle attacks, EAP-FAST uses cryptobinding TLVs, which
are exchanged after the EAP-GTC phase. These TLVs verify that both the client and
the server are using the same secure tunnel, binding Phase 1 (the PAC-based tunnel)
and Phase 2 (authentication data) cryptographically. The successful exchange of
crypto-binding TLVs confirms that both phases are linked securely.
Once the authentication and crypto-binding are complete, the server sends a result
TLV (Success) to indicate successful authentication. Finally, an EAP-Success message
is sent, allowing the client to access the network.

2.7.5 EAP-TLS

EAP-TLS [104] is similar to other EAP methods such as PEAP except that it requires
authentication from both the client and the server side, and thus certificates on both sides.
The process of exchanging certificates is done during the TLS handshake.

Once the initial identity exchange and the TLS handshake are done, an EAP-Success
message is sent, which signals the completion of the authentication process and allows the
client access to the network, as illustrated in Figure 2.15. The strength of this method is
that it uses certificates both on the server and client side, making it a really secure EAP
type.

26

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.15: EAP-TLS message sequences for a successful Authentication based on [104]

2.7.6 EAP-TTLS

EAP-TTLS (Extensible Authentication Protocol-Tunneled Transport Layer Security) [45] [8]
is a secure authentication method widely used in various network environments, including
OpenRoaming. It is a strong method as it encapsulates a TLS session to ensure a secure
and encrypted channel for the exchange of authentication information. Thus, it protects
against man-in-the-middle attacks and other security threats [36]. This is particularly
important in wireless environments, where data (such as password-based authentication
protocols such as PAP) is transmitted over the air and can be easily intercepted.

As EAP-TTLS is often selected in the OpenRoaming context as the EAP method, it will

27

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

be covered in more depth in this section.
Figure 2.16 represents an EAP-TTLS message sequence for a successful authentication

through tunneled PAP. The supplicant (client) uses EAP-TTLS to securely tunnel its PAP
credentials to the authentication server via the authenticator (access point). This sequence
involves the initial EAP identity exchange, the establishment of a TLS tunnel, and the
transmission of credentials within the secure tunnel. RADIUS is the carrier protocol between
the AP and the server. Both the RADIUS server and the AAA server are considered as the
authentication server in this example to maintain the IEEE 802.1X three-part framework.

As soon as the client has initiated the connection, EAP starts with the authenticator
sending an EAP- Request/Identity packet to the client. The authenticator forwards the
EAP-Response/Identity to the TTLS server as part of a RADIUS Access-Request message.

EAP-TTLS then encapsulates the TLS session and the method involves 2 phases:
• Phase 1: Establishing a Secure Tunnel (TLS Handshake). During this phase,
TLS is used to authenticate the TTLS server to the client. EAP packets continue to be
exchanged between the client and the TTLS server through the authenticator (that
simply passes the packets through) to complete the TLS handshake as presented in
section 2.6.

• Phase 2: Inner Authentication (PAP). This phase is used to tunnel information
between the client and the TTLS server to perform client authentication using the
credentials exchanged within the secure tunnel. The authentication can itself be
EAP or any other protocol such as PAP, CHAP, MS-CHAP, or MS-CHAP-V2. For
this example, PAP will be used, the supplicant will thus send an EAP-Response/TTLS
message containing its User-Name and User-Password. The authentication server
validates the credentials and responds with a RADIUS Access-Accept message. This
step ensures that the supplicant’s credentials are verified against the authentication
server’s database.

28

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.16: EAP-TTLS message sequences for a successful Authentication via Tunneled PAP based
on [45]

2.7.7 EAP-PPT

EAP-PPT (Extensible Authentication Protocol using Privacy Pass Tokens) [99] enhances
user privacy and security in network authentication by preventing tracking across multiple
sessions. It achieves this by using Privacy Pass tokens [92], which are unlinkable, meaning
that they do not contain personal information that could identify the user or be linked
to past authentication events. The Privacy Pass process works by issuing tokens (called
"Privacy Pass tokens") that users can redeem on participating websites. These tokens are
cryptographically signed and allow users to prove that they have passed a CAPTCHA’s
[128] or other challenges in the past, without revealing any personal details or requiring

29

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

the user to repeat the challenge that can compromise user anonymity.
This approach is especially interesting for scenarios where user anonymity is important,

such as public Wi-Fi networks, as this will prevent service providers, identity providers
and administrators to track individual’s identity and personal information, or even simply
connection and usage patterns.

This protocol works inside TLS tunnels and uses token challenges to authenticate
peers without revealing sensitive information. As can be seen in Figure 2.17, the EAP
Identity Exchange (which is optional in some cases) occurs first, where the peer sends an
EAP-Response/Identity message containing only the realm portion. This allows routing to
the correct authentication server without exposing any personal identifiers. The tunnel is
created without the peer being authenticated initially. The server ensures that the TLS
handshake does not require client certificate verification, as this is deferred in the EAP-PPT
method.

Figure 2.17: EAP-PPT message sequences for a successful Authentication taken from [99]

Once the TLS tunnel is established, the
EAP server challenges the peer using an EAP-Request/PPT-Challenge message. This
message contains a JSON encoded set of token challenges. These challenges require the

30

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

peer to present a valid Privacy Pass token. The peer thus sends the Privacy Pass token
back to the server that can performs token verification by redeeming the provided token.
If the verification is successful, the server authenticates the peer and responds with an
EAP-Success message. Note that token challenges are also designed to avoid the transmission
of any permanent identifiers or pseudonyms. This prevents the server from tracking the
peer across different sessions.

In OpenRoaming, the realm portion of a user’s outer identity helps the ANP to discover
the authoritative IDP for that user. However, OpenRoaming relies on RADIUS attributes
and EAP, which can lead to potential privacy concerns as user information can be shared
between the ANP and IDP.

To address this issue, EAP-PPT can be used to separate the issuance of credentials
from their verification, preventing the authenticator from inadvertently sharing user data.
In an OpenRoaming use case, the roles of Issuer and Verifier are thus separated. The
Attester/Issuer collaborates with the EAP-PPT server, which performs the token verification.

2.8 Wireless Broadband Alliance (WBA)

The Wireless Broadband Alliance (WBA) [135] is a global organization founded in 2003,
dedicated to working with the latest Wi-Fi technologies. The organization is located in San
Ramon, California, and focuses on areas such as Next Generation Wi-Fi, OpenRoaming,
IoT, 5G, etc. In 2020, WBA launched the OpenRoaming federation that helps users to get a
seamless and secure Wi-Fi onboarding experience.

2.8.1 WBA-based Public key infrastructure (PKI)

Before diving into PKI and the WBA-based PKI, it is important to introduce the asymmetric
cryptography that is involved in the PKI.

Asymmetric cryptography

Asymmetric encryption [36], as can be seen in Figure 2.18, is used to securely send data
over an insecure channel. It involves two keys: a public key and a private key. The keys
are mathematically related, but it is practically impossible to derive the private key from
the public key. It is thus not an issue to share the public key while keeping the other key
private. One key is used for encryption and the other for decryption.

31

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.18: Asymmetric Encryption process based on [36]

The concept of asymmetric encryption is that Bob generates a public key and a private
key using the RSA [76] algorithm. He keeps the private key secret, but shares the public
key with Alice. When Alice wants to send a secure message to Bob, she uses Bob’s public
key to encrypt her plain text message into a cipher text. The public key can only encrypt,
not decrypt. Thus, no one can read the cipher text. When Bob receives the encrypted
message (cipher text), he uses his private key to decrypt it, turning the cipher text back
into the original plain text. Only Bob can decrypt the message because he is the only
one who has access to the private key. Thus, this process ensures secure communication
between the two users.

Public key infrastructure

To ensure that public keys are authentic (i.e. to avoid someone impersonating Bob from
the previous example), a trusted third party is used for public key distribution. To do so, a
public key infrastructure (PKI) model [36] is used. PKI does not distribute keys but rather
certificates and the trusted third-party is called a Certification Authority (CA). Each
CA holds its own certificate and the associated private key allows the CA to sign other
certificates. The final form of PKI, which is hierarchical, involves a structure where there
is a single root CA at the top of the hierarchy which has the authority to create and sign
certificates for intermediate CAs. These intermediate CAs, in turn, can sign certificates
for servers, devices, or applications. In a hierarchical PKI, the root CA’s certificate is
self-signed, meaning it is signed with its own private key, establishing its identity and
trustworthiness. Intermediate CA’s have their certificates signed by the root CA, creating
a chain of trust that extends from the root CA down to the end entities. When a certificate
is presented, its authenticity can be verified by tracing the chain of trust back to the
root CA. This ensures that all entities within the PKI can trust each other based on this
established hierarchy.

32

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

WBA Public key infrastructure

The Wireless Broadband Alliance (WBA) Public Key Infrastructure (PKI) framework, as
shown in the Figure 2.19, is a hierarchical structure designed to ensure the trust and
authenticity of certificates within wireless network environments.

It operates similarly to a general PKI, with a WBA Root CA at the top of the hierarchy.
openroaming.org is the root of trust and consists of a root CA, an intermediate CA and a
certificate revocation service [71].

Directly below the root CA, the policy CA, which is an intermediate certificate,
defines the policies related to issuing certificates within the WBA federation. There are
also Intermediate Signing CA’s, such as the CISCO Signing I-CA and the WBA Signing
I-CA. The system also includes various agreements for the Legal Framework to ensure
compliance of the ANP’s and IDP’s. [136]

Figure 2.19: OpenRoaming federation architecture: WBA-based PKI taken from [8]

2.9 Passpoint

OpenRoaming leverages the Wi-Fi Alliance [125] specified Passpoint [122] [124] [58] func-
tionality to roam. PassPoint (also known as Hotspot 2.0) allows devices to automatically
connect to trusted Wi-Fi networks without the need for manual SSID selection or password
entry using preconfigured PassPoint profiles. It is a secure option for roaming as it uses
the 802.1X authentication standards for Wi-Fi and supports both WPA2 and WPA3
encryption. It also typically works with RADIUS servers to manage user credentials [58].

The 2 main components are the PassPoint Access Points, that can be deployed almost
everywhere, and the PassPoint-enabled devices that are able to pair with the PassPoint
AP’s.

Passpoint-enabled AP’s broadcast information about their roaming capabilities and
network details (such as service providers or specific roaming partnerships) through Access
Network Query Protocol (ANQP) messages, which will be discussed in the subsection 2.9.1.
Devices scan for these signals, determine which networks they are authorized to join

33

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

according to the information that the AP broadcast, and connect seamlessly.
For the Passpoint-enabled devices to "know" which networks they are authorized

to connect to, Passpoint uses preconfigured profiles that are installed on the devices.
These profiles contain the necessary network and EAP credential information required to
authenticate the user seamlessly.

During the user’s authentication, as sensitive information is going to be exchanged,
the connection is protected by utilizing the IEEE 802.1X standard along with WPA2 or
WPA3 encryption protocols. The user’s credentials are managed by a RADIUS/RADSEC
server which supports multiple credential types and is secure.

Passpoints are thus a core component of the OpenRoaming infrastructure as they enable
seamless roaming by allowing users to move between different networks and access points
without disconnection or re-authentication.

2.9.1 Access Network Query Protocol (ANQP)

The Access Network Query Protocol (ANPQ) [136] [112] is a protocol used by wireless
devices in wireless networks to get information about available Wi-Fi networks before
actually connecting to them. ANPQ uses active scanning [70] as the client broadcasts a
Probe Request frame and waits for the Probe Responses from the nearby AP’s. The client
can then get access to information about the AP’s and their capabilities. It can include
information about capabilities, authentication supported, Roaming Consortium , Hotspot
2.0 information, etc.

In the context of OpenRoaming, this protocol is particularly relevant as it provides
information on Hotspot 2.0 and Roaming Consortium, which enables users to establish a
connection automatically.

2.9.2 Roaming Consortium Organization Identifier (RCOI)

An ANP need to be able to set up a policy in order to accept or reject users to its network.
To do so, Closed Access Group (CAG) based policies are used. Users who are part of a
CAG are allowed to access one or more OpenRoaming access networks, depending on the
CAG policy and what it allows. Roaming Consortium Organization Identifier (RCOI) [136]
[113] is used to encode these CAG’s.

RCOI is a 24 or 36-bit identifier used within the OpenRoaming Passpoint profile. It
manages the identity providers that are supported and allowed by the network.

There are 2 parts in the RCOI, as shown on Figure 2.20:
• The base RCOI: the first 24 bits. There are 2 possible base RCOI’s:

1. OpenRoaming-Settled: BA-A2-D0-xx-x which indicates that the users need to
pay the ANP to use their OpenRoaming services.

2. OpenRoaming-Settlement-Free: 5A-03-BA-xx-x which indicates that the ANP is
free of use.

34

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

• The CAG extension: the last 12 bits, used to implement the Closed Access
Group Policies (CAG) and defined by the WBA. There are 5 fields, as can be seen on
Figure 2.20:

1. Level of Assurance Policies (LoA) [85]: It defines the degree of confidence during
authentication and security levels for identity proofing, with values for “Baseline”
(LoA 2) and “Enhanced” (LoA 3).

2. Quality of Service Policies (QoS) [131]: It sets service quality levels (Bronze
and Silver) to ensure consistent network performance. QoS provides guarantees
on availability, basic bandwidth and other performances of a service such as
packet loss, latency, etc.

3. Privacy Policies (PID): It ensures the identities of the users remain anonymous
through EAP identifiers that mask user information. The PID field enables
tracking if users consent to share a unique identifier, allowing an ANP to analyze
usage patterns and other information. It thus states if a user will be anonymous
or have personal identity.

4. ID-Type Policies (ID-Type): It specifies sectors (e.g., any, government, education,
retail) using an ID-Type field, allowing the ANP’s to serve users based on sector-
specific requirements.

5. Reserved: The last 4 bits are set to 0.

Figure 2.20: OpenRoaming RCOI format based on [136] [113]

The RCOI’s are included in the OpenRoaming Passpoint profiles on the device and
broadcasted via the beacons. The beacon can only carry 3 RCOI’s. If there is more than 3,
the ANQP protocol is used to advertise larger lists of RCOI’s. In the case where an RCOI
matches a configured profile in the device, the device will then start the authentication
process. A matching RCOI is thus necessary to access a network, as depicted in Figure 2.21.

35

CHAPTER 2. THEORETICAL BACKGROUND: OPENROAMING

Figure 2.21: IDP profile and ANP matching scenarios taken from [113]

Regarding the link with ANP and IDP, the ANP will thus need to configure the RCOI in
its Wi-Fi equipment while the IDP will need to include the RCOI in the Passpoint profile
of its user devices. The RCOI in the profile and the one in the Wi-Fi equipment need to
match.

The ANP will state in the RCOI what it requires as PID and LoA and what it provides
as QoS. The IDP will state what it provides as PID and LoA and what it requires as QoS.
It means that if the RCOI matches, all requirements from both parts are met.

In the case where an ANP does not want to authorize all users from a CAG encoded
using RCOI, it can use a list of authorized NAI realm instead.

36

Chapter 3

Theoretical Background: e-ID

This chapter describes e-ID and related technologies in more details to provide a foundation
for the subsequent phases of this project.

3.1 Electronic identification (e-ID)

e-ID [42] [41] is an authentication method. It authenticates users using an electronic proof
of identity via the chip on the Belgian electronic identity card.

The e-ID chip typically contains encrypted personal information, such as name, birth
date, and sometimes biometric data, which are securely stored on a chip. Digital certificates
can also be installed by the Belgian Government on the electronic chip if the card is
e-ID-capable. These digital certificates are used to authenticate the card holder digitally.
A PKI is commonly used in e-ID systems, where digital certificates help authenticate the
user and protect communication between the user and service providers [38] [14].

Figure 3.1: e-ID-based PKI taken from [38]

37

CHAPTER 3. THEORETICAL BACKGROUND: E-ID

The Figure 3.1 illustrates the Public Key Infrastructure (PKI) hierarchy used for
Belgian e-ID cards. The Belgian Root CA (BRCA) is the top-level CA managed by the
Belgian government. It issues certificates to intermediate CAs. There are 3 intermediate
CAs that the BRCA directly certifies. The Citizen CA and Foreigner CA issue certificates for
Belgian citizens and foreigners. The timestamp Authority CA issue timestamp certificates,
which are used to provide a secure timestamp for digital signatures. This ensures that
the exact time and date of a signature or transaction can be verified. Each intermediate
CA issues certificates to end-users or devices that are, in this case, embedded in chips
or specific hardware. Citizen CA and Foreigner CA issue two main types of certificates:
the X.509 AUTH cert, that is used for authentication purposes, allowing a cardholder to
verify its identity, and the X.509 SIGN cert, used for digital signing. These certificates
are embedded in Qualified Signature Creation Device (QSCD) [39] chips. The QSCD is a
secure environment where private keys are stored, ensuring that the digital signature is
created under strict security controls.

The CA’s issue personalized certificates for individual electronic chip cards. These
certificates leverage X.509, which is a standard that defines the format of the public-key
certificates [43]. X.509 certificates bind a public key with information about the entity
(such as name, organization, location, signature algorithm, etc.) and is signed by a trusted
CA, making it verifiable by anyone who trusts that CA.

3.1.1 Multi-factor Authentication

To improve its security, the e-ID system implements a strict authentication protocol.
For example, PIN-based access combined with PKI-based digital certificates ensures only
authorized users can access the e-ID.

This process is called a Multi-factor Authentication (MFA) [74]. MFA is a security
process that strengthens user verification by requiring multiple separate categories of
identification to access a system or application. These categories are:

• Something You Know: This category includes credentials such as passwords, PINs,
or answers to security questions.

• Something You Have: This might be a mobile device, a security token, or a smart
card.

• Something You Are: This can be biometrics, such as fingerprints, facial recognition,
or voice verification.

Usually, a user is prompted for 2 of these 3 categories to prove its identity. This is
called 2-factor authentication (2FA). e-ID can work using "Something You Know" and
"Something You Have". Indeed, many e-IDs are smart cards that need to be inserted into
a reader. The user then enters a PIN to verify access, which acts as the second factor.

The e-ID can also be used to bootstrap 2-factor authentication using applications such
as myGov [109] or Itsme [11].

38

CHAPTER 3. THEORETICAL BACKGROUND: E-ID

3.2 OAuth 2.0 protocol and OpenID Connect (OIDC)

The e-ID identity management solution supports OpenID Connect (OIDC) [90]. OIDC is an
identity layer built on top of OAuth 2.0 [57] [89], designed for user authentication. Let us
dive into these protocols [26].

