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Introduction
In this report, the implementation of a two-dimensional coupled elasto-electrostatic FEM-
BEM solver is described. Such a solver allows to tackle problems involving electrostatic
actuation which are particularly useful in the realm of microsystems. The presented pro-
gram implements the Finite Element Method (FEM) for solving the elastic problem and the
Boundary Element Method (BEM) for solving the electrostatic problem.

First, both methods are presented and the corresponding theoretical considerations are in-
troduced. After explaining the details of the numerical implementation, each method is
validated against reference solutions. The numerical behaviour of both methods is studied
in detail. The convergence or the computation time, among many others, are explored and
described extensively.

In Section 3, the one-way coupling method between the BEM solver and the FEM solver
is explained. The fundamental concept of electrostatic pressure is derived and introduced,
before providing more information about the communication between both solvers. Finally,
the coupling is once again validated in a simple reference configuration.

Such a linear solver is interesting for understanding the physical mechanisms related to
electrostatic actuation. However, it relies on the assumption of small displacements, which
is not always satisfied in the context of microsystems (even if the displacements are small,
by definition, in microsystems, they can be important relative to the dimensions of the
considered problem). To tackle more realistic problems involving large displacements, a non-
linear FEM solver has been implemented. The theory related to the so-called corotational
approach, which allows to handle large rotations, is introduced in Section 4. Moreover, the
corresponding Newton-Raphson iterative algorithm and the numerical implementation of the
method is described in detail. The non-linear elastic solver is validated against results found
in the literature, before quantifying the performance and the convergence of the code.

Once such a non-linear solver is implemented, it allows to develop a two-way coupled iter-
ative FEM-BEM solver, in which both individual solvers communicate until an equilibrium
configuration is reached. It allows to retrieve the physical distribution of the coupled elasto-
electrostatic fields, as the displacement of a given structure also influences the electric field
around that given structure. The implementation of such an iterative solver is explained and
discussed in Section 5.

Finally, in the last section, the coupled solver is applied to different applications in microsys-
tems. In addition to allowing to retrieve the fields inside the devices, it enables to compute
more general relations, such as displacement-voltage curves which are the most important
characteristics for an electrostatic actuator. Moreover, studying the different applications
offers the opportunity to discuss interesting mechanisms such as the pull-in instability often
encountered in MEMS devices.

1
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1 Linear FEM Solver

1.1 Theoretical considerations and numerical implementation

The Finite Element Method for linear elasticity allows to retrieve an approximate solution
to the following equilibrium equations in the domain ΩFEM:

∇ · σ + ρb = 0 , σ = σT and σ = H : ε, (1)

in which σ [N/m2] denotes the Cauchy stress tensor, ρ [kg/m3] the density, b [m/s2] the body
forces, ε [-] the Cauchy strain tensor and H [N/m2] the elastic Hooke’s tensor. The approx-
imate solution should also satisfy the following boundary conditions on Γ, the boundary of
ΩFEM:

u = ū, on Γū and σ · n = t̄, on Γt̄, (2)

with u [m] the displacement, n [-] the outward unit normal, Γū ∪ Γt̄ = Γ and Γū ∩ Γt̄ = ∅.
Last equality implies that some boundary condition must be applied on every boundary of
the domain, which corresponds to apply t̄ = 0 on the boundaries where no displacement and
no particular surface traction are applied.

A weak formulation of these equations can be derived, involving integrals over the whole
domain ΩFEM and its boundary Γ. In the finite element approximation, the domain is divided
into several simpler parts called finite elements. In each isoparametric element, the geometry
(x, y coordinates) is mapped from a reference element (ξ, η reduced coordinates) as:

x(ξ) =
m∑
k=1

Nk(ξ)xk, (3)

in which m denotes the number of nodes of the element and Nk is called a shape function. In
one element, the displacement is approximated using the exact same set of shape functions:

ue =
m∑
k=1

Nk(ξ)uk, or, in matrix form: ue = Nde, (4)

with (de)T =
[
u1
x u1

y u2
x .. um

y

]
, (5)

with ue [m] the elemental displacement field and N [-] the shape function matrix. When
injecting the approximations in the weak formulation, one linear system of 2n equations (for
a mesh with n nodes) must be solved:

Kd = f , with K =

∫
ΩFEM

BTHB dV and f =

∫
ΩFEM

ρNTb dV +

∫
Γt̄

NT t̄ dS, (6)

with B =

∂x 0
0 ∂y
∂y ∂x

[N1 0 N2 ..
0 N1 0 ..

