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FEM for 2D Linear Elasticity
Summary of equations

Mechanical equilibrium in Ω:{
∇ · σ + ρb = 0 (translation)

σ = σT (rotation)

where σ is the Cauchy stress tensor, ρ is the density and b represents the
mechanical volumic forces.

and the boundary conditions on Γ, the boundary of Ω:{
u = ū on Γū : prescribed displacement (Dirichlet)
σ · n = t̄ on Γt̄ : prescribed surface traction (Neumann)

where u is the displacement, n is the outward unit normal to the boundary,
Γū ∪ Γt̄ = Γ and Γū ∩ Γt̄ = ∅
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FEM for 2D Linear Elasticity
Summary of equations

Strain-displacement relationship (infinitesimal strains):

ε = 1
2
(
∇u + (∇u)T )

where small strains and small displacements are assumed.

Constitutive law (Hooke’s law):

σ = H : ε

with the 4th order tensor

Hijkl = E
2(1 + ν)δikδjl + ν E

(1 + ν)(1− 2ν)δijδkl with
{

E : Young’s modulus
ν : Poisson’s ratio

for an isotropic material.
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FEM for 2D Linear Elasticity
Weak formulation

A weak formulation is obtained by multiplying the PDE by a function w(x) and
by integrating over Ω:∫

Ω
w · (∇ · σ) dV +

∫
Ω
ρw · b dV = 0

The first term of the left-hand side can be integrated by parts:∫
Ω

w · (∇ · σ) dV =
∫

Γū

w · σ · n dS +
∫

Γt̄

w · σ · n︸︷︷︸
t̄

dS −
∫

Ω
∇w : σ dV

The integral on Γū can disappear if we choose test functions w(x) that vanish on
this boundary.
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FEM for 2D Linear Elasticity
Weak formulation

Moreover, since σ = σT , we can write

∇w : σ = 1
2
(
∇w + (∇w)T )︸ ︷︷ ︸
similar to ε(u)

: σ

The weak formulation becomes1:

Weak formulation
Find u with u = ū on Γū such that∫

Γt̄

w · t̄ dS −
∫

Ω

1
2
(
∇w + (∇w)T ) : σ dV +

∫
Ω
ρw · b dV = 0

for all test functions w which are 0 on Γū.

1This is also called “the principle of virtual work”.
Notations in [Ponthot, 2020]: w ↔ δu and δε ↔ 1

2

(
∇w + (∇w)T

)
)

and u + δu = ū on Γū (“kinematically admissible virtual displacement”).
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FEM for 2D Linear Elasticity
Spatial discretization - Finite Element approximation

The discretization procedure is similar to the one followed for the Laplace/Poisson
equation in MATH0024, except that the unknown field u(x, t) is now a vector
instead of a scalar. The equations are detailed here for the 2D case.

Using Cartesian coordinates, each component of u(x, t) and w(x) are
approximated using well-chosen shape functions Nk :

u1(x, t) =
∑

k
Nk(x) uk

1 (t)

u2(x, t) =
∑

k
Nk(x) uk

2 (t)
and


w1(x) =

∑
k

Nk(x) wk
1

w2(x) =
∑

k
Nk(x) wk

2

where uk
i is the i th coordinate of node k (also called “degree of freedom”).
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FEM for 2D Linear Elasticity
Spatial discretization - Finite Element approximation

In matrix form (assuming a mesh of n nodes in a 2D space):

u(x, t) = N(x) d(t)

with
N(x) =

[
N1 0 N2 0 . . . Nn 0
0 N1 0 N2 . . . 0 Nn

]
dT =

[
u1
1 u1

2 u2
1 u2

2 . . . un
1 un

2
]

Similarly, for the test functions:

w(x) = N(x) h
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FEM for 2D Linear Elasticity
Isoparametric Finite Elements

x

x

h h

x

y -1

1

1

-1

reference element in x,h space
element from the mesh 

in x,y space

Isoparametric finite elements (m nodes) are a classical choice. Their geometry
is interpolated with the same shape functions2 as the unknown field u(x, t) and
the test functions w(x).

x(ξ) =
m∑

k=1
Nk(ξ) xk

where ξ are reduced coordinates (usually ξi ∈ [−1, 1])

2Nk : superscript k is related nodes where Nk = 1
MATH-0471 FEM for 2D Linear Elasticity January 27, 2022 8 / 20



FEM for 2D Linear Elasticity
3D Hooke’s law (matrix form)

Voigt’s notation: in a practical implementation, 4th and 2nd-order tensors are
replaced by matrices and vectors respectively.
σ11
σ22
σ33
σ12
σ13
σ23

 = E
(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2




ε11
ε22
ε33
2ε12
2ε13
2ε23


such that

ε : σ = εv · σv

Hooke’s law becomes:
σv = H εv

Remark: εv involves 2×εij = γij (shear strain/angle) for i 6= j .
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FEM for 2D Linear Elasticity
2D Hooke’s law (matrix form)
A very common 2D assumption is the plane-stress hypothesis which is valid for
thin structures (σ33 = σ13 = σ23 = 0):