3.2.1 OAuth 2.0 protocol

Before OAuth 2.0, if an application wanted to access another service on behalf of a user, it
would often ask for the user’s password to that service. This means that the user was giving
the third-party applications access to everything, regardless of what specific permissions
the third-party application actually needed. This also means that if one application is
compromised, all accounts where that password was used could be at risk.

OAuth 2.0, which stands for Open Authorization is a protocol designed to provide
delegated authority that enables third-party applications to obtain limited access to their
data without sharing passwords. Instead, it uses access tokens, which are generated by
an authorization server and grant specific permissions to the third-party app to retrieve
specific user data or get access to remote API’s.

OAuth 2.0 authorization flow

The Figure 3.2 illustrates the OAuth 2.0 authorization flow and the interactions between
the four primary roles in the protocol.

The four roles are:

1. The user (Resource Owner): This is the person who owns the data or resource
that the third-party application (client) wants to access. The user decides whether
to grant the client permission to access their data.

2. The client (Third-Party Application): The client is the application that wants
to access the user’s data on another server.

3. The authorization server: This server is responsible for authenticating the user
and determining whether the user grants permission to the client or not. It issues an
access token if the user authorizes the request.

4. The resource server: The resource server hosts the protected resources (e.g., user’s
data) that the client wants to access. The authorization server and the resource
server can be a unique server which manages the 2 roles.

39

CHAPTER 3. THEORETICAL BACKGROUND: E-ID

Figure 3.2: OAuth 2.0 flow and the interaction between the four roles based on [57]

The client begins the flow with the user being asked to log in and grant the client
permission to access their resources. Note that the request can be made directly to
the resource owner or via the authorization server as an intermediary. This request
includes information such as the client ID (to uniquely identify the client), requested
scopes (permissions), and a redirect URI of the client that indicates where to send the
authorization grant. An authorization grant is a kind of credential that represents the
user’s authorization.

The client then sends the authorization grant to the authorization server’s token
endpoint to request an access token. This step includes the client’s credentials (client ID
and secret) and the authorization grant, ensuring that only authorized clients can exchange
the grant for a token. The authorization server validates the authorization grant and, if
successful, issues an access token to the client. The access token represents the client’s
authorized access to the user’s resources and typically expires after some time.

When the current access token expires, refresh tokens are used to obtain new access
tokens. Refresh tokens are issued to the client by the authorization server, usually at the
same time as the access tokens. The way in which access and refresh tokens are used is
shown in Figure 3.3. The client exchanges the authorization grant with the authorization
server to obtain an access token along with a refresh token. The access token allows the
client to access the user’s protected resources on the resource server while the refresh
token allows the client to obtain a new access token after the original one expires, without
requiring the user to authenticate again. If the access token is valid, the resource server
grants the client access to the protected resource and returns the requested data. Access
tokens expire after some time, so when the client attempts to use an expired or invalid
access token to access the resource server, the resource server responds with an error,
indicating that the token is invalid. Instead of asking the user to re-authenticate and start
again the whole OAuth 2.0 flow, the client uses the refresh token to request a new access

40

CHAPTER 3. THEORETICAL BACKGROUND: E-ID

token from the authorization server.

Figure 3.3: Tokens usage based on [57]

Finally, the resource server validates the access token and provides the requested data
to the client if the token is valid and authorized for the requested scope.

Client Registration 1

For the OAuth 2.0 authorization flow to work, the client needs to register with the
authorization server. During registration, the client provides details such as its name, type,
and redirect URI (the URL to which the authorization server will send the user after
authorization). After registration, the authorization server issues a unique client identifier
to the client. This client ID is public and used to identify the client during the authorization
process. In addition to the client ID, the authorization server may issue a client secret (a
password-like credential) to the client. The client secret is used to authenticate the client
when it requests an access token.

OAuth 2.0 Endpoints

The Authorization Code Flow involves three primary protocol endpoints that enable
communication between the client and the authorization server. These endpoints are
typically exposed via HTTP/1.1 [88]. Note that OAuth 2.0 typically requires HTTPS for
all requests to ensure that the client ID, client secret, and tokens are transmitted securely.
It thus uses REST calls for the requests. The 3 endpoints are:

• The authorization/authentication endpoint: This is where the client directs
the user to initiate the authorization process. This endpoint enables the user to
grant permission to the client to access their resources. The authorization server

1This is the step that made the integration with e-ID impossible to demonstrate in this project, because
BOSA was responsible for providing this client id and secret but I didn’t receive them in time. On the
other hand, Google allows you to register yourself, and this allowed the project to continue without any
major changes.

41

CHAPTER 3. THEORETICAL BACKGROUND: E-ID

authenticates the user, obtains consent, and then redirects the user back to the client
with an authorization code.

• The token endpoint: This is where the client exchanges the authorization code
for an access token and possibly a refresh token. The client must authenticate itself
(typically using its client ID and client secret) when making this request.

• The redirect URI: This is not a dedicated endpoint but an endpoint within the
client application that receives the authorization code. The client registers this URI
with the authorization server, so the server knows where to send the user back after
authorization.

3.2.2 OpenID Connect (OIDC)

While OAuth 2.0 was primarily used for authorization (granting access to resources without
sharing passwords), it does not provide a standardized way to verify the user’s identity and
to define the scopes. To address the limitation of OAuth 2.0 for authentication, OpenID
Connect (OIDC) [90] was developed to standardize the user’s authentication.

OIDC [90] is a standard built on top of OAuth 2.0. In a typical OAuth 2.0 flow,
the authorization server issues an access token and possibly a refresh token to the client.
However, these tokens only allow the client to access resources on behalf of the user and
they do not contain information about the user’s identity. OIDC introduces an Identity (ID)
token to address this. The ID token contains claims (which are key-value pairs containing
information) about the authenticated user, such as their unique identifier, name, and email
address and allows the client to verify the user’s identity. The token format required for
the ID token is a JSON Web Token (JWT) [64]. In OAuth 2.0, multiple token formats are
accepted, including JWT.

By adding this OIDC standard, when a client thus asks the authorization server for
tokens, it will get an access token, a refresh token and an ID token that uniquely identifies
the user.

OIDC adds a new endpoint to the standard OAuth 2.0 endpoints, the UserInfo
Endpoint, that returns claims about the authenticated user.

Another limitation that OIDC addresses is the fact that OAuth 2.0 does not specify
which scopes to use for authentication, leaving it up to clients to define custom scopes.
OIDC addresses this issue by introducing standardized scopes, such as openid, profile, and
email. The openid scope is required in any OIDC authentication request and indicates that
the client wants to use OpenID Connect for user authentication.

By adding an authentication layer, OIDC is considered as an Identity Provider (IDP),
allowing clients to verify a user’s identity in a standardized way.

3.2.3 Tokens format

OpenID Connect uses the JSON Web Token (JWT) [64] [7]. JWT is a standard used to
exchange claims between two side, such as a client and a server. Claims [28] are pieces of

42

CHAPTER 3. THEORETICAL BACKGROUND: E-ID

information asserted about a subject, typically a user, and are represented as key-value
pairs within the token. In JWT, an example of claim about a user’s name would be:

”name” : ”John Doe”

The structure of a JWT consists of three parts, separated by dots, as can be seen in
Figure 3.4

Figure 3.4: structure of a JWT based on [7]

The header typically consists of two fields, the type of the token (JWT) and the signing
algorithm used (e.g., HS256 for HMAC SHA-256 and RS256 for RSA SHA-256).

The payload, which is Base64Url [66] encoded, contains the claims. There are three
types of claims:

• Registered Claims: Predefined claims that provide metadata, such as iss (issuer), sub
(subject) and exp (expiration time).

• Public Claims: Custom claims such as name or email.
• Private Claims: Claims agreed upon by the two parties but not standardized.
The signature is created by taking the encoded header and encoded payload, joining

them with a dot, and signing them with a secret key using the algorithm specified in the
header.

With OpenID Connect, when a user logs in, the server generates a JWT, signs it, and
returns it to the client. The client can then include it in the authorization header of future
requests using the Bearer schema. This header is part of the HTTP standard for sending
authentication information and has the following format [65]:

GET /resource HTTP/1.1
Host: server.example.com
Authorization: Bearer <token>

43

Chapter 4

Solution investigation

4.1 Context for this project

In this project, the goal is to use e-ID1 as an IDP. To implement that, several components
need to be considered. Figure 4.1 illustrates these components and each of them will be
described in more detail in the following sections.

Figure 4.1: OpenRoaming: Components of the project

4.2 Device (User’s phone)

On the user’s phone, a client application will be developed and installed. This application
should allow the user to do two actions:

• The user should be able to authenticate with the IDP when opening the application
through an authentication screen. If successful, the user will receive tokens from the
e-ID IDP that will be used for the OpenRoaming profile. This part is thus similar
to applications that require national authentication such as MyGov.be [109], ItsMe
[11], MyPension [84], etc. The application developed for this project will thus be
a mock-up of these applications with a feature that allows to provision users with
e-ID tokens when they authenticate.

1Or Firebase with Google credentials, as the process is exactly the same. I mention this because the
integration with e-ID was not possible as BOSA was responsible for registering me as one of their clients
but it was not done in time.

44

CHAPTER 4. SOLUTION INVESTIGATION

• When authenticated, it should allow the device to seamlessly connect to the Wi-Fi
via an 802.1x connection to the access point. This is done by installing a profile on
the device. These pre-configured Passpoint profiles allow the devices to automatically
connect to a trusted Wi-Fi without the need to select the right SSID and manually
enter credentials.

4.2.1 Programming language selection

To choose a programming language for this application, some aspects of the application
needed to be taken into account.

First, a cross-platform language, that allows the same application to run on both iOS
and Android, was not an option. Indeed, the application will need to interact with device-
specific aspects such as the device parameters and Wi-Fi settings. Thus, a cross-platform
language such as Flutter might complicate access to these functionalities.

Since I have a Windows laptop, focusing on Android development is practical, as
developing and deploying iOS applications with Swift generally requires a Mac from Apple.
Note that developing with Swift for iOS on a Windows computer is possible, but it is
generally more complicated because Xcode, the official Apple IDE for Swift development,
is only available on macOS.

The final choice moves towards Android development. Kotlin is now the main language
recommended and supported for developing Android applications [53], so this is the language
chosen for this project. To develop this application, an object-oriented approach will be
used.

4.2.2 Passpoint profile

This is the template [6] [35] for Android devices using username/password as credentials,
which is the method used for EAP-TTLS with PAP:�

1 <MgmtTree xmlns="syncml:dmddf1 .2">
2 <VerDTD >1.2</VerDTD >
3 <Node>
4 <NodeName >PerProviderSubscription </NodeName >
5 <RTProperties >
6 <Type>
7 <DDFName >urn:wfa:mo:hotspot2dot0 -

perprovidersubscription:1 .0</DDFName >
8 </Type>
9 </RTProperties >

10 <Node>
11 <NodeName >i001</NodeName >
12 <Node>
13 <NodeName >HomeSP </NodeName >

45

CHAPTER 4. SOLUTION INVESTIGATION

14 <Node>
15 <NodeName >FriendlyName </NodeName >
16 <Value>${ friendlyName}</Value>
17 </Node>
18 <Node>
19 <NodeName >FQDN</NodeName >
20 <Value>${fqdn}</Value>
21 </Node>
22 <Node>
23 <NodeName >RoamingConsortiumOI </NodeName >
24 <Value>004096 </Value>
25 </Node>
26 </Node>
27 <Node>
28 <NodeName >Credential </NodeName >
29 <Node>
30 <NodeName >Realm</NodeName >
31 <Value>${realm}</Value>
32 </Node>
33 <Node>
34 <NodeName >UsernamePassword </NodeName >
35 <Node>
36 <NodeName >Username </NodeName >
37 <Value>${ username}</Value>
38 </Node>
39 <Node>
40 <NodeName >Password </NodeName >
41 <Value>${ password}</Value>
42 </Node>
43 <Node>
44 <NodeName >EAPMethod </NodeName >
45 <Node>
46 <NodeName >EAPType </NodeName >
47 <Value>${ eapType}</Value>
48 </Node>
49 <Node>
50 <NodeName >InnerMethod </NodeName >
51 <Value>${ innerMethod}</Value>
52 </Node>
53 </Node>
54 </Node>
55 </Node>
56 </Node>
57 </Node>

46

CHAPTER 4. SOLUTION INVESTIGATION

58 </MgmtTree >� �
Listing 4.1: Profile with a username/password credential (EAP-TTLS) taken from [6] [35]

This profile will be downloaded from a server (the auth server) and will allow a device to
seamlessly connect to the Wi-Fi using this profile. The profile will include hard-coded values,
such as the FQDN of the server (marie.tiedie.io), the realm (test−beid.openroaming.net),
the EAP type and the inner method according to the EAP type. The RCOI is defined with the
default Cisco value 004096 to accept users from any IDP. It will also contain user-specific
values such as the username and the password, which is base64-encoded [6].

4.3 Access Point

Modern access points support advanced features such as load balancing, seamless roam-
ing, and better management. They are essential for Wi-Fi configuration, which is where
Meraki access points come in, adding cloud management and additional capabilities for
organizations.

4.3.1 Meraki

Cisco Meraki 2 [21] is a cloud-managed network solutions provider that provides Wi-Fi
6/6E hardware.

The Meraki access points are wireless devices that enable seamless Wi-Fi. These access
points are cloud-managed and can be easily deployed and managed through the Meraki
dashboard [20].

The Meraki Dashboard is a platform that allows one to manage an entire Meraki
network from the interface shown in Figure 4.4. Especially, Figure 4.2 shows the homepage
of the dashboard. It summarizes the available access points, the usage and the clients
along with data about them. Figure 4.3 shows an overview of the configured SSIDs and
their characteristics. The Wi-Fi settings of the computer that is near the access point
display the 3 SSIDs configured: Marie network - wireless Wi-Fi, Mamaes and Test1. More
advanced settings are available, such as a configuration page to set up access control for a
SSID. This will be discussed in chapter 5.

The Meraki access point is a Wi-Fi 6/6E hardware. Wi-Fi 6 and Wi-Fi 6E standards
are the latest generations of Wi-Fi technology, based on the IEEE 802.11ax standard. It
improves the previous Wi-Fi generations by providing higher throughput, lower latency,
and more efficient traffic management.

2Meaning of the greek word: Meraki • Mεράκι [may - rah - kee] - (adj.) when you do something with
soul, creativity or love; putting a piece of yourself into what you do. [75]

47

CHAPTER 4. SOLUTION INVESTIGATION

Figure 4.2: Home page: summary of the clients

Figure 4.3: SSID overview with their configu-
ration and computer Wi-Fi settings displaying
them

Figure 4.4: Meraki dashboard overview [20]

4.3.2 OpenRoaming considerations: Cisco Spaces

Once Meraki access points are set up to manage Wi-Fi networks, Cisco Spaces [15] can
be introduced to enable OpenRoaming. Cisco Spaces provides the tools needed to provide
automatic, secure connections to Wi-Fi networks without requiring users to log in every
time. Working together with Meraki, it helps create a seamless connection where users
can easily move between trusted networks. To set up OpenRoaming through Cisco Spaces,
a space account is thus needed and the cloud-based (Cisco Meraki) network is supported.
The wireless network then needs to be added to the Cisco Spaces account. This will be
explained in chapter 5.

4.4 RADIUS Server

The RADIUS server must be set up to combine EAP with RADIUS within the AAA server. Its
purpose is to ensure that only authorized users can access the network by approving or
declining the requests coming from the AP.

As the server needs to be public to receive requests when users want to get access to a
network, a public server will be used in this project with the name marie.tiedie.io and
the IP address 185.48.12.253.

4.4.1 Technologies used

Creating a RADIUS server from scratch is quite challenging. An open-source option is
thus a good solution. FreeRADIUS [118] is a popular choice for an EAP/RADIUS server
and is used in well-known applications such as eduroam [3]. FreeRADIUS is open-source
and supports multiple EAP types, including EAP-TLS, EAP-TTLS, PEAP, and others. It also
supports secure communication protocols such as RADSEC (RADIUS over TLS) and robust
certificate management for EAP-TLS and EAP-TTLS. Moreover, FreeRADIUS allows us to
add custom modules or plugins to extend its functionalities. For example, a REST module
and a EAP module are available and will be used for this project. Indeed, EAP is used to

48

CHAPTER 4. SOLUTION INVESTIGATION

communicate with the access point while a RESTful interface will be used to make requests
to the OpenID Connect Auth server.

4.4.2 EAP method selection

EAP method

To choose the right EAP method [100], Table 4.1 compare some of the most common EAP
types. The table analyzes factors such as security, implementation complexity, compatibility
with OpenRoaming requirements, and support for the authentication method. The goal is
to find an EAP type that is secure and compatible with both FreeRADIUS and the e-ID
credentials distribution.

LEAP PEAP EAP-FAST EAP-TLS EAP-TTLS EAP-PPT

Acronym
Lightweight

EAP
Protected

EAP

Flexible
Authentication

via Secure
Tunneling

EAP
Transport

Layer Security

EAP
Tunneled
Transport

Layer
Security

EAP
Privacy

Pass Token

Developed By Cisco
Microsoft
and Cisco

Cisco IETF Funk Cisco

Security Poor Moderate
High

(requires PAC files)

Very High
(client and

server certificates)

High
(server certificate

with optional client
certificates)

Very High

Authentication
Method

Username/
Password

Username/
Password

in a TLS tunnel

PAC file
with username/

password

Certificate-based
(both client
and server)

Username/
Password

in a TLS tunnel

Privacy
Pass Token

in a TLS tunnel

Encryption
WEP
(weak)

TLS
Tunnel

established
through TLS

TLS TLS TLS

Protected
Tunnel

No Yes Yes Yes Yes Yes

Vulnerability
to Attacks

High

Moderate to
High,

depends on
server certificate

security

Vulnerable
if PACs are

compromised

Low,
very secure

if certificates
are managed

properly

Low to
Moderate,
secure if

implemented
correctly

Low,
very secure

Certificate
Requirement

No Server certificate
Server certificate

(for PAC
provisioning)

Client and
server

certificates

Server certificate
(optional client

certificate)

Server certificate
and NO client

certificate
(anonymous

client)

Ease of
Deployment

Simple Moderate Moderate Complex Moderate Complex

Use Cases
non-critical
applications

Enterprise Wi-Fi
Environments

needing good security
without certificates

High-security
environments

needing strong mutual
authentication

Enterprise
Wi-Fi with

both flexibility
and strong security

Access to
restricted

services requiring
anonymous client

authorization
Fast

Reconnect
No Yes Yes Yes Yes Yes

Scalability Moderate High High High High High

Table 4.1: EAP types comparison

FreeRADIUS only supports LEAP, PEAP, EAP-FAST, EAP-TLS and EAP-TTLS as the
EAP type [114]. However, although EAP-FAST is supported by FreeRADIUS, it has several
set-up limitations since FreeRADIUS does not provide tools and features for automated

49

CHAPTER 4. SOLUTION INVESTIGATION

PAC management. As a result, EAP-PPT and EAP-FAST were not selected, as they are
either unsupported or require huge modifications to integrate with FreeRADIUS.