]
= ∂N and H =

E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 , (7)

in which K [N/m2] denotes the stiffness matrix, f [N/m] the nodal forces vector, B [m−1] the
strain-displacement matrix, H [N/m2] the elastic Hooke’s tensor obtained when assuming
a plane stress configuration using Voigt’s notation, E [N/m2] the Young’s modulus of the
material and ν [-] its Poisson’s ratio.
The main unknowns of the problem are the nodal displacements d [m].

The very first step of the implementation is the mesh generation using the Gmsh library and
the parameters from the .geo file. The second step is the recovery of the material parameters

2
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from the .geo file. Then, the structural stiffness matrix K is computed by performing the
integral over the whole domain as a sum of integrals over single finite elements. It corresponds
to computing the elemental stiffness matrix Ke for each element and then assemble its non-
zero elements into the structural stiffness matrix. To exploit the sparsity of K, it is declared
as a SparseMatrix object from the Eigen library. During the whole assembly process, the
non-zero elements are first stored in a vector of Triplet objects from the Eigen library,
containing the value of the element as well as its two indices. The structural K matrix is
eventually generated at once using the complete triplet vector. The elemental Ke matrix (of
size 2m × 2m, with m the number of nodes of one particular element), is computed using
Gauss integration:

Ke
ij =

∫ 1

−1

∫ 1

−1

Bki(ξ)HklBlj(ξ) det

(
∂x

∂ξ

)
dξ (8)

≈
NGP∑
p=1

Bki(ξ
p)HklBlj(ξ

p) det

(
∂x

∂ξ
(ξp)

)
wp, (9)

with NGP the number of Gauss integration points (automatically fixed by the code, as dis-
cussed in Section 1.5), ξp the reference coordinates of the Gauss points and wp the Gaussian
weights. The determinants involved in the computation are also called jacobians (jacobian
matrix elements defined as Jij = ∂ξjxi) and are retrieved using the Gmsh library, as well as ξp
and wp. As mentioned above, the computation of the elemental Be involves the derivatives
of the shape functions in the geometrical space, which can be computed using the chain rule,
for example:

∂xN
1 =

∂N1

∂x
=

∂ξ

∂x
· ∇ξN

1 ⇒ ∇xN
1 =

∂ξ

∂x
· ∇ξN

1 = J−T · ∇ξN
1, (10)

in which ∇ξN
1 can be retrieved once for each element type, while the inverse of the transposed

jacobian matrix must be retrieved for each element.
Eventually, the non-zero elements of Ke are assembled in the sparse K matrix, using a
mapping between the node tags and the global nodal degrees of freedom: the first node has
two degrees of freedom, u1

x and u1
y, corresponding to the indices 0 and 1 of K, f and d; the

second node corresponds to the indices 2 and 3, ... .

The volume contribution to the f vector, denoted as fV , is computed in a similar fashion,
by first computing the elemental f e

V vector using Gauss integration:

(f e
V )i ≈

NGP∑
p=1

ρNji(ξ
p)bj det

(
∂x

∂ξ
(ξp)

)
wp, (11)

in which the body forces and the density are assumed constant. Note that using the shape
functions ensures energy consistent nodal loading ([1]), meaning the external forces are dis-
tributed to the nodes in a consistent way regarding the finite element discretization. Af-
terwards, the global volumic fV vector is assembled using the same mapping as previously
described.

The surface contribution to the f vector, denoted as fS, takes the Neumann boundary
conditions into account. It is also computed using Gauss integration, but as the domain
of integration corresponds to boundaries, the considered elements are now one-dimensional.

3
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Once again, the elemental f e
S are first computed using Gauss integration:

(f e
S)i ≈

NGP
1D∑

p=1

Nji(ξ
p)t̄j det

(
∂x

∂ξ
(ξp)

)
wp, (12)

in which a peculiar attention must be paid to the one-dimensional aspect of the integra-
tion. After assembling the elemental f e

S into the global fS, the full right-hand side vector is
retrieved as f = fV + fS.