ε11
ε22
ε33
2ε12
2ε13
2ε23

 = 1
E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1+ν

2 0 0
0 0 0 0 1+ν

2 0
0 0 0 0 0 1+ν

2


︸ ︷︷ ︸

H−1


σ11
σ22
0
σ12
0
0



The 2D Hooke’s law is obtained by inverting this relationship:σ11σ22
σ12

 = E
1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2


︸ ︷︷ ︸

H2D

 ε11ε22
2ε12



This 3× 3 matrix is used as H in the following equations.
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FEM for 2D Linear Elasticity
Strain-displacement relationship

Using Voigt’s notation, the strain-displacement relationship becomes: ε11ε22
2ε12

 =

 ∂
∂x1 0
0 ∂

∂x2
∂
∂x2

∂
∂x1

[u1
u2

]
or, symbolically

εv = ∂ u

Remarks:
ε33 does not appear in the 2D equations. However, it can be computed, if
needed, from the stresses:

ε33 = − νE (σ11 + σ22)

Strains (and stresses) are discontinuous across finite elements boundaries
unless u(x) is C1, which is almost never the case in practise.
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FEM for 2D Linear Elasticity
Strains/stresses as a function of the unknowns

Computation of strains from the nodal displacements d :

εv = ∂ u = ∂Nd = Bd

with

B =

 ∂
∂x1 0
0 ∂

∂x2
∂
∂x2

∂
∂x1

[N1 0 . . . Nm 0
0 N1 . . . 0 Nm

]

The stresses can also be obtained from the nodal displacement d :

σv = HBd
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FEM for 2D Linear Elasticity
Discretized weak formulation

Back to the weak formulation∫
Γt̄

w · t̄ dS −
∫

Ω

1
2
(
∇w + (∇w)T ) : σ︸ ︷︷ ︸

(Bh)·σv

dV +
∫

Ω
ρw · b dV = 0

Replacing w = Nh and u = Nd and σv = HBd

hT
(∫

Γt̄

NT t̄ dS
)
− hT

(∫
Ω
BTHB dV

)
d + hT

(∫
Ω
ρNT b dV

)
= 0

This relationship should be satisfied for any h.
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FEM for 2D Linear Elasticity
Discretized FE equations

This leads to the system of discretized equations:(∫
Ω
BTHB dV

)
︸ ︷︷ ︸

K

d =
(∫

Γt̄

NT t̄ dS
)

+
(∫

Ω
ρNT b dV

)
︸ ︷︷ ︸

f

Discretized equations

Kd = f
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FEM for 2D Linear Elasticity
Finite Elements

Assembly:
The integrals involved in the calculation of K and f are expressed as a sum of
integrals over each finite element. These elemental contributions are then
assembled (summed) in a large and structural matrix and vector.
K is a symmetric sparse matrix and this property should be exploited to
reduce the required storage and to efficiently solve the linear system of
equations.

Boundary conditions:
The equations of the system corresponding to nodes where Dirichlet
boundary conditions are prescribed should be discarded and replaced by
equations enforcing these conditions (u = ū) at these nodes.
Homogeneous Dirichlet boundary conditions (u = 0) lead to remove the lines
and columns of the matrices corresponding to the components of the
displacement where these conditions are prescribed.
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FEM for 2D Linear Elasticity
Practical calculation of the elemental stiffness matrices

Kij =
∫

Ω
Bki (x) Hkl Blj(x) dV

Isoparametric finite elements:

Kij =
∫ 1

−1

∫ 1

−1

∫ 1

−1
Bki (ξ) Hkl Blj(ξ) det(∂x

∂ξ
)︸ ︷︷ ︸

jacobian

dξ

x

x

hh

x

y-1

1

1

-1

reference element in x,h space
element from the mesh 

in x,y space

x=x(x,h)
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FEM for 2D Linear Elasticity
Gauss quadrature

This integral is calculated using a Gauss quadrature: (NGP chosen → ξp, wp)

Kij ≈
NGP∑
p=1

Bki (ξ) Hkl Blj(ξ) det J︸ ︷︷ ︸
all the factors evaluated at ξ=ξp

wp

with NGP, the number of Gauss points, ξp the positions and wp, the weights.

x

h

-1

1

1

-1

Gauss points
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FEM for 2D Linear Elasticity
Jacobian of isoparametric elements at each Gauss points

Jacobian matrix3: let x = (x1, x2, x3) and ξ = (ξ1, ξ2, ξ3)

Jij(ξ) = ∂xi
∂ξj

= ∂Nk(ξ)
∂ξj

xk
i

where xk
i is the i th coordinate of the k th node of the finite element.

The Jacobian matrix and its determinant must be evaluated at each Gauss point
(ξ = ξp) of each finite element.

Note: the derivatives of the shape functions evaluated at the Gauss points
∂Nk

∂ξj
(ξp) are the same for all elements and can be computed once.

3transposed in [Ponthot, 2020]
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FEM for 2D Linear Elasticity
Derivatives of the shape functions

B =

 ∂
∂x1 0
0 ∂

∂x2
∂
∂x2

∂
∂x1

[N1 0 . . . Nm 0
0 N1 . . . 0 Nm

]
The matrix B contains the derivatives of the shape functions with respect to x
which should be transformed into derivatives of the shape functions with respect
to ξ using the Jacobian matrix:

∂

∂ξi
=
(
∂xj
∂ξi

)
∂

∂xj
= Jji

∂

∂xj
⇒∇x = J−T ∇ξ

Thus, the derivative of N i with respect to x can be computed by this formula:

∇xN i = J−T ∇ξN i
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