Unsurprisingly, FreeRADIUS does not recommend using LEAP in new deployments
as it has serious security issues, including weak encryption mechanisms and susceptibility
to offline password attacks.

PEAP, which is more secure than LEAP due to its encapsulation within a TLS tunnel,
is still not secure enough for an e-ID integration. Indeed, it is less robust than other
protocols such as EAP-TLS or EAP-TTLS. Thus, it is not a good choice for this project as
security is a major concern.

Finally, EAP-TTLS was chosen over EAP-TLS mainly because OpenRoaming requires the
use of credentials (in this project, the credentials are the tokens) that are generated by
the IDP after a successful authentication. EAP-TLS, while highly secure due to its use of
mutual certificate authentication, only works with certificates for client authentication.
This makes integration difficult with e-ID as e-ID credentials are tokens that are specific
to each user.

In contrast, EAP-TTLS allows the use of username/password credentials within an
encrypted tunnel, making it a great choice for the OpenRoaming framework, as the IDP
issues tokens when a user has successfully authenticated.

EAP-TTLS is thus the final type chosen for this project. [137]

Inner EAP method

PAP was selected as the inner authentication method for EAP-TTLS because it works well
with token credentials and is usually the inner method selected when EAP-TTLS is the EAP
type. PAP transmits a username/password pair and in this project, the username will be
the ID token and the password will be the access token.

Since a secure TLS tunnel is established before the exchange of credentials, security
is already ensured and thus PAP is enough to transmit them. It is also possible to avoid
transmitting the actual plaintext credentials by hashing them. The backend server will
then compare an hashed version of the access token to see if the user is authorized. [93]

4.5 Auth server

4.5.1 Programming language selection

As Kotlin is used for the mobile application on the device, it can also be used to code this
server to remain consistent throughout the project in terms of the programming language
used.

On top of that, Kotlin supports frameworks like Ktor and OkHttp, which are designed
for creating REST APIs, WebSocket servers and making network requests in Kotlin.
Another useful library from Kotlin is Kotlin Serialization which allows for serialization
and de-serialization of Kotlin objects to and from JSON format. As the Auth server will

50

CHAPTER 4. SOLUTION INVESTIGATION

be making HTTPS requests to communicate with both the RADIUS server and the IDP,
these libraries and framework are particularly useful.

Here is a list of all the libraries and frameworks used in this project, along with their
purposes:

• Core Kotlin and Serialization

1. Kotlin Standard Library (org.jetbrains.kotlin:kotlin-stdlib) [78]: Kotlin Standard
Library.

2. Kotlinx Serialization JSON (org.jetbrains.kotlinx:kotlinx-serialization-json) [63]:
Provides JSON serialization and de-serialization for Kotlin objects.

• Server Framework (Ktor) [77]

1. Ktor Server Core (io.ktor:ktor-server-core): Contains core Ktor functionality.

2. Ktor Netty Engine (io.ktor:ktor-server-netty): A dependency for the ktor-server-
netty engine.

3. Ktor Serialization (io.ktor:ktor-serialization): To serialize/deserialize JSON
data.

• Database

1. RocksDB JNI (org.rocksdb:rocksdbjni) [82]: RocksDB fat jar, interface to use
RocksDB database.

• Networking (HTTP Client) [81]

1. OkHttp (com.squareup.okhttp3:okhttp): HTTP client for making network re-
quests from the server.

2. OkHttp Logging Interceptor (com.squareup.okhttp3:logging-interceptor): Useful
for logging HTTP request and response data.

• Firebase Integration [51]

1. Firebase Admin SDK (com.google.firebase:firebase-admin): Allows to interact
with Firebase from privileged environments to perform queries, generate and
verify Firebase auth tokens, ...

• Logging

1. SLF4J API (org.slf4j:slf4j-simple) [83]: Used to unify logging across different
libraries (used for Logback).

4.5.2 Database selection

In the authentication server, the tokens received from the IDP will need to be stored
to validate user credentials when the RADIUS server communicates with the auth server.
Comparing the received tokens with those stored in the backend database is essential to
ensure that only authenticated users get access to the network.

51

CHAPTER 4. SOLUTION INVESTIGATION

Data format

As the tokens typically expire after some time (e.g., the access tokens usually expire after
one hour) and many requests are made to the auth server, the tokens will be stored in a
key-value store [103]. A key-value store is a type of NoSQL database (non-relational type
of database) that uses pairs composed of a key and a value. The key is a unique identifier
used to access the associated value and is usually a string or number that allows for fast
look-ups. The value is the data that is associated with the key and this value can be any
type of data (e.g., strings, numbers, objects, or binary data), depending on the database
and the needs of the project. To retrieve data, each key is a pointer to a specific value.

A key-value store is ideal for this project because it features quick look-ups based on
a unique key, such as the ID token, and provides fast access to the stored tokens.

Figure 4.5: Key-value store: concept

For this project, the database will store key-value pairs with the key being the ID
token from OIDC and the value will be a concatenation of the Access and Refresh tokens,
separated by a semicolon, as represented in Figure 4.5 3.

NoSQL databases

To implement the key-value store, a NoSQL database (non-relational type of database) is
needed. More specifically, a key-value database. Key-value database is the simplest type of
NoSQL database, but it is extremely powerful. If the data that need to be stored can fit in
a key-value database, it is always a good choice to choose it. It is highly efficient, scalable
and flexible, and does not require any actual structure for the data. Common use cases for
this type of database are user session management, storing user profile information and
real-time applications [37].

To choose the right key-value database for this project, one of the first criteria was
its popularity. Selecting a widely used database should help ensure that there is good
documentation, community support, and resources available. Popular databases typically
have a large user base, which means that the challenges or issues encountered during
development are more likely to have been addressed by others. Additionally, well-known
databases often have robust and secured tools and libraries, which makes integration and
maintenance easier.

3In addition, a Firebase Cloud Messaging token will eventually be concatenated to the value to allow
the auth server to communicate with a specific user. The Figure 4.5 does not show this additional token.

52

CHAPTER 4. SOLUTION INVESTIGATION

For this first criterion, the "DB-Engines Ranking of Key-value Stores" from [29] and
the "Top 26 Key-Value Databases Compared" from [37] were used. Here is some rankings
taken from these websites (the score is computed according to the popularity of the
database):

Database
Strengths

(Dragonfly)
Weaknesses
(Dragonfly)

Score
(DB-Engines)

of visits
(Dragonfly)

Redis

Fast data access,
Rich data structures,

High availability,
Persistence options

Limited query
capabilities,

Data size limited
by memory

148.64 444.0k

RocksDB

Highly customizable,
Support for atomic writes,

Compression and compaction
for efficient storage

Requires manual
management of some operations,

Steeper learning curve for
advanced features

2.96 25.5k

Table 4.2: Key-Value store database comparison based on [37] [29]

Based on Table 4.2, Redis and RocksDB are both a good option. Note that the
Cassandra database was also considered as it supports stores and can be distributed.
However, this capability may be an overkill if the application does not require extensive
scaling or high-volume data handling [47], which is the case here. Cassandra was therefore
not chosen.

Finally, RocksDB [73] [60] was chosen over Redis for this project because it aligns
better with the requirements of an embedded database, as the database system will be
integrated directly into the auth server application, running within the same process as
the application itself. Although Redis is often used as a high-speed, in-memory caching
layer with optional persistence, RocksDB is specifically optimized for high-performance
embedded projects.

RocksDB can handle heavy read and write workloads directly on disk, making it
particularly suitable when data persistence is a primary requirement, even in the cases of
application restarts or server failures. Additionally, RocksDB can handle large datasets on
a single machine without relying heavily on memory. [30] [110]

RocksDB and its key features [40]

As already mentioned, RocksDB is an embedded high-performance key-value database
designed by Facebook, built specifically to handle large volumes of data and optimize both
read and write performance on flash and solid-state drives. It is an evolution of Google
LevelDB.

RocksDB uses an LSM tree data structure, which organizes data into different levels on
disk. This structure is optimized for fast writes by first storing incoming data in memory
and then organizing it efficiently on disk in batches, reducing I/O operations and optimizing
for SSDs.

53

CHAPTER 4. SOLUTION INVESTIGATION

RocksDB is designed to handle high write volumes with minimal impact on perfor-
mances. Data is first stored in memory and then periodically written to disk.

Common use cases of RocksDB are embedded systems and caching layers.

4.6 IDP

4.6.1 Authentication method

To verify the identity of a user, the IDP needs to prompt the user for credentials such
as usernames and passwords. In this project, the users will use two types of credentials:
Google credentials and e-ID credentials.

Google credentials were chosen for development because they are very similar to the
authentication process used for e-ID credentials, which are managed by BOSA (Belgian
Government Service) [108]. Since the e-ID IDP registration to set up an OAuth 2.0 client
id and secret has to be done by BOSA itself, and authorization/agreements are needed, it
was necessary to wait for BOSA to set everything up. On the other hand, the Firebase
[51]/Google Identity [34] IDP allows you to set up an OAuth 2.0 client id and secret on
your own via their website.

By starting with Google OAuth 2.0, which is also Oauth-based, the development process
was not stopped while waiting for the credentials from BOSA, with the authentication
flow being implemented similarly to how it will work with the e-ID system. Once the
e-ID credentials and configuration are provided by BOSA, the system can switch to e-ID
by updating the client id, secret, and endpoints in the code, as the underlying OAuth
mechanism will remain unchanged. This approach allowed development to move forward
without needing to wait for anything and provides a second authentication method for
this project.

4.6.2 Google credentials: Firebase/Google Identity

Google OAuth is based on the OAuth 2.0 protocol, provided through Google Identity
services [34], which allows users to authenticate via their Google account and authorize
external applications (such as websites, mobile applications and other services) to access
their data (such as user information, Calendar, etc.) without directly sharing their Google
account credentials, as can be seen in Figure 4.6.

54

CHAPTER 4. SOLUTION INVESTIGATION

Figure 4.6: The authorization sequence with Google APIs that use the OAuth 2.0 protocol, taken
from [34]

Google is an authentication method supported by Firebase [51]/Google Identity [34].
By using Firebase/Google Identity as the IDP, authentication and user management are
efficiently handled, as Firebase simplifies the integration of the Google authentication
system. The Google Identity service [34] allows users to authenticate through their Google
accounts and issue tokens once the user is successfully authenticated, while Firebase provides
tools that simplify the implementation of authentication in the application and abstracts
much of the complexity involved in managing user sessions, handling authentication flows,
and interacting with the Google Identity Platform. It is thus necessary to set up both the
Firebase and Google identity for the API. This process will be described in the chapter 5.

Authorize Request

The authorization code request format is described in the "Using OAuth 2.0 for Web Server
Applications" page from the Google Identity documentation [34]. The request should be di-
rected to the Google authorization code endpoint (https : //accounts.google.com/o/oauth2/v2/auth)
with, for example, the following parameters:

• client_id: mandatory, the client ID mentioned on the API Console Credentials page.
• redirect_uri: mandatory, the redirect URIs mentioned in the API Console Credentials

page for the given client_id.
• response_type: mandatory, must contain the response type code [9].
• scope: mandatory, must contain at least the openid scope. For this application,

the profile scope can also be used to retrieve user information and personalize the

55

CHAPTER 4. SOLUTION INVESTIGATION

application.
Other parameters can be found in the documentation. Here is an example taken from

the documentation of a request for authorization code:

https://accounts.google.com/o/oauth2/v2/auth?
scope=https%3A//www.googleapis.com/auth/drive.metadata.readonly%20https%3A/
/www.googleapis.com/auth/calendar.readonly&
access_type=offline&
include_granted_scopes=true&
response_type=code&
state=state_parameter_passthrough_value&
redirect_uri=https%3A//oauth2.example.com/code&
client_id=client_id

After this request, the user will be prompted to accept or refuse to grant access to the
application.

The OAuth 2.0 server will then respond to the application via the redirect URL
specified before. The authorization code will be on the query string:

https://oauth2.example.com/auth?code=4/P7q7W91a-oMsCeLvIaQm6bTrgtp7

The authorization code in this example is thus 4/P7q7W91a− oMsCeLvIaQm6bTrgtp7.

Token Request

The HTTP POST request to exchange the authorization code for refresh and access
tokens must have the same format as specified on the "Using OAuth 2.0 for Web
Server Applications" page from the Google Identity documentation [34]. The https :

//oauth2.googleapis.com/token endpoint is called with the following parameters:
• client_id: mandatory, the client ID mentioned on the API Console Credentials page

[5].
• client_secret: mandatory, the client secret also mentioned on the API Console

Credentials page.
• code: mandatory, the authorization code.
• grant_type: mandatory, must be "authorization_code".
• redirect_uri: mandatory, the redirect URIs mentioned in the API Console Credentials

page for the given client_id.
Here is an example of request for tokens taken from the Google documentation:

POST /token HTTP/1.1
Host: oauth2.googleapis.com
Content-Type: application/x-www-form-urlencoded

56

CHAPTER 4. SOLUTION INVESTIGATION

code=4/P7q7W91a-oMsCeLvIaQm6bTrgtp7&
client_id=your_client_id&
client_secret=your_client_secret&
redirect_uri=https%3A//oauth2.example.com/code&
grant_type=authorization_code

In response, the Google server will send a JSON response that will contain the following
attributes:

• access_token
• expires_in: the time of validity of the tokens received.
• refresh_token
• scope: the requested scopes.
• token_type: the type of token, always set to Bearer.

A typical response, taken from the Google documentation, looks like this:

{
"access_token": "1/fFAGRNJru1FTz70BzhT3Zg",
"expires_in": 3920,
"token_type": "Bearer",
"scope": "https://www.googleapis.com/auth/drive.metadata.readonly

https://www.googleapis.com/auth/calendar.readonly",
"refresh_token": "1//xEoDL4iW3cxlI7yDbSRFYNG01kVKM2C-259HOF2aQbI"

}

4.6.3 e-ID: FOD BOSA’s FAS

e-ID is an authentication method supported by the FPS Policy and Support Federal
Authentication Service (BOSA FAS) [44] [108]. The OIDC authorization sequence from
BOSA is represented in Figure 4.7

57

CHAPTER 4. SOLUTION INVESTIGATION

Figure 4.7: The authorization sequence with BOSA APIs that use the OAuth 2.0 protocol, taken
from [44]

As already mentioned, the sequence for Google authentication and e-ID authentication
both use OIDC and are thus really similar.

The BOSA documentation [44] mentions every OpenID Connect endpoint URL needed
to contact the provider, the scopes and claims and the Level of Assurance in the authenti-
cation context.

Authorize Request

The authorization code request format is also described in the document. To obtain the
initial authorization code, an HTTP GET request needs to be made to the Authorization
Code endpoint of the FAS (.../fas/oauth2/authorize) with, for example, the following
parameters:

• scope: mandatory, must contain at least the openid scope. For this application,
the profile scope can also be used to retrieve user information and personalize the
application.

• response_type: mandatory, must contain the response type code [9].
• client_id: optional.
• redirect_uri: optional, the redirect URI mentioned during the on-boarding of the

client with BOSA.
• state: used to maintain state between the request and the response.

Other parameters can be found in the documentation. Here is an example taken from the
documentation of a request for authorization code using BOSA:

GET https://idp.iamfas.int.belgium.be/fas/oauth2/authorize
?response_type=code

58

CHAPTER 4. SOLUTION INVESTIGATION

&client_id=myclientid
&scope=openid%20profile
&acr_values=urn:be:fedict:iam:fas:Level500
&redirect_uri=https://www.google.com
&state=af0ifjsldkj
&nonce=1244542

In response to this request, an HTTP GET request will be made to the redirect_uri
mentioned in the request. It will contain the following parameters:

• scope: the requested scopes.
• code: the authorization response code.
• state: to maintain state between the request and the response.
• client_id
• is: the issuer of the authorization code.
Here is an example taken from the documentation of a response for authorization code

using BOSA:

GET redirect_uri (http(s)://...)
?code=31308323-c08e-431a-a5dc-2e7335795b43
&scope=openid%20profile
&iss=https%3A%2F%2Fidp.iamfas.int.belgium.be%2Ffas%2Foauth2
&state=af0ifjsldkj
&client_id=myclientid

Token Request

Once the authorization code is received, the client can then use it to request the id, access
and refresh tokens. The request is a HTTP POST to the token endpoint of the FAS
(.../fas/oauth2/access_token). It contains the following headers:

• Authorization: mandatory, contains the client_id and its secret.
• Content-Type: mandatory, must be application JSON for this project.

It must also contain the following parameters:
• grant_type: mandatory, must be "authorization_code".
• code: mandatory, the actual authorization code.
• redirect_uri: mandatory, the redirect URI mentioned during the on-boarding of the

client with BOSA.
Here is an example of request for tokens taken from the documentation:

POST https://idp.iamfas.int.belgium.be/fas/oauth2/access_token
?grant_type=authorization_code
&code=HusR0KJVsNVHJ84myuMn5taiqi4

59

CHAPTER 4. SOLUTION INVESTIGATION

&redirect_uri=https://redirecturi.be
headers: Authorization: Basic v2xGZW50aWN6Y2xpZW50c2VjcmV0
Content-Type: application/x-www-form-urlencoded

In response, the server will send a response that will contain the following attributes:
• scope: the requested scopes.
• access_token
• refresh_token
• token_type: the type of token, for example Bearer.
• expires_in: the time of validity of the tokens received.
• id_token
A typical response taken from the documentation looks like this:

{
"scope": "profile openid",
"access_token": "SlAV32hkKG",
"refresh_token": "absdgzegsfvsd",
"token_type": "Bearer",
"expires_in": 3600,
"id_token":
"eyJ0eXAiOiJKV1QiLCJhbGc..."

}

Also note that the ID token is a JWT.

Google and e-ID

Given the schema for the authorization sequence that uses the OAuth 2.0 protocol, the
authorization request format and token request format, it is now clear that using Google or
e-ID credentials is really similar. Using one method or the other will only require minimal
adjustments and Google authentication is thus used first for development purposes.