After the Neumann boundary conditions (t̄) have been taken into account, it remains to treat
the Dirichlet boundary conditions (ū). It is done by splitting both d and f vectors into two
parts as: [

KRR KRG

KGR KRR

] [
dR

d̄G

]
=

[
f̄R

fG

]
, (13)

in which d̄G and f̄G are given and known through boundary conditions. Hence, the linear
system to solve can be reduced to:

KRRdR = f̄R −KRGd̄G, (14)

in which the only unknown is dR (notations from [1]). This allows to reduce the dimensions
of the linear system and to treat simultaneously both homogeneous and inhomogeneous
Dirichlet boundary conditions (a homogeneous boundary conditions does not induce any
correction term).

Eventually, the reduced sparse linear system is solved using a SimplicialLDLT object from
the Eigen library, which implements an efficient direct solving algorithm for sparse, symmet-
ric and positive definite matrices (KRR is positive definite if the Dirichlet boundary conditions
prevent from any rigid body mode). According to the Eigen documentation, it is "recom-
mended for very sparse and not too large problems (e.g., 2D Poisson eq.)"1. It is preferred
over iterative solving algorithms, which are less predictable, can diverge in more situations
than direct solvers and require more computational time to reach the same accuracy. The
performance of the SimplicialLDLT solver is compared to other solvers in Section 4.5.

Afterwards, the complete nodal displacement vector d is reconstructed using the prescribed
boundary conditions and the full nodal forces vector f is retrieved by computing Kd = f .

The reaction forces R can be retrieved on boundaries where some component of the displace-
ment has been fixed, by summing the elements in fG corresponding to the nodal displacements
which have been imposed by the Dirichlet boundary conditions. Note that the reaction force
along one particular axis is computed by summing only the elements corresponding to nodal
displacement along the particular axis.

The nodal strain values and stress values can be retrieved in each finite element from the
nodal displacements d:εxxεyy

γxy

 = Bde and

σxx

σyy

σxy

 = H

εxxεyy
γxy

 , (15)

in which Voigt’s notation is used. As the considered equations are linear, the strains and
stresses can be computed directly at the nodes of each element (if the equations were not

1Cited from the Eigen documentation regarding solving sparse linear systems, consulted on May 13, 2022.
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linear, they should have been computed at the Gauss points). Note that the obtained fields are
not necessarily continuous across element boundaries. From the plane stress assumption, the
principal strain in the plane direction is retrieved as εzz = − ν

E
(σxx + σyy) and the equivalent

von Mises stress as σVM =
√

σ2
xx + σ2

yy − σxxσyy + 3σ2
xy.

One can also evaluate the so-called total potential energy TPE [J/m], introducing the internal
strain energy U [J/m] and the work done by external forces P [J/m], defined as

TPE = U−P, with U =

∫
ΩFEM

1

2
σ : ε dV and P =

∫
ΩFEM

b ·u dV +

∫
Γt

t̄ ·u dS. (16)

The internal strain energy U is computed as a sum of integrals over single finite elements and
using Gauss integration, similarly to the computation of the stiffness matrix. The work done
by external forces P can be computed easily by multiplying the final nodal displacements d
and the final nodal forces f , as the nodal forces have been computed in an energy consistent
way. Moreover, for the present linear theory of elasticity, Clapeyron’s theorem [1] states that
the internal strain energy is equal to the half of the work done by external forces U = P/2.
Hence, the TPE is given by

TPE = U − P = −U = −P

2
. (17)

Eventually, the different results are saved and displayed on the mesh.

1.2 Validation in simple tension configuration

t

x

y

Lx

Ly

Figure 1: Geometry and boundary conditions associated to the simple tension configuration.
No horizontal displacement is allowed on the left edge, while the vertical displacement is
prescribed to ūy = 2 [m] at the point at the bottom left. The surface tension applied on the
right edge is t̄ = 21 103 [Pa], while the Young’s modulus of the bar is E = 210 103 [Pa] and
its Poisson’s ratio is ν = 0.3 [-]. The length of the bar is Lx = 5 [m] and its height Ly = 2 [m].

The first step of the validation involves a simple tension configuration, as described in
Figure 1. It is implemented in the simple_tension.geo file. The analytical solution
corresponds to a uniform normal stress σxx = t̄ = 21 103 [Pa] in the whole bar, and
σyy = σxy = 0 [Pa]. The corresponding axial strain εxx = t̄/E = 0.1 [-] is also uniform,

5
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while εyy = εzz = −νεxx = −0.03 [-]. The displacement fields should therefore evolve linearly
along the x-axis. Particularly, ux(x = Lx) = 0.5 [m]. The internal strain energy should be
equal to U = Lx Ly σxx εxx/2 = 10500 [J/m] and the work done by external forces should be
given by P = Lx ux(x = Lx) t̄ = 21000 [J/m].
Some of the numerical results are shown in Figure 2. They are similar to the analytical
solution. The horizontal reaction force at the left edge is Rx = −42 103 [N/m] = −t̄Ly.
The vertical reaction force at the fixed node is Ry = 1.95 10−9 [N/m] and is negligible. The
numerical internal strain energy is exactly U = 10500 [J/m] and the work done by external
forces P = 21000 [J/m].

(a) (b)

(c) (d)

Figure 2: (a) Horizontal displacement field ux [m], vertical displacement field uy [m] and
(c) normal stress field σxx [Pa] obtained with the configuration of Figure 1, using a mesh of
nx = 50 [-] elements along the x-axis and ny = 20 [-] along the y-axis, resulting in square
elements of side 0.1 [m]. In (d), the color bar range has been modified to [20.9 − 21.1] 103

[Pa] to highlight that the variations are negligible.

Figure 3: Horizontal displacement field ux [m] obtained with an hybrid mesh generated with
the complex_validation.geo file and elements of the second order.

6
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The code has been validated for both triangular and quadrangular elements. Moreover, it
works with many different integration rules and it also works with elements of higher order.
As can be seen in Figure 3, the obtained results are similar to the ones showed previously.

1.3 Validation: clamped beam with uniform vertical charge

The second validation configuration is more complex and is described in Figure 4. It is
implemented in the uniform_charge.geo file. The focus is set on the vertical deflection at
the right edge and on the vertical reaction force at the left edge. As Lx ≫ Ly, the Euler-
Bernoulli beam theory can be used. In this configuration, the vertical deflection at the end
of the beam should be vR = p̄L4

x/8EIz = 3p̄L4
x/2EL3

y = 0.0714 [m]. The vertical reaction
force is simply Ry = p̄Lx = 10 [N/m].

p

xy

Lx

Ly

vR

Figure 4: Geometry and boundary conditions associated to a clamped beam with uniform
vertical charge. No horizontal and vertical displacement is allowed on the left edge. The
surface tension applied on the top edge is p̄ = 1 [Pa], while the Young’s modulus of the bar
is E = 210 103 [Pa] and its Poisson’s ratio is ν = 0.3 [-]. The length of the bar is Lx = 10 [m]
and its height Ly = 1 [m]. Its bending moment (per unit thickness) around the perpendicular
axis is Iz = L3

y/12 = 0.083 [m3].
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Figure 5: Convergence of (a) the vertical deflection vR [m] and (b) the vertical reaction force
Ry [N/m] for the clamped beam geometry, using first order square elements.
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The numerical results are obtained with first order square elements of decreasing size (or
increasing number). The convergence of both values of vR and Ry as the number of elements
increases is shown in Figure. 5.

As can be observed, the numerical results converge towards the theoretical values, which
shows the accuracy of the solver. Note that the vertical deflection converges towards vR =
0.0721 [m], which is slightly greater than the theoretical value. It could be due to the
restrictive assumptions made in the theoretical development that are not fully respected.

1.4 Comparison of different finite elements

In this section, general results of the FEM code in the clamped beam configuration are studied
as a function of four different element types: quadrangular elements of first and second order,
triangular elements of first order and second order, denoted respectively Q4 and Q9, T3 and
T6.

1.4.1 CPU time

First, the evolution of the CPU time as a function of the number of elements and the number
of nodes, represented in Figure 6, is analyzed. For the clarification, all tests in this report
were performed on a MacBook Pro with a 2.5 GHz Intel Core i7 quad-core processor and 16
GB DDR3 ram.

10
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10
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10
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10
0

10
1

10
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(b)

Figure 6: CPU time [s] as a function of (a) the number of elements and (b) the number of
nodes, for the clamped beam geometry described in Figure 4. Measurements performed using
8 virtual threads.