4.6.4 IDP on-boarding

For this project, the IDP will need to become a member of the OpenRoaming federation
via RADSEC using the Cisco Intermediate CA (WBA root) as described in the Cisco
documentation [16].

To become a member, a few steps need to be taken:
• The EAP/RADIUS server needs to be available on the Internet. A Certificate Signing Re-

quest (CSR) will need to be completed in order for the Cisco Intermediate CA to sign

60

CHAPTER 4. SOLUTION INVESTIGATION

the certificate. As already mentionned, the server for this project is marie.tiedie.io.
The realm chosen that is included in the CSR is test− beid.openroaming.net.

• The certificate that will be received after being signed needs to be installed on the
server.

• DNS needs to be configured to ensure that the realms are discoverable.

DNS records

To ensure that the IDP is discoverable by the OpenRoaming federation and its members, 3
DNS records must be created for the realm in the DNS that is authoritative for the domain
test − beid.openroaming.net. This domain is a subdomain of beid.openroaming.net for
the IDP set up of this project. The 3 records are:

• The NAPTR record for the realm: _radsec._tcp.test-beid.openroaming.net. 300 IN
SRV 0 10 2083 marie.tiedie.io.

• The SRV record for the pointer: test-beid.openroaming.net. 300 IN NAPTR 50 50
"s" "aaa+auth:radius.tls.tcp" "" _radsec._tcp.test-beid.openroaming.net.

• The address record for the RADSEC endpoint: marie.tiedie.io pointing to 185.48.12.253.

4.7 Final solution

Figure 4.8 summarizes every component together with the technologies and software used
for this project.

Figure 4.8: OpenRoaming: Components of the project and associated technologies and softwares

The mobile device coded with Kotlin seamlessly connects to a Wi-Fi network using
the Hotspot 2.0 profile that contains its credentials and initiates authentication using the
802.1X protocol for secure access.

The Meraki access point receives the device connection request and forwards the user
credentials securely using the EAP-TTLS over RADSEC tunnel to the EAP/RADIUS server. This
allows encrypted communication between the device and the server.

FreeRADIUS, acting as the EAP/RADIUS server, manages the authentication process
by verifying the credentials. It communicates with the Auth Server via REST to confirm
the user’s identity.

The auth server, coded in Kotlin, serves as an OpenID Connect client. It uses RocksDB,
the key-value database, to store and manage the tokens it received from the IDP. It is

61

CHAPTER 4. SOLUTION INVESTIGATION

responsible for receiving requests coming from the EAP/RADIUS server and checking if the
credentials provided are valid according to its database.

Figure 4.9 summarize the flow of authentication protocols in a setup in which a
device connects to a network using EAP-TTLS with plaintext authentication (PAP) and
authenticates against a REST API through the auth server.

Figure 4.9: Final solution: EAP-TTLS with PAP over RADSEC taken from [27] and slightly modified
to suit this project

Finally, with this setup and for the user to seamlessly connect to an OpenRoaming-
enabled network, the user must previously authenticate with the IDP to gain network
access. When successfully authenticated, the IDP will provide ID, access and refresh tokens
to the auth server that will put them in a profile for the user. The user device will then use
these tokens as credentials to connect to the network while the auth server will verify the
credentials received from the RADIUS server when a device tries to connect to the network.

62

Chapter 5

Prototype: implementation and
demonstration

5.1 Source code and other resources

The implementation of the prototype and various other resources are hosted in a gitlab
directory:

https://gitlab.uliege.be/Marie.Maes/openroaming

The gitlab directory is organized as follows:

63

https://gitlab.uliege.be/Marie.Maes/openroaming

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

openroaming/

freeradius/3.0/

users

certs (not shown in gitlab)

clients.conf

sites-enabled/

default

inner-tunnel

tls

mods-enabled/

eap

rest
...

README.md

auth-server/

build.gradle.kts

src/main/kotlin/com/exemple/

Application.kt

...

README.md

client-app/

app/

src/main/java/com/exemple/firebaseauth

auth/

navigation/

ui/

utils/

MainActivity.kt

build.gradle.kts

google-services.json

build.gradle.kts

README.md

latex/

OpenRoaming.pdf

OpenRoaming.tex

README.md

64

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

5.2 Device (user’s phone)

The mobile application that will be installed on the user’s device must allow the user
to authenticate with the IDP using either Google credentials or e-ID credentials. When
authenticated successfully, it must be able to download the OpenRoaming profile that will
allow the device to seamlessly connect to the OpenRoaming-enabled networks. Some of the
main classes and functions to achieve this are described below. The Figure 5.3 shows some
screens of the mobile application.

Figure 5.1: User interface for authentication
with two buttons, one for Google and the other
for e-ID

Figure 5.2: Wifi suggestion pop-up to add the
Passpoint profile

Figure 5.3: Screenshots of the mobile application

65

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

5.2.1 MainActivity

The MainActivity class is the class that sets up the navigation, themes, authentication
logic, and everything necessary for the application to work properly.

First, an instance of AuthV iewModel is created using the AuthV iewModelFactory

factory that uses the AuthRepository. This view model is used to manage the authenti-
cation state of the application and allows to know if the user is either logged in or not.
Then, the rememberNavController function is used to create a navigation controller that
manages the transitions between the different screens.

The authentication state is known through the authState.collectAsState function of
the AuthV iewModel. The function checks for any changes in the user’s authentication
status. Based on this state, the application determines the screen with which the user
will start. If the user is authenticated, the application navigates to the main content page
(main). If the user is not authenticated yet, the login screen (auth) is selected.

Finally, the NavGraph function is called. This function defines the navigation structure
of the application, linking the navigation controller and the view model to the different
screens.

The NavGraph defines how the user can navigate between the two screens of the
application. These two screens are the authentication screen and the main screen, which is
a welcome page for authenticated users and will allow the user to sign out.

5.2.2 AuthScreen

When the user is not yet authenticated, he is redirected to the AuthScreen function. The
AuthScreen is used as the user interface for authentication, as can be seen on Figure 5.1.
It prompts unauthenticated users to sign in via Google or e-ID via a button and, when
the button is pushed, it first verifies if the device is connected to the Internet before trying
any authentication process. It displays a toast message if there is no internet connection.

If the Google button is pushed, the function then launches the Google sign-in flow
using the GoogleSignIn function. It then retrieves an ID token and an authorization code
from Google upon successful sign-in and sends the authorization code to the auth server to
exchange it for access and refresh tokens via the sendAuthCodeToServer function. The
auth server will then respond with the id, access and refresh tokens.

Finally, the AuthScreen function hashes the access token and sends a request to the
auth server for the Hotspot 2.0 profile for seamless Wi-Fi access via the
sendGenerateAndroidProfileRequest function.

For now, the e-ID Sign-In button is a placeholder, as it provides a button for e-ID
login but the functionality is not implemented in this screen yet.

66

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

5.2.3 AuthUtils

Both the sendAuthCodeToServer and sendGenerateAndroidProfileRequest functions
are defined in AuthUtils.kt. Indeed, the AuthUtils class contains utility functions and
data structures to handle communication between the mobile application and the auth
server.

First, the getOkHttpClient function is used to configure an OkHttpClient with a
custom CA certificate for secure communication with the auth server over HTTPS. The
CA certificate is the one who signed the auth server certificate. It is necessary to provide
this CA certificate in order for the device to trust the backend server.

The sendAuthCodeToServer function sends the Google authorization code (authCode)
and the Firebase Cloud Messaging (FCM) [50] token to the auth server. The FCM token
is a token that uniquely identifies the client application and is required for the auth server
to be able to reliably send messages to the client application. This token is retrieved using
the getFCMToken function.

The message is sent to the auth server through the https : //marie.tiedie.io/auth

URL. It constructs a JSON body containing authCode and fcmToken and sends it as a
POST request. The server will then respond with the idToken and accessToken.

Finally, the sendGenerateAndroidProfileRequest function sends a request to the
auth server to generate an Android Passpoint (Wi-Fi) profile via the
https : //marie.tiedie.io/generateAndroidProfile URL. It sends a GET request with
query parameters (friendlyName, username, password) needed in the profile. It then parses
the Passpoint configuration from the server response and uses the WifiManager [54] to add
a Wi-Fi suggestion [52] for the device. As can be seen in Figure 5.2, it triggers a pop-up
that the user needs to allow the profile to be installed.

5.2.4 FMS

The MyFirebaseMessagingService is a custom implementation of the Firebase Messaging
Service used to handle push notifications and messages sent from Firebase Cloud Messaging
(FCM). This service is responsible for processing incoming messages, including both data
and notification payloads. The FCM is only used when the auth server refreshes the access
token and thus needs to notify the client that its current profile (which contains the access
token) is not up to date.

Upon receiving a message from the auth server, it knows that the access token is
updated, and thus extracts the data payload which is the accessToken and idToken. The
accessToken is hashed using SHA-256 and then Base64-encoded for security purposes. An
AndroidProfileRequest object is then created and a new profile request is sent to the auth
server. To do so, it simply calls the sendGenerateAndroidProfileRequest function to
send the generated profile to the server and configure the Passpoint profile of the device.

67

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

5.3 Access point

The AP must be configured to leverage RADIUS authentication with WPA2-Enterprise [19].
Thus, it will work using RADSEC [18].

To configure that, the Meraki dashboard allows one to configure access control for an
SSID on the Wireless > Configure > Access control page, as can be seen in Figure 5.6.
Note that the Meraki AP is reachable using the IP address 81.245.174.125. The SSID
configured here is Test1 and in this project, WPA2 Entreprise will be used with a RADIUS
server. The user credentials are validated with 802.1X at the association time, as mentioned
in Figure 5.4.

The RADIUS server marie.tiedie.io is added in the RADIUS section, as shown in Fig-
ure 5.5. Its FQDN is the domain name of the server (which has IP 185.48.12.253). The
server Auth port is 2083, which is the default port for RADSEC. The secret is by default
RADSEC and also needs to be configured on the FreeRADIUS server to make it work. RADSEC
needs to be enabled.

Figure 5.4: SSID Test1 configuration page for
access control

Figure 5.5: SSID Test1 configuration page for
access control: RADIUS server configuration

Figure 5.6: Meraki dashboard overview [20]

When everything is set up to work with RADIUS authentication and WPA2-Enterprise,
a TLS tunnel will thus be established using certificates between the AP and the RADIUS
server, as can be seen in Figure 5.7.

Figure 5.7: The TLS Tunnel establishment, taken from [18]

68

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

When a client tries to connect to the network via the access point, the packets
exchanged between the AP and the RADIUS server can be captured using tcpdump and
filtering on the tcp port 2083 (RADSEC default port) and look like this:

Figure 5.8: The TLS Tunnel establishment between the Meraki AP and the RADIUS server

The first three packets correspond to the TCP 3-way handshake, followed but the Client
Hello, Server Hello, Certificate, etc., as mentioned in the Figure 5.7.

5.4 OpenRoaming considerations: Cisco Spaces

To integrate OpenRoaming with Cisco Spaces, it is necessary to create an OpenRoaming
profile, enabling hotspot on connectors, and configuring controllers to associate them
with the profiles. To do so, the documentation "OpenRoaming integration with Cisco
Spaces" [17] was used. The goal is to link Cisco Spaces to the Meraki Cloud and then to
configure an OpenRoaming-enabled SSID. Its access policy will be set to either "Accept all
authenticated users" or "Accept only your users" and preferred credentials will be specified
to favor the e-ID credentials, as can be seen in Figure 5.9.

Figure 5.9: OpenRoaming Setup of the Test1 SSID in Cisco Spaces

69

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

After this setup, the Meraki configuration will be slightly modified by this integration,
as the devices will now send RADIUS Access-Request packets via a Meraki proxy, which
will forward these messages to the specified RADIUS servers.

5.5 EAP/RADIUS server

The goal of the EAP server is to set up REST and an EAP-TTLS tunnel with PAP over
RADSEC (RADIUS over TLS) on FreeRADIUS. FreeRADIUS provides strong documentation
for configuration as it can be complex [114].

Note that the server is marie.tiedie.io (185.48.12.253) and ssh is needed to access it.
To run the server in debug mode, this command is used:

freeradius -fxx -l stdout

For testing purposes, a local user account can be added in /etc/freeradius/3.0/users

for authentication:

testuser Cleartext-Password := "password"

This allows any device to get access to the network by connecting using the right SSID
in the Wi-Fi settings and entering the user "testuser" with the password "password" to
authenticate. The user credentials are stored in plain text for testing purposes.

When these configurations are done, the FreeRADIUS server should thus be able to
use:

• EAP-TTLS with PAP for Wi-Fi authentication request coming from the AP.
• RADSEC (RADIUS over TLS) for secure RADIUS traffic.
• REST to integrate the auth server that will validate the credentials received.

5.5.1 Certificates generation

To be able to use RADSEC (RADIUS over TLS), a server certificate is required for the TLS
handshake. This certificate is signed by the Cisco CA and will enable the access point to
establish a secure TLS tunnel with the server.

In addition to the certificate used in the TLS handshake, a certificate is needed for the
EAP-TTLS conversation. OpenSSL is used for this purpose.

First, the goal is to create a Certificate Authority (CA):

openssl genrsa -out ca.key 2048
openssl req -x509 -new -nodes -key ca.key -sha256 -days 1024 -out ca.pem

70

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

This creates a CA key (ca.key) and a CA certificate (ca.pem) which will sign the server
certificate. The first command generates a 2048-bit RSA private key for the CA while the
second command creates a self-signed certificate using the CA private key (ca.key) and
valid for 1024 days, stored in ca.pem.

Then, the server certificate that is signed with the CA is created:

openssl genrsa -out server.key 2048
openssl req -new -key server.key -out server.csr (-config config.cnf)
openssl x509 -req -in server.csr -CA ca.pem -CAkey ca.key -CAcreateserial

-out eap_server.pem -days 500 -sha256

This creates the server’s private key (server.key) and a signed server certificate (server.pem),
required for EAP-TTLS. The first command generates the private key for the server. The
second command then creates a Certificate Signing Request (CSR) for the server. Finally,
the last command is used to sign the server’s CSR with the CA certificate and key, creating
the server’s certificate (server.pem) with a validity of 500 days.

All the generated files are placed in the "certs" folder of FreeRADIUS. Also note that
the self-signed CA will be placed in the Meraki cloud controller via its dashboard to allow
the access point to trust this CA.

These commands ensure that the FreeRADIUS server has the correct permissions to
access the server key file and then restart the server to ensure the permissions are set:

sudo chmod 640 /etc/freeradius/3.0/certs/server.key
sudo chown freerad:freerad /etc/freeradius/3.0/certs/server.key
sudo systemctl restart freeradius

These commands restrict permissions on server.key, allowing only the FreeRADIUS server
to access it and then set the file owner and group to FreeRADIUS’s system user.

5.5.2 RADSEC configuration

To add a RADSEC client, it is necessary to edit /etc/freeradius/3.0/clients.conf :�
1 client radsec_client {
2 ipaddr = <Meraki AP IP> (81.245.174.125)
3 secret = radsec
4 proto = tcp
5 tls {
6 ca_file = /etc/freeradius /3.0/ certs/ca.pem
7 certificate_file = /etc/freeradius /3.0/ certs/

radsec_server.pem

71

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

8 private_key_file = /etc/freeradius /3.0/ certs/
radsec_server.key

9 }
10 }� �

Listing 5.1: FreeRadius configuration: RADSEC client

This configuration defines a RADSEC client with the AP’s IP (81.245.174.125) and a shared
secret for RADSEC authentication. This section also configures the server to use TLS by
specifying the paths to the certificate and key files.

Then it is necessary to enable RADSEC at the /etc/freeradius/3.0/sites−available/tls
site:�

1 listen {
2 ipaddr = 185.48.12.253
3 port = 2083
4 type = auth
5

6 proto = tcp
7

8 # Send packets to the inner tunnel virtual server
9 virtual_server = inner -tunnel

10

11 clients = radsec
12

13 ...
14 tls {
15 #private_key_password = whatever
16 private_key_file = /etc/freeradius /3.0/ certs/

radsec_server.key
17 certificate_file = /etc/freeradius /3.0/ certs/

radsec_server.pem
18 auto_chain = no
19 }
20 }
21

22 clients radsec {
23 client mamaes {
24 ipaddr = 81.245.174.125
25 proto = tls
26 virtual_server = inner -tunnel
27 secret = radsec
28 }
29 }

72

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

� �
Listing 5.2: FreeRadius configuration: RADSEC configuration

It defines the listening server for incoming RADSEC connections on 185.48.12.253:2083,
specifying the IP, port, and protocol type (TCP). This routes requests to the inner-tunnel
virtual server to handle inner EAP processing.

5.5.3 EAP module

This section explains how EAP can be enabled in FreeRADIUS using the rlm_eap module
[115].

A module can be enabled (in order for FreeRADIUS to load it) by linking it from the
mods-available folders to the mods-enabled folder:

sudo ln -s /etc/freeradius/3.0/mods-available/module
/etc/freeradius/3.0/mods-enabled/

It is necessary to edit /etc/freeradius/3.0/mods− enabled/eap to make it work with
EAP-TTLS [116] [19]:�

1 eap {
2 default_eap_type = ttls
3 timer_expire = 60
4 ignore_unknown_eap_types = no
5 cisco_accounting_username_bug = no
6

7 tls -config tls -common {
8 #private_key_password = whatever
9 private_key_file = /etc/freeradius /3.0/ certs/eap_server

.key
10 certificate_file = /etc/freeradius /3.0/ certs/eap_server

.pem
11

12 }
13

14 ttls {
15 tls = tls -common
16 default_eap_type = pap
17 copy_request_to_tunnel = yes
18 use_tunneled_reply = yes
19 virtual_server = "inner -tunnel"
20 }
21 }

73

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

� �
Listing 5.3: FreeRadius configuration: EAP module/EAP-TTLS

It sets EAP-TTLS as the default EAP type, establishing the secure tunnel. PAP is used within
the tunnel as it sends credentials in plaintext, suitable within this secure TLS tunnel.

Then, to ensure that PAP is used, /etc/freeradius/3.0/sites−enabled/inner−tunnel
must be edited:�

1 authorize {
2 eap {
3 ok = return
4 }
5 files
6 }
7 authenticate {
8 Auth -Type PAP {
9 pap

10 }
11 Auth -Type EAP {
12 eap
13 }
14 }� �

Listing 5.4: FreeRadius configuration: PAP and EAP configuration

This setup ensures that PAP is used for authentication within the inner-tunnel, where
PAP credentials are securely tunneled.

5.5.4 REST module

This section explains how to enable REST in /etc/freeradius/3.0/mods− available/rest

using the rlm_rest module [117] [68]. This module is used to translate RADIUS authentica-
tion requests into HTTP requests and send them to the auth server.�

1 rest {
2 tls {
3 ca_file = /etc/freeradius /3.0/ certs/ca_auth_server.pem
4 ca_path = /etc/freeradius /3.0/ certs
5 }
6 connect_uri = "https: //marie.tiedie.io:443/"
7

8 authenticate {
9 uri = "${.. connect_uri}authenticate"

74

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

10 method = "post"
11 header = ’Content -Type: application/json’
12 body = "json"
13 data = ’{" idToken": "%{User -Name}", "accessToken": "%{User -

Password }"}’
14 tls = ${.. tls}
15 }� �

Listing 5.5: FreeRadius configuration: REST module

This configuration enables the REST module to authenticate users by sending the idToken
and the accessToken in JSON format to marie.tiedie.io. The endpoint where the request is
sent is https : //marie.tiedie.io : 443/authenticate.

Finally, the inner tunnel is modified:�
1 authenticate {
2 Auth -Type REST {
3 rest
4 }
5 }� �

Listing 5.6: FreeRadius configuration: REST configuration

This adds the REST authentication type, allowing FreeRADIUS to use the REST module
when authenticating via an external server.

5.6 Auth server

The auth server has an embedded database that allows one to manage users and their
credentials. It handles incoming requests from users that want to gain access to a network
and thus need their credentials to be verified, and stores user tokens when they authenticate
to the IDP.

5.6.1 Endpoints

The auth server defines 3 main endpoints:

POST /auth

It is used to manage interactions between the IDP and the auth server. The /auth endpoint
exchanges an authorization code received in a JSON input containing the authCode
for tokens (ID token, access token, refresh token) using Google OAuth via the token
endpoint of Google. It then stores the tokens in RocksDB, using the idToken as the key
and concatenating the accessToken and refreshToken as value. The possible responses from

75

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

the server are "200 OK" if authentication succeeds, "500 Internal Server Error" if token
exchange or storage fails, and "415 Unsupported Media Type" if the content type is not
JSON. To exchange an authorization code for tokens, the exchangeAuthCodeForTokens

function is called. It constructs an HTTP POST request to the OAuth provider’s token
endpoint. The request must contain the required parameters, including the client id
and secret, the code, the grant type and the redirect URI. The request is made to the
https : //accounts.google.com/o/oauth2/v2/auth endpoint.

POST /authenticate

It is used to manage interactions between the RADIUS server and the auth server. The
/authenticate endpoint verifies if the tokens provided in the received request (ID token and
access token) match the stored tokens in RocksDB. The tokens are received in a JSON
format that contains the idToken and the accessToken. The server then searches for the
provided idToken in the database and, if found, retrieves the associated access token. Finally,
it compares the provided accessToken with the stored one. The possible responses from the
server are "200 OK" if authentication succeeds, "401 Unauthorized" if authentication fails
and "415 Unsupported Media Type" if content type is not JSON. The token verification is
done in the authenticateTokens function. It checks if the tokens correspond to a valid and
authenticated user and checks if the access token is still valid and not expired. If the access
token is expired, it calls the exchangeRefreshTokenForNewAccessToken function to
replace it and notify the device that the access token was refreshed via Firebase Messaging
[50]. Firebase Cloud Messaging allows the auth server to reliably send messages to a client
application. The client application is identified via a unique token string which is required
to send the message to the client. When the client receives the message, he can then update
its access token with the refreshed one and make a new access request to the network with
the valid tokens.

Here is the pseudo-code for the authenticateTokens function:

76

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Algorithm 1 authenticateToken: Checks token validity
Data: idToken, accessToken
Result: true or false
StoredIdToken ← GetIdTokenFromDB(idToken)
StoredAccessToken ← GetAccessTokenFromDB(idToken)
if StoredIdToken is null then

return false
end
if isAccessTokenValid() is false then

StoredRefreshToken ← GetRefreshTokenFromDB(idToken) if StoredRefreshToken ̸=
null and accessToken = hashed(StoredAccessToken) then

newAccessToken ← exchangeRefreshTokenForNewAccessToken(StoredRefreshToken)

StoreNewAccessTokenInDB(newAccessToken)
NotifyDeviceApplication() // FirebaseMessaging
return false

end
return false

end
if hashed(StoredAccessToken) = accessToken then

return true
end

The GetIdTokenFromDB,StoredAccessToken andGetRefreshTokenFromDB func-
tions simply retrieve the tokens from the embedded database of the auth server.

The isAccessTokenV alid function is used to check if the access token is not expired by
querying the https : //oauth2.googleapis.com/tokeninfo?access_token = $accessToken

endpoint from Google and checking the "expires_in" field from the JSON response.
The exchangeRefreshTokenForNewAccessToken function is used to exchange the

expired access token for a new and refreshed access token using the refresh token. The
request is made to the usual https : //oauth2.googleapis.com/token endpoint with the
grant_type of the request set to "refresh_token".

GET /generateAndroidProfile

It is used to generate Android profile for the users. The /generateAndroidProfile generates
a Passpoint (Hotspot 2.0) profile in XML format for Android devices according to the
Passpoint specification [6]. It combines the generated profile with a CA certificate of the
server into a multipart/mixed response. The profile is filled via the value provided in the
AndroidProfileRequest object that contains all required attributes. These attributes are
either provided by the user in the GET request or hardcoded. The generateAndroidPro-
fileXML function is called to generate the profile XML by replacing placeholders in the
template XML Android profile file. The CA certificate is encoded in Base64 using the
loadAndEncodeDERCertificate function. The complete structure, including the headers,

77

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

the profile, the CA and the boundary to delimit content is put in a multipart/mixed
response and base64-encoded before sending it to the device. The structure of the profile
is shown in Figure 5.10.

Figure 5.10: The Passpoint profile based on the structure described in [6]

Other endpoints

For testing and demonstration purposes only, other endpoints are defined, but should not
be used in production:

• POST /addUser: It adds a new user (tokens) to the database via a JSON containing
idToken, accessToken, and optionally refreshToken.

• PUT /updateUser: It updates stored tokens for an existing user.
• DELETE /deleteUser: It deletes tokens for a user identified by idToken.

5.6.2 Token Handling

Tokens are stored in a RocksDB database using the idToken as the key. The accessToken,
refreshToken and FMCToken are concatenated with :: as the delimiter. The database
supports operations such as storing (put), retrieving (get), and deleting (delete) tokens.

Persistance

The user data are stored in RocksDB, which is a persistent key-value database. The
RocksDB database is initialized on a specific path (data/rocksdb in the code). This
directory is created during the first run if it does not exist, and the database is persistent.
Even if the server restarts, the data remain in the data/rocksdb directory unless explicitly
deleted.

78

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

5.6.3 External Service: Google OAuth Token Exchange

The exchangeAuthCodeForTokens function handles the exchange of an authorization
code for tokens using the Google OAuth endpoint. It uses OkHttp with logging for HTTP
requests.

The exchangeRefreshTokenForNewAccessToken function allows the server to re-
fresh an expired access token using the refresh token.

5.6.4 Formats

The Request/Response Format is JSON. In kotlin, it is possible to define structures
using data classes annotated with @Serializable, to handle authentication requests and
responses on the server. The @Serializable annotation enables seamless serialization and
deserialization of these data classes into JSON and vice versa, which is particularly useful
for handling HTTP requests and responses in a REST API. In this project, four classes
are defined:

• AuthRequest: "authCode": "string", "fcmToken": "string": It represents the request
payload sent to the /auth endpoint.

• AuthResponse: "accessToken": "string", "refreshToken": "string?", "idToken": "string":
It represents the response payload returned by the /auth endpoint after a successful
token exchange.

• AuthTokens: "idToken": "string", "accessToken": "string" : It represents the payload
for the /authenticate and /deleteUser

• AuthTokensWithRefresh: "idToken": "string", "accessToken": "string", "refresh-
Token": "string?" : It represents the payload for the /addUser and /updateUser
endpoints.

• AndroidProfileRequest: "friendlyName": "string", "fqdn": "string", "realm": "string",
"username": "string", "password": "string", "eapType": "int", "innerMethod": "string"
: It represents the attributes needed to construct the Android Passpoint profile.)

5.6.5 SSL configuration

To set up and start the server with SSL (HTTPS), Ktor is used. SSL is mandatory as
endpoints are accessible only via HTTPS [34]. In the main server function, the Ktor
server is initialized with an SSL configuration, loading a PKCS12 keystore (server.p12) for
HTTPS. The server is then started on port 443.

The SSL configuration involves certificates. These certificates were generated using
openssl in the same way as in the subsection 5.5.1. This will result in a server.pem file
that is the server certificate. Its SAN is marie.tiedie.io.

Kotlin applications often use the PKCS12 format for keystores in Netty SSL configu-
rations with Ktor, as it is the default keystore type in modern JVM environments [97]. To
convert the certificates to PKCS12 format, this openssl command is used:

79

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

openssl pkcs12 -export -in server.pem -inkey server.key -out server.p12
-name ktorServer -CAfile ca.pem -caname root

This command assigns an alias (ktorServer) to the key pair in the keystore and generates
the server.p12 certificate.

5.7 IDP (Firebase, Google)

5.7.1 Firebase set up

Firebase requires several setups before actually being able to authenticate users through
Google on Android. This is documented on the "Authenticate with Google on Android"
page of the Firebase documentation [51].

First, a Firebase project must be created via the Firebase console [32]. In the authenti-
cation section of the new project, a sign-in method must be added and in this case, Google
is selected. With Google authentication, the SHA fingerprint of the application must be
specified. The fingerprint can be found via the Gradle signingReport command in Android
Studio, as can be seen in Figure 5.11.

Figure 5.11: The SHA-1 of the signing certificate using the Gradle signingReport command in
Android Studio

After this step, the Firebase configuration file (google-services.json) needs to be replaced
in the Android Studio project with the new one provided in Firebase.

Some dependencies are needed in the root-level (project-level) Gradle file to configure
Google services plugin such as Firebase and Google APIs in the application:

alias(libs.plugins.google.gms.google.services) apply false

80

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Other dependencies are needed in the module (app-level) Gradle file to apply the
Google services plugin and include dependencies for Firebase Authentication, Google Play
Services Authentication, and OkHttp (for HTTP requests):

alias(libs.plugins.google.gms.google.services)

implementation(libs.firebase.auth)
implementation(platform(libs.firebase.bom))
implementation(libs.google.firebase.auth)
implementation(libs.play.services.auth)
implementation(libs.okhttp)

Note that using Firebase BoM ensures that all Firebase dependencies are compatible
and have consistent versions throughout the project.

After this, everything is setup and Firebase can be integrated in the mobile application.
In this project, Android Studio [33] will be used to develop the Kotlin application. It

is particularly useful as a Firebase Assistant tool in it allows to directly add the firebase
project to the Android project. It also allows to emulate an Android phone.

5.7.2 Google Identity set up

To use the Google OAuth 2.0 endpoints and thus get the necessary tokens, Google
Identity must be correctly set up, as documented in the "Using OAuth 2.0 for Web
Server Applications" page of the documentation [34]. The Google APIs must be enabled
in the API Console [5] for this project. For this project, the Identity Toolkit API [25] to
manage authentication through the Identity Platform and Firebase Installations API [51]
that help with application development are enabled.

In the console, Firebase autocreated the project, including the API keys, OAuth 2.0
client ID and service accounts. In the OAuth client ID page section, the Web client (auto
created by Google Service) needs to be modified to allow a new redirect URI, https :

//marie.tiedie.io/auth. In this section, the client id and secret used for the authorization
and token requests from the auth server are available, as can be seen in Figure 5.12.

81

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.12: Web client OAuth 2.0 ID from API Console, taken from [5]

The client ID and secret will be used on the auth server to make requests to the IDP.

5.8 IDP (BOSA, e-ID)

The integration with BOSA and e-ID credentials is not yet done because it requires a client
ID and a client secret, which must be provided by BOSA. Due to legal and administrative
procedures, the process to receive these credentials has taken longer than expected and
cannot be documented here.

However, the overall integration logic is essentially the same as with Firebase, Google
Identity and Google credentials. Firebase is designed to support many types of credentials.
As a result, since the integration is already working with Google credentials, the transition
to using e-ID credentials will involve minimal changes. The biggest modification required
will be to update the client ID and client secret to the ones provided by BOSA, and update
the endpoint to query.

5.9 Demonstration

A video demonstrating the whole solution is available at the following link:

OpenRoaming thesis - Demo and progress (Marie Maes)-20241219 1405-1.mp4

First, the client must authenticate through the IDP using either its Google or e-ID
credentials in the mobile application, as shown in Figure 5.15.

82

https://mseduculiegebe-my.sharepoint.com/:v:/g/personal/marie_maes_student_uliege_be/EaXOccveMkJPl4hKcOZVH_4BjZO7yJjZnGzWQXEpQpMBrA

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.13: Welcome page of the mobile ap-
plication that allows the user to authenticate

Figure 5.14: Google screen to authenticate via
the FirebaseAuth application

Figure 5.15: Screenshots of the mobile application

Once the user is successfully authenticated, he will receive an authorization code from
either the Google or e-ID IDP, and will exchange it for an id, access and refresh tokens by
making a request containing the authorization code to the auth endpoint of the auth server.
The auth server will then manage the exchange of the authorization code for the tokens
via the Google or e-ID endpoint, as can be seen in Figure 5.16. The mobile application
then receives the tokens and sends another request to the auth server to get its Hotspot
2.0 profile through the generateAndroidProfile endpoint.

83

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.16: Logs of the auth server that show the requests to the auth and to the generateAn-
droidProfile endpoint

Once the mobile application receives a response from the auth server with the profile,
the user will see a pop-up notification in the settings asking if he wants to allow suggested
Wi-Fi networks, which will authorize the mobile application to suggest networks and thus
connect the device automatically and seamlessly, as can be seen in Figure 5.17.

84

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.17: Pop-up notification to allow suggested Wi-Fi networks

Once this is done, the device can now seamlessly connect to the OpenRoaming-enabled
Wi-Fi. It will involve all the components developed in this project. These components are
represented in Figure 5.18.

Figure 5.18: OpenRoaming components summary

First, the client device will broadcast probe requests to search for available SSIDs near
him. The access points then respond with probe responses. One of these responses is sent
from the AP with SSID "Test1" and is shown in Figure 5.19.

The "Wi-Fi Alliance: Hotspot 2.0 Indication" field indicates that the network sup-
ports Passpoint (802.11u/Hotspot 2.0). Then, the "Microsoft Corp." and "Cisco Meraki"
Vendor Specific fields indicate the OpenRoaming RCOI for "allow all users", 004096. The
interworking element is part of the 802.11u specification and supports network discovery

85

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

and selection by providing additional metadata about the network. The Access Network
Type being "Free public network" is common for OpenRoaming-enabled networks. Finally,
the advertisement protocol is set to the Access Network Query Protocol (ANQP), which is
the common protocol used with OpenRoaming to query the network for information such
as roaming consortiums and other OpenRoaming-related fields.

Figure 5.19: Probe response information for the OpenRoaming-enabled SSID Test1

The Meraki access point then receives the 802.11 association request from the client,
as shown in Figure 5.20.

Figure 5.20: Event logs from the meraki access point

When the access point receives the request from a user to gain access to the network, it
needs to communicate with the RADIUS server for the authentication process via EAP-TTLS.
First, the EAP identity is sent to the RADIUS server, as can be seen in Figure 5.24. The
RADIUS server receives an Access-Request packet with the anonymous outer identity set to:

User-Name = "anonymous@test-beid.openroaming.net"

The User-Name is "anonymous" with the realm being test− beid.openroaming.net. The
NAS-IP-Address is the IP address of the access point. There are also some attributes
specific to Meraki, such as the device name of the access point. In this case, the Meraki
access point is "Marie AP".

86

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.21: EAP Identity exchange in the Access-Request RADIUS message

After the initial Access-Request packet, the RADIUS server sends an Access-Challenge
to actually start the TTLS conversation, as shown in Figure 5.22.

Figure 5.22: Access-Request packet from the RADIUS server

This TLS handshake between the AP and the RADIUS server then starts and can be
captured using tcpdump and filtering on the tcp port 2083 (RADSEC default port). It is
represented in Figure 5.23.

Figure 5.23: The TLS Tunnel establishment between the Meraki AP and the RADIUS server, in
WireShark

The same exchange is also captured in the FreeRADIUS logs, as can be seen in
Figure 5.24.

87

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.24: The TLS Tunnel establishment between the Meraki AP and the RADIUS server, in the
FreeRADIUS logs

This handshake concludes the first phase of the EAP-TTLS conversation. After that,
the tunnel is successfully established and the second phase starts. In this phase, the client
needs to authenticate by giving its credentials as a username and password to the RADIUS
server. This exchange is shown in figure Figure 5.25.

Figure 5.25: Second phase of the EAP-TTLS exchange: the user sends its credentials

88

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

The RADIUS server then needs to ensure that the credentials given by the user are
valid. To do so, it sends a REST request to the authenticate endpoint of the auth server
with the received id token and access token, as shown in Figure 5.26.

Figure 5.26: REST call by the RADIUS server to the auth server to check the user credentials

Upon receiving the request, the auth server checks if the credentials received (the
id and access token) are in its database. If this is the case and the tokens are valid, it
responds to the RADIUS server with a "200 OK" status, as shown in Figure 5.27.

Figure 5.27: Second phase of the EAP-TTLS exchange: the user sends its credentials

The "200 OK" status is received by the RADIUS server that interprets it as a successful
authentication for the user, and thus sends an Access-Accept message to the access point.

Figure 5.28: Access-Accept packet from the RADIUS server

When the access point receives the Access-Accept message, its next logs (RADIUS
response, EAP success) confirm that the access point communicated with the RADIUS server
for authentication using EAP successfully. Finally, the 802.1X log shows that the client, when
successfully authenticated with the RADIUS server, authenticates over the WPA2/WPA3
protocol, as shown in Figure 5.29.

89

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

Figure 5.29: Event logs from the meraki access point

Finally, when the access point gives access to the user to the network, the user will
finally connect to the Wi-Fi without requiring any action on his side. The user did not
push any button, enter any credentials, had to accept anything, etc. Once authenticated
with Google or e-ID using the application, he never has to authenticate again and will
connect seamlessly to the available OpenRoaming Wi-Fi. In fact, Figure 5.30 shows that
the user is "Connected via FireBaseAuth", which is the mobile application.