As can be observed, for a given number of finite elements, second order elements (T6 and
Q9) take the most time to perform the computation. Moreover, for a given order of finite
elements, the quadrangular elements are the more time-consuming elements. This can be
explained by the fact that the size of the numerical problem is directly proportional to the
number of nodes in the domain (in 2D, the number of degrees of freedom is twice the number
of nodes) and not to the number of elements. Indeed, as the number of nodes increases, the
CPU time is similar for all four types of elements.
In practice, as the size of the problem increases, the total CPU time is more and more
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dominated by the time taken to solve the linear system numerically. This phenomenon
is discussed in Section 4.5 in the context of the non-linear FEM solver dealing with large
displacements. Despite the differences in the algorithm, similar conclusions can be drawn in
the present linear case.

1.4.2 Vertical deflection and vertical reaction force

Moreover, one can also compare the exact same quantities than the one discussed in Sec-
tion 1.3, the vertical deflection vR and the vertical reaction force Ry. The evolution of both
quantities as a function of the total number of nodes for the different element types is rep-
resented in Figure 7. As can be observed for the vertical deflection, the T3 elements behave
poorly compared to the other element types. Also, the second order elements converge much
more rapidly than the first order elements. However, the Q4 and Q9 converge respectively
faster than the T3 and T6 elements. A similar behaviour is also observed when focusing on
the convergence of the vertical reaction force. Note that in the present case, the curves for
the T3 and T6 elements are indistinguishable, as well as for the Q4 and Q9 elements. In
such a bending configuration, quadrangular elements are preferred over triangular elements.
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Figure 7: Convergence of (a) the vertical deflection vR [m] and (b) the vertical reaction force
Ry [N/m] for the clamped beam geometry as a function of the number of nodes for the four
different element types.

1.4.3 Maximal von Mises stress

When comparing the behaviour of the different element types regarding the maximal von
Mises stress σVM in the bar, as represented in Figure 8, one can first observe that the stress
field does not seem to have converged yet, independently from the type of the finite element.
Most often, a precise elemental-nodal stress computation requires a much finer mesh than a
precise displacement computation. This can be explained by the fact that the main unknowns
of the finite element resolution are the nodal displacements, and not the stresses. Hence,
despite a strong knowledge on displacement, the weak knowledge on the stress field is the
price to pay for the finite element approximation, as explained in [1].
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Figure 8: Evolution of the maximal von Mises stress σVM [Pa] for the clamped beam geometry
as a function of the number of nodes for the four different element types.

1.4.4 Total potential energy

Finally, the convergence of the total potential energy TPE, also called global convergence,
can be studied. It is represented in Figure 9(a). Once again, the convergence is much faster
for second order elements. As expected, the convergence is monotonic and the TPE is
minimal (its absolute value is maximal) at equilibrium when the mesh is refined.
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Figure 9: (a) Convergence of the absolute value of the total potential energy |TPE| [J/m] as
a function of the number of nodes. (b) Evolution of the relative error on the total potential
energy as a function of the size of the elements. The results are displayed for the four different
element types.

The relative error on the TPE can be computed as∣∣∣∣TPEapprox − TPEexact

TPEexact

∣∣∣∣ , (18)
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with TPEexact = −0.145165 [J/m] the converged value of the total potential energy. As can
be observed in Figure 9(b), the relative error decreases when the size of the finite elements
decreases (the graph being in logarithmic axis). Moreover, the convergence of the relative
error seems to be of order two independently from the element type, as the relative error is
multiplied by four when the size of the elements is doubled.

1.5 Impact of the Gauss integration rule

In this section, the impact of the order of the Gauss integration is discussed in the case of
quadrangular elements, as they are more accurate in the case of finite element computation.
The implementation of the finite element method requires numerical integration of different
quantities, as described in Section 1.1. Most importantly, the elemental stiffness matrices are
computed using Gauss integration (Equation 9). In particular, a CompositeGauss method
is used, which is an extension of the one dimensional Gauss-Legendre integration method.
It requires the same number nGP of Gauss points along both x and y directions, for a total
number of Gauss points NGP = n2

GP.

In one dimension, the Gauss-Legendre method with nGP Gauss points integrates exactly
polynomials of order 2nGP-1 and below. For integrating same order polynomials in two
dimensions, nGP Gauss points are required in each direction.