Figure 5.30: Screenshot of the user being connected to an OpenRoaming Wi-Fi

5.10 Use-cases

In municipality or communal building, such as a town hall, public library, or community
center, free Wi-Fi access is often offered to their visitors. These venues often have a wide
range of users, including residents, tourists, and government workers, making it essential
to provide secure and seamless connectivity.

By integrating OpenRoaming with e-ID credentials, these buildings enable visitors
to authenticate with a highly secure identity verification mechanism, ensuring that only
legitimate users gain access to the Wi-Fi network and making it difficult for unauthorized
users to access the network. Also note that authenticating users with e-ID credentials

90

CHAPTER 5. PROTOTYPE: IMPLEMENTATION AND DEMONSTRATION

ensures accountability, as each user is tied to a verified identity. It could thus create a
safer and more reliable Wi-Fi environment for every visitor.

91

Chapter 6

Conclusion

The main objective of this project was to evaluate how e-ID can be integrated as an Identity
Provider (IDP) within the OpenRoaming federation, in order to get seamless, secure, and
private Wi-Fi access. The project has focused on understanding the theoretical background
of OpenRoaming, Wi-Fi standards, and network components, as well as exploring the e-ID
authentication method.

Once the theoretical background was established, it was necessary to investigate how
this integration could possibly be implemented. All components necessary for this project
were developed, such as the mobile application, the access point, the AAA server which
includes the EAP/RADIUS server and the auth server, and the IDP. Some choices were critical
during this step, such as the selection of the EAP method and the programming language.
The implementation of each component has been carefully thought out, going from the
parameters for the Hotspot 2.0 profile to the query parameters for the IDP endpoints.

Finally, the actual implementation was done. It combined the configuration for the
access point, the EAP server, and programming for the mobile application and auth server.
It also involved working with certificates and CAs for the TLS conversation between the
AP, the EAP server, the auth server and the mobile device.

The final prototype is an Android device that, after downloading the mobile application
and authenticating successfully with the IDP, is able to seamlessly connect to a Wi-Fi that
it had never visited before, while remaining in a safe environment.

This secure environment is ensured by several components in the project. First, the
configured FreeRADIUS server that is able to communicate with the auth server using
HTTPS for secure user authentication, and that is also able to work with EAP-TTLS and
PAP over RADSEC for secure credential transmission with the access point. The access point
uses WPA2 Entreprise to ensure secure wireless communication. Finally, the use of the
OAuth 2.0 and OpenID Connect protocols ensured a secure authentication through the
IDP, with reliable e-ID credentials. The access and refresh tokens, with the access token
expiring after some time, also allowed the process to be more secure.

92

CHAPTER 6. CONCLUSION

6.1 Possible improvements

While this thesis is a strong foundation for integrating e-ID as an Identity Provider within
the OpenRoaming federation, it also opens the door to potential enhancements and future
work. In the following section, some possible improvements are described.

Actual e-ID integration

A potential improvement for the project would be to complete the integration of e-ID
credentials once the client ID and the secret are provided by BOSA. This would enable
seamless authentication using the Belgian e-ID system.

Database security

A potential improvement for this project would be to enhance the security of the embedded
RocksDB database, which currently stores credentials as key-value pairs in plain-text.
This setup is simple and working but additional measures could be implemented to ensure
better protection of sensitive data, such as encryption, access controls, or integration of
more advanced security features. These enhancements would help in the case where the
database would be compromised. The goal of this enhancement would be that, in the
worst-case scenario of a data breach, the exposed data would be unusable by the attacker.

EAP-PPT

For this project, EAP-TTLS was used not only for its strong security but also because it
was compatible with FreeRADIUS, which is not the case of EAP-PPT. However, EAP-PPT
is an EAP type that is particularly suited for use cases such as the OpenRoaming one, as
it allows users who will connect to a public network to do so anonymously and securely.
EAP-PPT would thus minimize the exposure of user credentials and identities during the
authentication process. Implementing this would be a significant challenge, as FreeRADIUS
does not support it and significant changes would be required.

Cross-border e-ID integration

Currently, the use of e-ID credentials in this project is limited to Belgian citizens. However,
future work could be to enable cross-border e-ID integration, as many European countries
also have e-ID systems [4]. This improvement would be an interesting feature, as it
would align with the OpenRoaming principle of roaming more efficiently. However, this
enhancement would be more focused on the legal aspect, since integrating cross-border e-ID
would only require using different client id, secrets and querying from different endpoints.
The major part of the work would thus be the legal communication.

93

CHAPTER 6. CONCLUSION

iOS mobile application

For now, the project is designed to work exclusively with Android devices. A great im-
provement would be to develop an iOS application that would allow iOS users to also have
access to OpenRoaming using their e-ID credentials.

Scaling and performances

A big improvement for this project would be to evaluate various components of the system
under realistic loads to test the scalability and the performances of the OpenRoaming
application.

It would involve establishing the metrics that are interesting to measure and where
to measure them. For example, it could be the latency for authentication requests to be
processed end-to-end, the number of requests the auth server, the RADIUS server, or the
overall system can handle per second, the resource utilization of the marie.tiedie.io VM
that hosts both servers, the failure rate, to evaluate the maximum number of simultaneous
users the system can support, etc.

It would also require testing different scenarios that emulate real-world usage. For
example, testing authentication requests and test different scenarios where there is a
component failure (e.g., Google IDP unavailability). It could also involve the introduction
latency, jitter, and packet loss to mimic real-world connectivity issues.

Finally, it can be interesting to test scalability by finding the maximum load that the
system can handle and potentially to identify bottlenecks in the components.

94

Bibliography

[1] 1980. User Datagram Protocol. RFC 768. https://doi.org/10.17487/RFC0768

[2] 1981. Transmission Control Protocol. RFC 793. https://doi.org/10.17487/
RFC0793

[3] 2024. Eduroam. https://eduroam.org/ Accessed: 2024-10-31.

[4] 2024. eIDAS Dashboard. https://eidas.ec.europa.eu/efda/browse/
notification/eid-chapter-contacts Version: 2.15.1 - 30/10/2024. Managed
by the Directorate-General for Digital Services, European Commission..

[5] 2024. Google API Console: OpenRoaming Project. https://console.cloud.
google.com/apis/credentials?inv=1&invt=Abh0nA&project=openrroaming
Accessed 13/12/2024.

[6] Android. 2024. Passpoint (Hotspot 2.0). https://source.android.com/docs/
core/connect/wifi-passpoint#passpoint_r1_provisioning. Last updated
2024-12-18 UTC., Accessed: 11/09/2024.

[7] Auth0. 2024. Introduction to JSON Web Tokens. https://jwt.io/introduction
Crafted by Auth0 - JWT.io Token Based Authentication.

[8] Brinckman B. and Sroga J. 2024. OpenRoaming under the hood. PowerPoint
presentation at Cisco Live. Distinguished Engineer, bbrinckm@cisco.com and
Network Support Engineer, jsroga@cisco.com.

[9] Ed. B. de Medeiros, M. Scurtescu, P. Tarjan, and M. Jones. 2014. OAuth 2.0
Multiple Response Type Encoding Practices. https://openid.net/specs/
oauth-v2-multiple-response-types-1_0.html Google, Facebook, Microsoft,
February 25, 2014.

[10] Mark A. Beadles, Jari Arkko, Dr. Bernard D. Aboba, and Pasi Eronen. 2005. The
Network Access Identifier. RFC 4282. https://doi.org/10.17487/RFC4282

[11] Belgian Mobile ID SA/NV. 2024. itsme - Your Digital ID. https://www.itsme-id.
com/en-BE © 2024 Belgian Mobile ID SA/NV .

95

https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://eduroam.org/
https://eidas.ec.europa.eu/efda/browse/notification/eid-chapter-contacts
https://eidas.ec.europa.eu/efda/browse/notification/eid-chapter-contacts
https://console.cloud.google.com/apis/credentials?inv=1&invt=Abh0nA&project=openrroaming
https://console.cloud.google.com/apis/credentials?inv=1&invt=Abh0nA&project=openrroaming
https://source.android.com/docs/core/connect/wifi-passpoint##passpoint_r1_provisioning
https://source.android.com/docs/core/connect/wifi-passpoint##passpoint_r1_provisioning
https://jwt.io/introduction
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://doi.org/10.17487/RFC4282
https://www.itsme-id.com/en-BE
https://www.itsme-id.com/en-BE

BIBLIOGRAPHY

[12] Pat R. Calhoun and Dr. Bernard D. Aboba. 2003. RADIUS (Remote Authentication
Dial In User Service) Support For Extensible Authentication Protocol (EAP). RFC
3579. https://doi.org/10.17487/RFC3579

[13] Pat R. Calhoun, Erik Guttman, Jari Arkko, and John A. Loughney. 2003. Diameter
Base Protocol. RFC 3588. https://doi.org/10.17487/RFC3588

[14] Certipost. 2024. Belgian Certificate Policy Practice Statement for eID PKI Infras-
tructure Citizen CA. Technical Report. https://repository.eid.belgium.be/
downloads/citizen/en/CPS_CitizenCA_BRCA34.pdf Release Date: 03/09/2024,
OIDs: 2.16.56.1.1.1.2, 2.16.56.9.1.1.2, 2.16.56.10.1.1.2, 2.16.56.12.1.1, Initial version
1.0 by Bart Eeman.

[15] Cisco. 2024. Cisco Spaces. https://spaces.cisco.com/ © 2024 Cisco. All Rights
Reserved.

[16] Cisco 2024. OpenRoaming IDP Onboarding: Procedure for Identity Providers to
Become a Member of the OpenRoaming Federation through RADSEC Leveraging
Cisco Intermediate CA (WBA Root). Cisco.

[17] Inc. Cisco Systems. 2024. OpenRoaming Integration with Cisco Spaces. https:
//documentation.meraki.com Last updated Jul 16, 2024. © 2024 Cisco Systems,
Inc.

[18] Cisco Systems, Inc. 2024. Configuring RADSec (MR). Cisco Systems, Inc. https://
documentation.meraki.com/MR/Encryption_and_Authentication/MR_RADSec
Last updated Oct 8, 2024.

[19] Cisco Systems Inc. 2024. Freeradius: Configure freeradius to work with EAP-TLS
authentication. Cisco Systems Inc. https://documentation.meraki.com/MR/
Encryption_and_Authentication/Freeradius%3A_Configure_freeradius_to_
work_with_EAP-TLS_authentication Last updated Oct 5, 2020, © 2024 Cisco
Systems, Inc.

[20] Cisco Systems, Inc. 2024. Meraki Dashboard: Data for Marie Testing. https:
//n560.meraki.com/Marie-network-wi/n/Kr1c-d4wb/manage/clients

[21] Cisco Systems, Inc. 2024. Meraki Homepage. https://meraki.cisco.com/ ©
2024 Cisco Systems, Inc.

[22] Cisco Systems, Inc. 2024. What is a Wireless LAN? https://www.cisco.
com/site/us/en/learn/topics/security/what-is-a-wireless-lan.html#
tabs-a107e9a621-item-6caff3e5bb-tab Accessed: 2024-10-31.

[23] Cisco Systems, Inc., Meraki. 2024. Hotspot 2.0. https://documentation.meraki.
com/MR/Other_Topics/Hotspot_2.0 Last updated: 2024-10-03, Accessed: 2024-10-
31.

96

https://doi.org/10.17487/RFC3579
https://doi.org/10.17487/RFC3588
https://repository.eid.belgium.be/downloads/citizen/en/CPS_CitizenCA_BRCA34.pdf
https://repository.eid.belgium.be/downloads/citizen/en/CPS_CitizenCA_BRCA34.pdf
https://spaces.cisco.com/
https://documentation.meraki.com
https://documentation.meraki.com
https://documentation.meraki.com/MR/Encryption_and_Authentication/MR_RADSec
https://documentation.meraki.com/MR/Encryption_and_Authentication/MR_RADSec
https://documentation.meraki.com/MR/Encryption_and_Authentication/Freeradius%3A_Configure_freeradius_to_work_with_EAP-TLS_authentication
https://documentation.meraki.com/MR/Encryption_and_Authentication/Freeradius%3A_Configure_freeradius_to_work_with_EAP-TLS_authentication
https://documentation.meraki.com/MR/Encryption_and_Authentication/Freeradius%3A_Configure_freeradius_to_work_with_EAP-TLS_authentication
https://n560.meraki.com/Marie-network-wi/n/Kr1c-d4wb/manage/clients
https://n560.meraki.com/Marie-network-wi/n/Kr1c-d4wb/manage/clients
https://meraki.cisco.com/
https://www.cisco.com/site/us/en/learn/topics/security/what-is-a-wireless-lan.html#tabs-a107e9a621-item-6caff3e5bb-tab
https://www.cisco.com/site/us/en/learn/topics/security/what-is-a-wireless-lan.html#tabs-a107e9a621-item-6caff3e5bb-tab
https://www.cisco.com/site/us/en/learn/topics/security/what-is-a-wireless-lan.html#tabs-a107e9a621-item-6caff3e5bb-tab
https://documentation.meraki.com/MR/Other_Topics/Hotspot_2.0
https://documentation.meraki.com/MR/Other_Topics/Hotspot_2.0

BIBLIOGRAPHY

[24] Cisco Systems, Inc., Meraki. 2024. Hotspot 2.0 Configuration Exam-
ple. https://documentation.meraki.com/MR/Other_Topics/Hotspot_2.0_
Configuration_Example Last updated: 2024-03-22, Accessed: 2024-10-31.

[25] Google Cloud. 2024. Identity Platform documentation. https:
//cloud.google.com/security/products/identity-platform?
hl=fr&_gl=1*13pqsse*_ga*MTUzMTMwMTU5OS4xNzI4ODQ3NTM2*_ga_
WH2QY8WWF5*MTczMTk0OTAzMS4xOC4xLjE3MzE5NTAwNTUuNTIuMC4w © 2024
Google Cloud.

[26] VMware End-User Computing. 2020. OAuth 2.0 and OpenID Connect (OIDC):
Technical Overview. https://www.youtube.com/watch?v=rTzlF-U9Y6Y 166,695
views.

[27] Arran Cudbard-Bell. 2019. Answer to: FreeRADIUS request without User-Password
attribute for REST module. https://stackoverflow.com/questions/57648427/
freeradius-request-without-user-password-attribute-for-rest-module/
57662829#57662829 Stack Overflow, Answered Aug 26, 2019. Copyright 2018, The
FreeRADIUS Project, licensed under CC BY.

[28] Curity. 2023. Claims Explained. https://curity.io/resources/learn/
what-are-claims-and-how-they-are-used/ This article has been updated on:
2023-02-21, Published by Curity, 7 min read.

[29] DB-Engines. 2024. DB-Engines Ranking of Key-value Stores. https://db-engines.
com/en/ranking/key-value+store Accessed: 2024-11-12, Copyright © 2024 Red
Gate Software Ltd.

[30] DB-Engines. 2024. System Properties Comparison Redis vs. RocksDB. https:
//db-engines.com/en/system/Redis%3BRocksDB Copyright © 2024 Red Gate
Software Ltd.

[31] DeepL. 2024. Better writing with DeepL Write. https://www.deepl.com/en/write
Accessed: 2024-10-07.

[32] Google Developers. 2024. Firebase Console. https://console.firebase.google.
com/project © 2024 Google Developers.

[33] Google Developers. 2024. Meet Android Studio. https://developer.android.
com/studio/intro © 2024 Google Developers.

[34] Google Developers. 2024. Using OAuth 2.0 to Access Google APIs. https:
//developers.google.com/identity/protocols/oauth2 Accessed: 2024-11-12.

[35] DNASpaces. 2019. openroaming-auth-service. https://wwwin-github.cisco.com/
DNASpaces/openroaming-auth-service. Accessed: 11-09-2024, first commit by
Nikhil Gupta (nigupta2).

97

https://documentation.meraki.com/MR/Other_Topics/Hotspot_2.0_Configuration_Example
https://documentation.meraki.com/MR/Other_Topics/Hotspot_2.0_Configuration_Example
https://cloud.google.com/security/products/identity-platform?hl=fr&_gl=1*13pqsse*_ga*MTUzMTMwMTU5OS4xNzI4ODQ3NTM2*_ga_WH2QY8WWF5*MTczMTk0OTAzMS4xOC4xLjE3MzE5NTAwNTUuNTIuMC4w
https://cloud.google.com/security/products/identity-platform?hl=fr&_gl=1*13pqsse*_ga*MTUzMTMwMTU5OS4xNzI4ODQ3NTM2*_ga_WH2QY8WWF5*MTczMTk0OTAzMS4xOC4xLjE3MzE5NTAwNTUuNTIuMC4w
https://cloud.google.com/security/products/identity-platform?hl=fr&_gl=1*13pqsse*_ga*MTUzMTMwMTU5OS4xNzI4ODQ3NTM2*_ga_WH2QY8WWF5*MTczMTk0OTAzMS4xOC4xLjE3MzE5NTAwNTUuNTIuMC4w
https://cloud.google.com/security/products/identity-platform?hl=fr&_gl=1*13pqsse*_ga*MTUzMTMwMTU5OS4xNzI4ODQ3NTM2*_ga_WH2QY8WWF5*MTczMTk0OTAzMS4xOC4xLjE3MzE5NTAwNTUuNTIuMC4w
https://www.youtube.com/watch?v=rTzlF-U9Y6Y
https://stackoverflow.com/questions/57648427/freeradius-request-without-user-password-attribute-for-rest-module/57662829#57662829
https://stackoverflow.com/questions/57648427/freeradius-request-without-user-password-attribute-for-rest-module/57662829#57662829
https://stackoverflow.com/questions/57648427/freeradius-request-without-user-password-attribute-for-rest-module/57662829#57662829
https://curity.io/resources/learn/what-are-claims-and-how-they-are-used/
https://curity.io/resources/learn/what-are-claims-and-how-they-are-used/
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/system/Redis%3BRocksDB
https://db-engines.com/en/system/Redis%3BRocksDB
https://www.deepl.com/en/write
https://console.firebase.google.com/project
https://console.firebase.google.com/project
https://developer.android.com/studio/intro
https://developer.android.com/studio/intro
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://wwwin-github.cisco.com/DNASpaces/openroaming-auth-service
https://wwwin-github.cisco.com/DNASpaces/openroaming-auth-service

BIBLIOGRAPHY

[36] Benoit Donnet. 2023-2024. Introduction to Computer Security, Part 1: Cryptography,
Chapter 3: Symmetric Cryptography, Chapter 4: Asymmetric Cryptography and
Chapter 6: Key Distribution; Part 2: Networking, Chapter 5: Network Attacks.
INFO0045 - ULiège - Academic Year 2023/2024.