For rectangular elements (specific case of quadrangular elements), it has been shown in [1]
that the stiffness matrix (Equation 9) is exactly integrated when using NGP = 22 = 4 Gauss
points for Q4 elements or NGP = 32 = 9 Gauss points for Q9 elements. They correspond
respectively to the CompositeGauss2 and CompositeGauss4 methods implemented in gmsh.
Different integration methods are tested with different element orders in the simple tension
configuration described in Figure 1. The results are gathered in Figure 10. As can be ob-
served, exact integration is required, meaning first order elements need the CompositeGauss2
method for performing the integration, while second order elements need the CompositeGauss4
method.

When using less Gauss points than required (and performing reduced integration), one can
observe spurious modes that do not represent the physics and the results are less accurate. In
this case, the elemental stiffness matrix is said to be rank deficient. Physically, the spurious
modes, also called hourglass modes, are local nodal displacements that do not induce any
change in total potential energy, as they result from the rank deficiency from the elemental
stiffness matrix. Hence, the spurious modes spread in the whole mesh and reduced integration
must be avoided.

The required integration method is automatically adapted in the code depending on the
element order, when computing the elemental stiffness matrices.

In the case of non rectangular elements (for which the opposite sides are not parallel), the
numerical integration is not exact and is called fulled integration. Similarly, NGP = 4 Gauss
points are required for Q4 elements and NGP = 9 Gauss points are required for Q9 elements
in order to ensure numerical stability.

11
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(a) First order elements, NGP = 1. (b) First order elements, NGP = 4.

(c) Second order elements, NGP = 4. (d) Second order elements, NGP = 9.

Figure 10: Horizontal displacement field ux computed in the simple tension configuration
described in Figure 1 for different element orders and using different number of Gauss inte-
gration points NGP.
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2 BEM Solver

2.1 Theoretical approach

This first part of the theory and numerical implementation of the Boundary Element Method
is mainly based on the book by M. Katsikadelis [3]. The aim of this theoretical section is
to introduce the boundary element method for solving the electrostatics problem in two
dimensions. The latter is governed by the Laplace equation for the electric potential ϕ [V]:

∆ϕ = 0, in ΩBEM, (19)

which is valid in every domain ΩBEM in which there is no free charge density ρ [C/m3]. Indeed,
when ρ = 0 [C/m3], Gauss’s law for the electric field E [V/m] reduces to

∇ ·E = 0. (20)

As the electric potential is defined such that

E = −∇ϕ, (21)

Laplace equation for the electric potential is simply retrieved as:

−∇ ·E = ∇ · (∇ϕ) = ∆ϕ = 0. (22)

The Dirichlet and Neumann boundary conditions on the boundary are given by

ϕ = ϕ̄, on ΓD, and
∂ϕ

∂n
= ϕ̄n, on ΓN . (23)

where Γ = ΓD ∪ ΓN represents the curve that delimits the boundary of the surface. With
the property that Γ = ΓD ∩ ΓN = ∅. The ΓD and ΓN curves are those where the Dirichlet
and Neumann conditions apply respectively. The electric potential ϕ is the unknown of the
problem and is related to Dirichlet boundary conditions. If n represents the exterior normal
to the Ω boundary, one can write ∂ϕ

∂n
= ∇ϕ · n = −E ·n, Neumann boundary conditions are

thus associated to the electrical field.

A fundamental solution of the Laplace Equation 19 is given by considering a Dirac impulse
in the right-hand member and ignoring the boundary conditions:

∆φ = δ(Q−P) ⇔ φ(Q,P) =
1

2π
ln(r), (24)

with r [m] the distance between the points located in P and Q.