[37] Dragonfly. [n. d.]. Top 26 Key-Value Databases Compared. https://www.
dragonflydb.io/guides/key-value-databases Accessed: 2024-11-12.

[38] eID PKI. 2024. eID PKI Repository Homepage. https://repository.eidpki.
belgium.be/#/home Accessed: 2024-11-05.

[39] Entrust.com. 2024. A Quick Guide to eIDAS, Electronic Signatures, and Digital
Certificates. https://www.entrust.com/sites/default/files/documentation/
ebook/eidas-digital-signing-guide-eb.pdf Accessed: 2024-10-07, ©2023 En-
trust Corporation.

[40] Dhruba Borthakur et al. 2023. RocksDB Overview. https://github.com/
facebook/rocksdb/wiki/RocksDB-Overview © 2024 GitHub, Inc.

[41] European Commission. 2024. eID. https://ec.europa.eu/
digital-building-blocks/sites/display/DIGITAL/eID Accessed: 2024-11-04.

[42] FOD Beleid en Ondersteuning – DG Digitale Transformatie. 2017. e-ID Official
Website. https://eid.belgium.be/en Powered by FOD Beleid en Ondersteuning
– DG Digitale Transformatie | 11.0.0 © 2017 CSAM.

[43] Dr. Warwick S. Ford, Dr. Santosh Chokhani, Stephen S. Wu, Randy V. Sabett,
and Charles (Chas) R. Merrill. 2003. Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices Framework. RFC 3647. https:
//doi.org/10.17487/RFC3647

[44] FPS BOSA. 2024. FAS-OIDC Integration Guide. https://bosa.
belgium.be/sites/default/files/content/documents/FAS%2520OIDC%2520-%
2520Integration%2520Guide.pdf version 6.5.

[45] Paul Funk and Simon Blake-Wilson. 2008. Extensible Authentication Protocol
Tunneled Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0).
RFC 5281. https://doi.org/10.17487/RFC5281

[46] Michal Garcarz and Thomas Wall. 2024. Understand EAP-FAST and Chaining
Implementations on AnyConnect NAM and ISE. Technical Report. Cisco Systems,
Inc. https://www.cisco.com/c/en/us/support/docs/wireless-mobility/
eap-fast/200322-Understanding-EAP-FAST-and-Chaining-imp.html Docu-
ment ID: 200322, Last updated: 2016-05-20, Accessed: 10/10/2024.

98

https://www.dragonflydb.io/guides/key-value-databases
https://www.dragonflydb.io/guides/key-value-databases
https://repository.eidpki.belgium.be/#/home
https://repository.eidpki.belgium.be/#/home
https://www.entrust.com/sites/default/files/documentation/ebook/eidas-digital-signing-guide-eb.pdf
https://www.entrust.com/sites/default/files/documentation/ebook/eidas-digital-signing-guide-eb.pdf
https://github.com/facebook/rocksdb/wiki/RocksDB-Overview
https://github.com/facebook/rocksdb/wiki/RocksDB-Overview
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/eID
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/eID
https://eid.belgium.be/en
https://doi.org/10.17487/RFC3647
https://doi.org/10.17487/RFC3647
https://bosa.belgium.be/sites/default/files/content/documents/FAS%2520OIDC%2520-%2520Integration%2520Guide.pdf
https://bosa.belgium.be/sites/default/files/content/documents/FAS%2520OIDC%2520-%2520Integration%2520Guide.pdf
https://bosa.belgium.be/sites/default/files/content/documents/FAS%2520OIDC%2520-%2520Integration%2520Guide.pdf
https://doi.org/10.17487/RFC5281
https://www.cisco.com/c/en/us/support/docs/wireless-mobility/eap-fast/200322-Understanding-EAP-FAST-and-Chaining-imp.html
https://www.cisco.com/c/en/us/support/docs/wireless-mobility/eap-fast/200322-Understanding-EAP-FAST-and-Chaining-imp.html

BIBLIOGRAPHY

[47] geeksforgeeks. [n. d.]. Difference between Cassandra and Re-
dis. GeeksforGeeks ([n. d.]). https://www.geeksforgeeks.org/
difference-between-cassandra-and-redis/ Last updated: 13 Jul, 2020.

[48] geeksforgeeks. 2024. Advanced Encryption Standard (AES). https://www.
geeksforgeeks.org/advanced-encryption-standard-aes/ Last updated: 2024-
07-16, Accessed: 2024-10-31, @GeeksforGeeks, Sanchhaya Education Private Limited,
All rights reserved.

[49] GeeksforGeeks. 2024. IEEE 802.11 Architecture. https://www.geeksforgeeks.
org/ieee-802-11-architecture/ Last Updated: 06 Mar, 2024. Sanchhaya Educa-
tion Private Limited, All rights reserved.

[50] Google Developers. 2024. Firebase Cloud Messaging. Firebase. https://firebase.
google.com/docs/cloud-messaging/ licensed under the Creative Commons Attri-
bution 4.0 License, and code samples are licensed under the Apache 2.0 License.

[51] Google Developers. 2024. Firebase documentation. https://firebase.google.
com/docs Accessed: 2024-11-12.

[52] Google Developers. 2024. Wi-Fi suggestion API for internet connectivity. https:
//developer.android.com/develop/connectivity/wifi/wifi-suggest?hl=fr

[53] Google for Developers. 2024. Android’s Kotlin-first Approach. https://developer.
android.com/kotlin/first Accessed: 2024-11-12.

[54] Google for Developers. 2024. WifiManager. Android. https://developer.android.
com/reference/kotlin/android/net/wifi/WifiManager Content and code sam-
ples on this page are subject to the licenses described in the Content License. Java
and OpenJDK are trademarks or registered trademarks of Oracle and/or its affiliates.
Last updated 2024-12-18 UTC.

[55] Patrick Grubbs. 2024. What is RadSec? https://www.securew2.com/blog/
what-is-radsec Accessed: 2024-11-03.

[56] Arnt Gulbrandsen and Dr. Levon Esibov. 2000. A DNS RR for specifying the
location of services (DNS SRV). RFC 2782. https://doi.org/10.17487/RFC2782

[57] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. https:
//doi.org/10.17487/RFC6749

[58] Anusha Harish. 2024. An Overview Of Passpoint In Network Infrastructure. https:
//www.securew2.com/blog/what-is-passpoint Accessed: 2024-11-03.

[59] Anusha Harish. 2024. How To Protect Your Network From Wi-Fi Spoofing At-
tacks? © Copyright 2024 Cloud RADIUS. https://www.cloudradius.com/
wi-fi-spoofing-a-major-threat-to-network-security/

99

https://www.geeksforgeeks.org/difference-between-cassandra-and-redis/
https://www.geeksforgeeks.org/difference-between-cassandra-and-redis/
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://www.geeksforgeeks.org/ieee-802-11-architecture/
https://www.geeksforgeeks.org/ieee-802-11-architecture/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs
https://firebase.google.com/docs
https://developer.android.com/develop/connectivity/wifi/wifi-suggest?hl=fr
https://developer.android.com/develop/connectivity/wifi/wifi-suggest?hl=fr
https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://developer.android.com/reference/kotlin/android/net/wifi/WifiManager
https://developer.android.com/reference/kotlin/android/net/wifi/WifiManager
https://www.securew2.com/blog/what-is-radsec
https://www.securew2.com/blog/what-is-radsec
https://doi.org/10.17487/RFC2782
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://www.securew2.com/blog/what-is-passpoint
https://www.securew2.com/blog/what-is-passpoint
https://www.cloudradius.com/wi-fi-spoofing-a-major-threat-to-network-security/
https://www.cloudradius.com/wi-fi-spoofing-a-major-threat-to-network-security/

BIBLIOGRAPHY

[60] Derrick Harris. 2013. Facebook’s latest open source effort:
a flash-powered database called RocksDB. https://web.
archive.org/web/20200224065917/https://gigaom.com/2013/11/21/
facebooks-latest-open-source-effort-a-flash-powered-database-called-rocksdb/
2020 GigaOm All Rights Reserved.

[61] Hughes Systique Corporation. 2022. Demystifying Wi-Fi OpenRoaming. https:
//www.hsc.com/resources/blog/demystifying-wi-fi-openroaming/

[62] Cisco Systems Inc. 2024. bridge it home. https://onesearch.cisco.com/ciscoit/
chatgpt/home Copyright © 2024 Cisco Systems Inc. All rights reserved.

[63] JetBrains. 2024. Kotlinx Serialization JSON: Kotlin Multiplatform Serialization Run-
time Library. https://mvnrepository.com/artifact/org.jetbrains.kotlinx/
kotlinx-serialization-json-jvm License: Apache 2.0, Accessed: 2024-11-12.

[64] Michael B. Jones, John Bradley, and Nat Sakimura. 2015. JSON Web Token (JWT).
RFC 7519. https://doi.org/10.17487/RFC7519

[65] Michael B. Jones and Dick Hardt. 2012. The OAuth 2.0 Authorization Framework:
Bearer Token Usage. RFC 6750. https://doi.org/10.17487/RFC6750

[66] Simon Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings. RFC 4648.
https://doi.org/10.17487/RFC4648

[67] Krishna Sankar, Sri Sundaralingam, Darrin Miller, Andrew Balinsky. 2005. Cisco
Wireless LAN Security (1st ed.). Cisco Press, Pearson Education, Hoboken, NJ.
Part of the Networking Technology series.

[68] Cornelius Kölbel. 2024. Configuration of rlm_rest. https://privacyidea.
readthedocs.io/en/latest/application_plugins/rlm_rest.html Copyright
2014-2024, privacyIDEA, Created using Sphinx 4.5.0.

[69] Guy Leduc. 2022. Securing Networks, Chapter 4: Securing TCP Connections. Course
materials from Liege University. Based on content from "Computer Networking: A
Top-Down Approach" 7th edition by Kurose and Ross, Addison-Wesley, 2016 (section
8.6).

[70] Guy Leduc. 2023. Network Infrastructure, Part 3, Chapter 1 and 2. Course materials
from Liege University. Based on content from Chapter 7 of "Computer Networking:
A Top-Down Approach" 8th edition by Kurose and Ross, Pearson, 2020.

[71] Sébastien Marchal. 2024. Next-Gen Onboarding TDM. (February 2024). Cisco
confidential. Cisco and its affiliates.

[72] Michael H. Mealling and Dr. Ron Daniel. 2000. The Naming Authority Pointer
(NAPTR) DNS Resource Record. RFC 2915. https://doi.org/10.17487/RFC2915

100

https://web.archive.org/web/20200224065917/https://gigaom.com/2013/11/21/facebooks-latest-open-source-effort-a-flash-powered-database-called-rocksdb/
https://web.archive.org/web/20200224065917/https://gigaom.com/2013/11/21/facebooks-latest-open-source-effort-a-flash-powered-database-called-rocksdb/
https://web.archive.org/web/20200224065917/https://gigaom.com/2013/11/21/facebooks-latest-open-source-effort-a-flash-powered-database-called-rocksdb/
https://www.hsc.com/resources/blog/demystifying-wi-fi-openroaming/
https://www.hsc.com/resources/blog/demystifying-wi-fi-openroaming/
https://onesearch.cisco.com/ciscoit/chatgpt/home
https://onesearch.cisco.com/ciscoit/chatgpt/home
https://mvnrepository.com/artifact/org.jetbrains.kotlinx/kotlinx-serialization-json-jvm
https://mvnrepository.com/artifact/org.jetbrains.kotlinx/kotlinx-serialization-json-jvm
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC6750
https://doi.org/10.17487/RFC4648
https://privacyidea.readthedocs.io/en/latest/application_plugins/rlm_rest.html
https://privacyidea.readthedocs.io/en/latest/application_plugins/rlm_rest.html
https://doi.org/10.17487/RFC2915

BIBLIOGRAPHY

[73] Meta Open Source. 2022. RocksDB. https://rocksdb.org/ Copyright © 2022
Meta Platforms, Inc..

[74] Microsoft. 2024. What is: Multifactor Authentica-
tion. https://support.microsoft.com/en-us/topic/
what-is-multifactor-authentication-e5e39437-121c-be60-d123-eda06bddf661
Accessed: 2024-11-04.

[75] Maria Milona. [n. d.]. Meraki • etymology • Greek word. https://www.pinterest.
com/pin/774124927954062/ taken from Pinterest.

[76] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. 2016. PKCS
#1: RSA Cryptography Specifications Version 2.2. RFC 8017. https://doi.org/
10.17487/RFC8017

[77] JetBrains mvnrepository. 2024. Adding Ktor Dependencies. https://ktor.io/
docs/server-dependencies.html Last modified: 02 April 2024, Accessed: 2024-11-
12, Copyright © 2000-2024 JetBrains s.r.o.

[78] JetBrains mvnrepository. 2024. Kotlin Standard Library. https://mvnrepository.
com/artifact/org.jetbrains.kotlin/kotlin-stdlib License: Apache 2.0, Ac-
cessed: 2024-11-12.

[79] JetBrains mvnrepository. 2024. Kotlin Test JUnit: Kotlin Test Library Sup-
port for JUnit. https://mvnrepository.com/artifact/org.jetbrains.kotlin/
kotlin-test-junit License: Apache 2.0, Accessed: 2024-11-12.

[80] JetBrains mvnrepository. 2024. Logback Classic Module: Implementation of
the SLF4J API for Logback. https://mvnrepository.com/artifact/ch.qos.
logback/logback-classic License: EPL 1.0, LGPL 2.1, Accessed: 2024-11-12.

[81] JetBrains mvnrepository. 2024. OkHttp: Square’s Meticulous HTTP Client for Java
and Kotlin. https://mvnrepository.com/artifact/com.squareup.okhttp3/
okhttp License: Apache 2.0, Accessed: 2024-11-12.

[82] JetBrains mvnrepository. 2024. RocksDB JNI: RocksDB Fat Jar with Platform-
Specific Libraries. https://mvnrepository.com/artifact/org.rocksdb/
rocksdbjni License: Apache 2.0 and GPL 2.0, Accessed: 2024-11-12.

[83] JetBrains mvnrepository. 2024. SLF4J API Module: API for SLF4J (The Simple
Logging Facade for Java). https://mvnrepository.com/artifact/org.slf4j/
slf4j-api License: MIT, Accessed: 2024-11-12.

[84] MyPension. [n. d.]. MyPension. https://www.mypension.be/en. Accessed:
11/09/2024.

101

https://rocksdb.org/
https://support.microsoft.com/en-us/topic/what-is-multifactor-authentication-e5e39437-121c-be60-d123-eda06bddf661
https://support.microsoft.com/en-us/topic/what-is-multifactor-authentication-e5e39437-121c-be60-d123-eda06bddf661
https://www.pinterest.com/pin/774124927954062/
https://www.pinterest.com/pin/774124927954062/
https://doi.org/10.17487/RFC8017
https://doi.org/10.17487/RFC8017
https://ktor.io/docs/server-dependencies.html
https://ktor.io/docs/server-dependencies.html
https://mvnrepository.com/artifact/org.jetbrains.kotlin/kotlin-stdlib
https://mvnrepository.com/artifact/org.jetbrains.kotlin/kotlin-stdlib
https://mvnrepository.com/artifact/org.jetbrains.kotlin/kotlin-test-junit
https://mvnrepository.com/artifact/org.jetbrains.kotlin/kotlin-test-junit
https://mvnrepository.com/artifact/ch.qos.logback/logback-classic
https://mvnrepository.com/artifact/ch.qos.logback/logback-classic
https://mvnrepository.com/artifact/com.squareup.okhttp3/okhttp
https://mvnrepository.com/artifact/com.squareup.okhttp3/okhttp
https://mvnrepository.com/artifact/org.rocksdb/rocksdbjni
https://mvnrepository.com/artifact/org.rocksdb/rocksdbjni
https://mvnrepository.com/artifact/org.slf4j/slf4j-api
https://mvnrepository.com/artifact/org.slf4j/slf4j-api
https://www.mypension.be/en

BIBLIOGRAPHY

[85] eIDAS Network and Walter Arrighetti. 2021. Guidance for the application of the
levels of assurance which support the eIDAS Regulation.

[86] NetworkLessons.com. 2024. EAPOL (Extensible Authentication Protocol
over LAN). https://networklessons.com/cisco/ccnp-encor-350-401/
eapol-extensible-authentication-protocol-over-lan CCNP ENCOR 350-
401, © 2013 - 2024 NetworkLessons.com.

[87] NetworkRADIUS. 2021. How Authentication Protocols Work: PAP, CHAP, MS-
CHAP, and EAP. https://www.networkradius.com/articles/2022/02/20/
how-authentication-protocols-work.html Accessed: 2024-10-31.

[88] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J.
Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616. https://doi.org/10.17487/RFC2616

[89] Okta, Inc. 2024. What is OAuth 2.0? https://auth0.com/intro-to-iam/
what-is-oauth-2 Accessed: 2024-11-05, © 2024 Okta, Inc. All Rights Reserved.

[90] OpenID Foundation. 2024. What is OpenID Connect. https://openid.net/
developers/how-connect-works/ Accessed: 2024-10-07.

[91] Ashwin Palekar, Simon Josefsson, Daniel Simon, and Glen Zorn. 2004. Protected
EAP Protocol (PEAP) Version 2. Internet-Draft draft-josefsson-pppext-eap-tls-
eap-10. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-josefsson-pppext-eap-tls-eap/10/ Work in Progress.

[92] Tommy Pauly, Steven Valdez, and Christopher A. Wood. 2024. The Privacy Pass
HTTP Authentication Scheme. RFC 9577. https://doi.org/10.17487/RFC9577

[93] Vivek Raj. 2024. EAP-TLS vs. EAP-TTLS/PAP. https://www.securew2.com/
blog/eap-tls-vs-eap-ttls-pap SecureW2.

[94] Eytan Raphaely. 2024. EAP-TLS vs. PEAP-MSCHAPv2: Which Au-
thentication Protocol is Superior? https://www.securew2.com/blog/
eap-tls-vs-peap-mschapv2-which-authentication-protocol-is-superior
Accessed: 2024-10-31.

[95] Eric Rescorla and Tim Dierks. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. https://doi.org/10.17487/RFC5246

[96] Allan Rubens, Carl Rigney, Steve Willens, and William A. Simpson. 2000. Remote
Authentication Dial In User Service (RADIUS). RFC 2865. https://doi.org/10.
17487/RFC2865

102

https://networklessons.com/cisco/ccnp-encor-350-401/eapol-extensible-authentication-protocol-over-lan
https://networklessons.com/cisco/ccnp-encor-350-401/eapol-extensible-authentication-protocol-over-lan
https://www.networkradius.com/articles/2022/02/20/how-authentication-protocols-work.html
https://www.networkradius.com/articles/2022/02/20/how-authentication-protocols-work.html
https://doi.org/10.17487/RFC2616
https://auth0.com/intro-to-iam/what-is-oauth-2
https://auth0.com/intro-to-iam/what-is-oauth-2
https://openid.net/developers/how-connect-works/
https://openid.net/developers/how-connect-works/
https://datatracker.ietf.org/doc/draft-josefsson-pppext-eap-tls-eap/10/
https://datatracker.ietf.org/doc/draft-josefsson-pppext-eap-tls-eap/10/
https://doi.org/10.17487/RFC9577
https://www.securew2.com/blog/eap-tls-vs-eap-ttls-pap
https://www.securew2.com/blog/eap-tls-vs-eap-ttls-pap
https://www.securew2.com/blog/eap-tls-vs-peap-mschapv2-which-authentication-protocol-is-superior
https://www.securew2.com/blog/eap-tls-vs-peap-mschapv2-which-authentication-protocol-is-superior
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC2865
https://doi.org/10.17487/RFC2865

BIBLIOGRAPHY

[97] Vincent Ryan. 2014. JEP 229: Create PKCS12 Keystores by Default. https:
//openjdk.org/jeps/229 © 2024 Oracle Corporation and/or its affiliates. License:
GPLv2, Updated: 2018/01/11.

[98] Joseph A. Salowey, Hao Zhou, Nancy Cam-Winget, and David McGrew. 2007. The
Flexible Authentication via Secure Tunneling Extensible Authentication Protocol
Method (EAP-FAST). RFC 4851. https://doi.org/10.17487/RFC4851

[99] Paresh Sawant and Bart Brinckman. 2024. Extensible Authentication Protocol (EAP)
Using Privacy Pass Token. Internet-Draft draft-sawant-eap-ppt-01. Internet Engineer-
ing Task Force. https://datatracker.ietf.org/doc/draft-sawant-eap-ppt/
01/ Work in Progress.

[100] SecureNet. 2023. 25 802 1x and EAP Concepts. https://www.youtube.com/
watch?v=dwPipQscMjM 11,762 views, INDIA.

[101] SecureNet. 2023. 27 WPA2 and 802 11i Concepts. https://www.youtube.com/
watch?v=1GKholXaPls 1,505 views, INDIA.

[102] Service Général d’Informatique, Université de Liège. 2024. Réseau et WiFi. https:
//www.campus.uliege.be/cms/c_11230598/fr/reseau-et-wifi Accessed: 2024-
10-31, © Copyright ULiège 2023.

[103] Shubhanjaytiwari. 2022. Key-Value Data Model in NoSQL. https://www.
geeksforgeeks.org/user/shubhanjaytiwari/contributions/?itm_source=
geeksforgeeks&itm_medium=article_author&itm_campaign=auth_user. Last
Updated: 17 Feb, 2022.

[104] Daniel Simon, Ryan Hurst, and Dr. Bernard D. Aboba. 2008. The EAP-TLS
Authentication Protocol. RFC 5216. https://doi.org/10.17487/RFC5216

[105] William A. Simpson. 1992. PPP Authentication Protocols. RFC 1334. https:
//doi.org/10.17487/RFC1334

[106] William A. Simpson. 1992. The Point-to-Point Protocol (PPP) for the Transmission
of Multi-protocol Datagrams over Point-to-Point Links. RFC 1331. https://doi.
org/10.17487/RFC1331

[107] Camryn Smith. 2023. Is Public Wi-Fi Safe? No, but It Is Necessary. https://
www.allconnect.com/blog/is-public-wifi-safe Copyright © 2024 Allconnect.
A Red Ventures Company. All rights reserved..

[108] SPF BOSA. 2024. Federal Authentication Service (FAS). https://bosa.belgium.
be/fr/services/federal-authentication-service-fas Accessed: 2024-11-04.

[109] SPF Stratégie Appui, BOSA. 2024. MyGov Belgium. https://mygov.be/ ©
BOSA - SPF Stratégie Appui.

103

https://openjdk.org/jeps/229
https://openjdk.org/jeps/229
https://doi.org/10.17487/RFC4851
https://datatracker.ietf.org/doc/draft-sawant-eap-ppt/01/
https://datatracker.ietf.org/doc/draft-sawant-eap-ppt/01/
https://www.youtube.com/watch?v=dwPipQscMjM
https://www.youtube.com/watch?v=dwPipQscMjM
https://www.youtube.com/watch?v=1GKholXaPls
https://www.youtube.com/watch?v=1GKholXaPls
https://www.campus.uliege.be/cms/c_11230598/fr/reseau-et-wifi
https://www.campus.uliege.be/cms/c_11230598/fr/reseau-et-wifi
https://www.geeksforgeeks.org/user/shubhanjaytiwari/contributions/?itm_source=geeksforgeeks&itm_medium=article_author&itm_campaign=auth_user
https://www.geeksforgeeks.org/user/shubhanjaytiwari/contributions/?itm_source=geeksforgeeks&itm_medium=article_author&itm_campaign=auth_user
https://www.geeksforgeeks.org/user/shubhanjaytiwari/contributions/?itm_source=geeksforgeeks&itm_medium=article_author&itm_campaign=auth_user
https://doi.org/10.17487/RFC5216
https://doi.org/10.17487/RFC1334
https://doi.org/10.17487/RFC1334
https://doi.org/10.17487/RFC1331
https://doi.org/10.17487/RFC1331
https://www.allconnect.com/blog/is-public-wifi-safe
https://www.allconnect.com/blog/is-public-wifi-safe
https://bosa.belgium.be/fr/services/federal-authentication-service-fas
https://bosa.belgium.be/fr/services/federal-authentication-service-fas
https://mygov.be/

BIBLIOGRAPHY

[110] StackShare. 2024. Redis vs RocksDB. https://stackshare.io/stackups/
redis-vs-rocksdb Copyright © 2024 FOSSA, Inc. All rights reserved..

[111] Sunny Classroom. 2019. AAA Framework and RADIUS. https://www.youtube.
com/watch?v=feHpDc1cLXM Accessed: 2024-11-3, YouTube video, 145,885 views.

[112] Telecom Trainer. 2024. ANQP (Access Network Query Protocol). https:
//www.telecomtrainer.com/anqp-access-network-query-protocol/ Last up-
dated: 2023-02-25, Accessed: 2024-10-31.

[113] Johan Terve. 2024. All You Need To Know About OpenRoaming. Technical Re-
port. Enea. https://info.enea.com/openroaming-white-paper White Paper,
Published: 2024-01-16, Accessed: 2024-10-31.

[114] The FreeRADIUS Server Project and Contributors. 2023. FreeRADIUS: Documen-
tation. https://www.freeradius.org/documentation/ Accessed: 2024-11-14.

[115] The FreeRADIUS Server Project and Contributors. 2023. FreeRADIUS:
rlm_eap. https://networkradius.com/doc/current/raddb/mods-available/
eap.html Accessed: 2024-11-14.

[116] The FreeRADIUS Server Project and Contributors. 2023. FreeRADIUS:
rlm_eap_ttls. https://networkradius.com/doc/current/raddb/
mods-available/eap/ttls.html Accessed: 2024-11-14.

[117] The FreeRADIUS Server Project and Contributors. 2023. FreeRADIUS:
rlm_rest. https://networkradius.com/doc/current/raddb/mods-available/
rest.html Accessed: 2024-11-14.

[118] The FreeRADIUS Server Project and Contributors. 2023. FreeRADIUS: We Authen-
ticate the Internet. https://www.freeradius.org/ Accessed: 2024-11-12.

[119] VOCAL Technologies. 2024. EAPoL Protocol – Extensible Authentica-
tion Protocol over LAN. https://vocal.com/secure-communication/
eapol-extensible-authentication-protocol-over-lan/ Accessed: 2024-10-31.

[120] John Vollbrecht, James D. Carlson, Larry Blunk, Dr. Bernard D. Aboba, and
Henrik Levkowetz. 2004. Extensible Authentication Protocol (EAP). RFC 3748.
https://doi.org/10.17487/RFC3748

[121] Radhika Vyas. 2024. LEAP Authentication and How It Works. https://
www.securew2.com/blog/leap-authentication-and-how-it-works © 2024 Se-
cureW2.

[122] Wi-Fi Alliance. 2019. Hotspot 2.0 Specification, Version 3.1. Tech-
nical Report. Wi-Fi Alliance. https://www.wi-fi.org/file/

104

https://stackshare.io/stackups/redis-vs-rocksdb
https://stackshare.io/stackups/redis-vs-rocksdb
https://www.youtube.com/watch?v=feHpDc1cLXM
https://www.youtube.com/watch?v=feHpDc1cLXM
https://www.telecomtrainer.com/anqp-access-network-query-protocol/
https://www.telecomtrainer.com/anqp-access-network-query-protocol/
https://info.enea.com/openroaming-white-paper
https://www.freeradius.org/documentation/
https://networkradius.com/doc/current/raddb/mods-available/eap.html
https://networkradius.com/doc/current/raddb/mods-available/eap.html
https://networkradius.com/doc/current/raddb/mods-available/eap/ttls.html
https://networkradius.com/doc/current/raddb/mods-available/eap/ttls.html
https://networkradius.com/doc/current/raddb/mods-available/rest.html
https://networkradius.com/doc/current/raddb/mods-available/rest.html
https://www.freeradius.org/
https://vocal.com/secure-communication/eapol-extensible-authentication-protocol-over-lan/
https://vocal.com/secure-communication/eapol-extensible-authentication-protocol-over-lan/
https://doi.org/10.17487/RFC3748
https://www.securew2.com/blog/leap-authentication-and-how-it-works
https://www.securew2.com/blog/leap-authentication-and-how-it-works
https://www.wi-fi.org/file/hotspot-20-specification-version-31
https://www.wi-fi.org/file/hotspot-20-specification-version-31
https://www.wi-fi.org/file/hotspot-20-specification-version-31

BIBLIOGRAPHY

hotspot-20-specification-version-31 WI-FI ALLIANCE PROPRIETARY –
SUBJECT TO CHANGE WITHOUT NOTICE. Used with the permission of Wi-Fi
Alliance under the terms as stated in this document.

[123] Wi-Fi Alliance. 2021. Wi-Fi® global economic value to reach $5 trillion in
2025. Technical Report. https://www.wi-fi.org/news-events/newsroom/
wi-fi-global-economic-value-to-reach-5-trillion-in-2025 study from
Telecom Advisory Services (TAS), headed by Dr. Raul Katz.

[124] Wi-Fi Alliance. 2024. Passpoint. https://www.wi-fi.org/discover-wi-fi/
passpoint Accessed: 2024-10-31.

[125] Wi-Fi Alliance. 2024. Wi-Fi®. https://www.wi-fi.org/ © 2024 Wi-Fi Alliance.
All rights reserved.

[126] Klaas Wierenga, Mike McCauley, Stefan Winter, and Stig Venaas. 2012. Transport
Layer Security (TLS) Encryption for RADIUS. RFC 6614. https://doi.org/10.
17487/RFC6614

[127] Klaas Wierenga, Stefan Winter, and Tomasz Wolniewicz. 2015. The eduroam
Architecture for Network Roaming. RFC 7593. https://doi.org/10.17487/
RFC7593

[128] Wikipedia contributors. 2024. CAPTCHA — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=CAPTCHA&oldid=
1256528649. [Online; accessed 29-November-2024].

[129] Wikipedia contributors. 2024. Fully qualified domain name — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Fully_
qualified_domain_name&oldid=1254798503. [Online; accessed 1-November-2024].

[130] Wikipedia contributors. 2024. IEEE 802.11 — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=IEEE_802.11&oldid=
1249819320 [Online; accessed 10-October-2024].

[131] Wikipedia contributors. 2024. Quality of service — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Quality_of_service&
oldid=1253977811. [Online; accessed 1-November-2024].

[132] Wikipedia contributors. 2024. Temporal Key Integrity Protocol — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Temporal_
Key_Integrity_Protocol&oldid=1250223092 [Online; accessed 31-October-2024].

[133] Wikipedia contributors. 2024. Wi-Fi Protected Access — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_
Access&oldid=1252837652. [Online; accessed 31-October-2024].

105

https://www.wi-fi.org/file/hotspot-20-specification-version-31
https://www.wi-fi.org/file/hotspot-20-specification-version-31
https://www.wi-fi.org/file/hotspot-20-specification-version-31
https://www.wi-fi.org/file/hotspot-20-specification-version-31
https://www.wi-fi.org/news-events/newsroom/wi-fi-global-economic-value-to-reach-5-trillion-in-2025
https://www.wi-fi.org/news-events/newsroom/wi-fi-global-economic-value-to-reach-5-trillion-in-2025
https://www.wi-fi.org/discover-wi-fi/passpoint
https://www.wi-fi.org/discover-wi-fi/passpoint
https://www.wi-fi.org/
https://doi.org/10.17487/RFC6614
https://doi.org/10.17487/RFC6614
https://doi.org/10.17487/RFC7593
https://doi.org/10.17487/RFC7593
https://en.wikipedia.org/w/index.php?title=CAPTCHA&oldid=1256528649
https://en.wikipedia.org/w/index.php?title=CAPTCHA&oldid=1256528649
https://en.wikipedia.org/w/index.php?title=Fully_qualified_domain_name&oldid=1254798503
https://en.wikipedia.org/w/index.php?title=Fully_qualified_domain_name&oldid=1254798503
https://en.wikipedia.org/w/index.php?title=IEEE_802.11&oldid=1249819320
https://en.wikipedia.org/w/index.php?title=IEEE_802.11&oldid=1249819320
https://en.wikipedia.org/w/index.php?title=Quality_of_service&oldid=1253977811
https://en.wikipedia.org/w/index.php?title=Quality_of_service&oldid=1253977811
https://en.wikipedia.org/w/index.php?title=Temporal_Key_Integrity_Protocol&oldid=1250223092
https://en.wikipedia.org/w/index.php?title=Temporal_Key_Integrity_Protocol&oldid=1250223092
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=1252837652
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=1252837652

BIBLIOGRAPHY

[134] Stefan Winter and Mike McCauley. 2015. Dynamic Peer Discovery for RADIUS/TLS
and RADIUS/DTLS Based on the Network Access Identifier (NAI). RFC 7585.
https://doi.org/10.17487/RFC7585

[135] Wireless Broadband Alliance. 2023. OpenRoaming. https://wballiance.com/
openroaming/ Accessed: 2023-10-05, Wireless Broadband Alliance Inc. © 2024. All
rights reserved. Designed Built by Fresh01.

[136] Inc. Wireless Broadband Alliance, Cisco Systems, Intel Corporation, SingleDigits,
and Cisco Systems. 2024. WBA OpenRoaming Wireless Federation. Internet-Draft
draft-tomas-openroaming-03. Internet Engineering Task Force. https://www.ietf.
org/archive/id/draft-tomas-openroaming-03.html Expires: 26 January 2025.

[137] Shankar Ayyamperumal wireless-cnt adm. 2020. Cisco OpenRoam-
ing Whitepaper. Technical Report. Business Unit, Cisco. https:
//www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/
dna-spaces/white-paper-c11-742106.html Audience: All Employees, All
Partners, All Distributors, Gold Partners, Premier Partners, Select Partners..

[138] Glen Zorn. 2000. Microsoft PPP CHAP Extensions, Version 2. RFC 2759. https:
//doi.org/10.17487/RFC2759

[139] Glen Zorn and Steve Cobb. 1998. Microsoft PPP CHAP Extensions. RFC 2433.
https://doi.org/10.17487/RFC2433

106

https://doi.org/10.17487/RFC7585
https://wballiance.com/openroaming/
https://wballiance.com/openroaming/
https://www.ietf.org/archive/id/draft-tomas-openroaming-03.html
https://www.ietf.org/archive/id/draft-tomas-openroaming-03.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/dna-spaces/white-paper-c11-742106.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/dna-spaces/white-paper-c11-742106.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/dna-spaces/white-paper-c11-742106.html
https://doi.org/10.17487/RFC2759
https://doi.org/10.17487/RFC2759
https://doi.org/10.17487/RFC2433

	Introduction
	Context
	Goal of this project
	Implementation of the prototype: Resources
	Roadmap

	Theoretical Background: OpenRoaming
	OpenRoaming
	Wi-Fi and IEEE 802.11 Standards
	Wi-Fi Network Components and Management
	Wireless local-area network (WLAN)
	Access Point (AP)
	Service Set Identifier (SSID)
	Beacon Frames
	Wi-Fi Protected Access (WPA)

	OpenRoaming federation
	Access network Provider (ANP)
	Identity Provider (IDP)

	AAA framework, RADIUS and RADSEC
	AAA framework
	RADIUS
	RADSEC (RADIUS over TLS and TCP)

	TLS
	IEEE 802.1X and EAP protocol
	User authentication
	LEAP
	PEAP
	EAP-FAST
	EAP-TLS
	EAP-TTLS
	EAP-PPT

	Wireless Broadband Alliance (WBA)
	WBA-based Public key infrastructure (PKI)

	Passpoint
	Access Network Query Protocol (ANQP)
	Roaming Consortium Organization Identifier (RCOI)

	Theoretical Background: e-ID
	Electronic identification (e-ID)
	Multi-factor Authentication

	OAuth 2.0 protocol and OpenID Connect (OIDC)
	OAuth 2.0 protocol
	OpenID Connect (OIDC)
	Tokens format

	Solution investigation
	Context for this project
	Device (User's phone)
	Programming language selection
	Passpoint profile

	Access Point
	Meraki
	OpenRoaming considerations: Cisco Spaces

	RADIUS Server
	Technologies used
	EAP method selection

	Auth server
	Programming language selection
	Database selection

	IDP
	Authentication method
	Google credentials: Firebase/Google Identity
	e-ID: FOD BOSA’s FAS
	IDP on-boarding

	Final solution

	Prototype: implementation and demonstration
	Source code and other resources
	Device (user's phone)
	MainActivity
	AuthScreen
	AuthUtils
	FMS

	Access point
	OpenRoaming considerations: Cisco Spaces
	EAP/RADIUS server
	Certificates generation
	RADSEC configuration
	EAP module
	REST module

	Auth server
	Endpoints
	Token Handling
	External Service: Google OAuth Token Exchange
	Formats
	SSL configuration

	IDP (Firebase, Google)
	Firebase set up
	Google Identity set up

	IDP (BOSA, e-ID)
	Demonstration
	Use-cases

	Conclusion
	Possible improvements

	Bibliography