As a reminder, Green’s second identity is given by:∫
Ω

(φ∆ϕ− ϕ∆φ) dΩ =

∫
Γ

(
φ
∂ϕ

∂n
− ϕ

∂φ

∂n

)
ds. (25)

Applying this expression to our problem, one obtains the representation formula:

ϕ(P) = −
∫
Γ

(
φ(P,q)

∂ϕ(q)
∂nq

− ϕ(q)
∂φ(P,q)

∂nq

)
dsq. (26)
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The subscripts q denotes the points that vary during integration or differentiation. The
capital letters (P(x, y),Q(ξ, η)) represent points inside the domain while the lower case letters
(p(x, y),q(ξ, η)) represent a point on the boundary.
This first equation allows us to calculate the value of ϕ inside the domain provided ϕ(q) and
∂ϕ(q)
∂nq

are known. An equation is missing to satisfy this last condition. Once again, using
Green’s identity helps to find a representation formula at the boundary. Considering that
the boundary is smooth, it comes that:

1

2
ϕ(p) = −

∫
Γ

(
φ(p,q)

∂ϕ(q)
∂nq

− ϕ(q)
∂φ(p,q)
∂nq

)
dsq. (27)

Equation 27 will allow us to calculate ϕ(q) and ∂ϕ(q)
∂nq at the boundary (where it is unknown)

and then find the value of ϕ over the entire domain from Equation 26. The BEM will consist
in discretising the boundary in finite elements. The chosen approach is to use linear elements
with a constant ϕ solution and derivative ∂ϕ

∂n over each element. The first step is to discretize
the Equation 27 as follow:

1

2
ϕi = −

N∑
j=1

∫
Γj

φ(pi,q)
∂ϕ(q)
∂nq

ϕj
n

dsq +
N∑
j=1

∫
Γj

ϕ (q)
ϕj

∂φ(pi,q)
∂nq

dsq. (28)

Defining the matrices H and G as

Hij =

∫
Γj

∂φ(pi,q)
∂nq

dsq − 1

2
δij and Gij =

∫
Γj

φ(pi,q)dsq, (29)

the system of equations can be rewritten

N∑
j=1

Hijϕ
j =

N∑
j=1

Gijϕ
j
n (30)

2.2 Implementation of the representation formula on the boundary

From a numerical point of view, the elements are first stored in a vector of a particular
element structure storing every useful information concerning a given element, that will
be needed for the further computations (and for debugging possibly). This structure is
composed of

• a tag;

• a type of element (Dirichlet or Neumann): Thanks to the ONELAB database, it is possible
to extract the type of boundary condition and its value assigned to each physical group
in the .geo file. Each element being part of a given physical group then inherits from
its properties;

• an array for storing the potential and its directional derivative: One of these quantity is
given by the boundary condition (as described above) and the other has to be computed.
One should pay attention to the fact that, depending on the type of boundary condition
imposed on the element, these values will not be stored at the same indices after the
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same operation (the boundary condition should be stored at index 0 for a Dirichlet
boundary condition and the computed value at index 1 and inversely for a Neumann
boundary condition);

• an array for storing the tags of the extremities nodes composing the element: When
looping over the elements, the tags of the nodes of an element are stored in this array. It
is important to store it in the same order as they are given by the .geo file. Otherwise,
it would result in a misorientation of the normal of the elements;

• the tag of the mid element node. In fact, for higher order elements, there is a node at
the middle of each boundary element. If the element does not possess such a node, this
tag is set to 0. In fact, since there is no tag 0, this correspond to an error / default
value;

• some other geometric parameters such as the length of the element and the coordinates
of the nodes.

A particularity of this vector is that it should be sorted, so that all the Dirichlet elements
are before all the Neumann elements. In order to do this, the simplest thing is to append
directly the elements at the front or at the back of the vector depending on their type. Also,
counting the number of Dirichlet elements permits to delimit the space of Dirichlet/Neumann
elements in this vector.

The following of the implementation will mainly consist in computing the Hij and Gij com-
ponents and to solve the system from Equation 30 for the unknowns. The way of computing
such components is to make a double loop over the elements of the vector.

In order to better visualise the operations of the BEM, the main notations are introduced in
Figure 11.

αj
αj+1

r(ε1)
r(ε2)

r(ε3)

pi

n

element: j

element: i

nodes

midpoints

Gp

Gp Gp

Γ

(xi, yi)

(xj, yj)

(xj+1, yj+1)

βj

Figure 11: Diagram and highlighting of the main BEM variables.
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The individual Gij components can be calculated analytically on the diagonal or using a
Gaussian integration for the non-diagonal components:

Gij =
lj
4π

NGP∑
k=1

ln(r(εk))wk Gii =
li
2π

(
ln

li
2
− 1

)
(31)

where l represent the length of an element and NGP the number of Gauss points considered.
They are located at the positions εk (in local coordinates) with the associated weights wk.
The expression of the global coordinates as a function of the position of the nodes is:

x(ε) =
xj+1 + xj

2
+

xj+1 − xj

2
ε,

y(ε) =
yj+1 + yj

2
+

yj+1 − yj
2

ε.
(32)

The length of the element and the position vector relative to the Gauss points can be written
as:

lj =
√
(xj+1 − xj)2 + (yj+1 − yj)2, r(εk) =

√
(x(εk)− xi)2 + (y(εk)− yi)2 (33)

The individual Hij components can be calculated fully analytically as:

Hij =
αj+1 − αj

2π
Hii = −1

2
(34)

where αj and αj+1 represent the angles joining the midpoint of element i to the nodes of
element j as described in Figure 11. They can be calculated using the relations

tanαj+1 =
yj+1 − yi
xj+1 − xi

, tanαj =
yj − yi
xj − xi

. (35)

It is important to note that these formula are derived for positive oriented curves, so that the
domain is always on the left of the curve. In the case where holes are present in the domain,
one should pay attention to the fact that in order to have a positive oriented curve on the
boundary off a hole, the curves should be oriented as shown in Figure 12.

n

n

Figure 12: Diagram of the orientation of the curves for a domain containing a hole.
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2.2.1 Angles computation

It is possible to continue the algorithm along this path. However, there is a simpler and
more robust method for calculating angles. Indeed, it is important to stress that only the
difference of the angles αj+1 and αj counts for evaluating the element of the matrix Hij. The
real variable of interest is therefore the angle formed between the two vectors starting at
pi and ending at each of the two nodes constituting the j element. This angle is called βj

as shown in Figure 13. It can be evaluated simply by considering the relation of the scalar
product between two vectors. However, the order of the vectors is important and will depend
on the geometry of the problem. For example, a concave geometry could lead to the inversion
of the order of the nodes. To ensure the correct orientation, a vector product is performed.
If this is positive, the order of the vectors is correct. However, if it is negative, the order is
reversed and the code will provide the opposite of the calculated angle.

pi

(xi, yi)

(xj, yj)

(xj+1, yj+1)

βj
−βj

(xj, yj)

(xj+1, yj+1)

Figure 13: Schematic of the angles difference and orientation.

2.2.2 Building the linear equation system

The next step is to build and to compute a linear system from the H and G matrices.

As an example, let us consider a surface delimited by a boundary consisting of four elements
where there are two Dirichlet conditions and two Neumann conditions imposed along the
curve. This example is illustrated below in Figure 14.

ϕ̄1
D

ϕ̄3
D

ϕ̄2
n,N

ϕ̄4
n,N

Figure 14: Simple example of a boundary consisting of four elements where two Neumann
and Dirichlet conditions are imposed on opposite sides.
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In this example, the system can be written in the matrix form as:
H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44



ϕ̄1
D

ϕ̄3
D

ϕ2
N

ϕ4
N

 =


G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44



ϕ1
n,D

ϕ3
n,D

ϕ̄2
n,N

ϕ̄4
n,N

 (36)

The imposed Neumann and Dirichlet conditions on the system are both on the left and
on the right of the equality. These are assumed to be known values of the problem. The
unknowns that remain should thus be moved to one side in order to construct a linear system
of equations encoded in matrix form that can be solved. The system writes as

G11 G13 −H12 −H14

G21 G23 −H22 −H24

G31 G33 −H32 −H34

G41 G43 −H42 −H44


︸ ︷︷ ︸

A


ϕ1
n,D

ϕ3
n,D

ϕ2
N

ϕ4
N


︸ ︷︷ ︸

x

=


H11 H13 −G12 −G14

H21 H23 −G22 −G24

H31 H33 −G32 −G34

H41 H43 −G42 −G44



ϕ̄1
D

ϕ̄3
D

ϕ̄2
n,N

ϕ̄4
n,N


︸ ︷︷ ︸

b

(37)

More generally, it is possible to rewrite the Hϕ = Gϕ matrix system as[
GD −HN

]︸ ︷︷ ︸
A

{
{u}D
{un}N

}
︸ ︷︷ ︸

x

=
[
HD −GN

]︸ ︷︷ ︸
B

{
{u}D
{un}N

}
︸ ︷︷ ︸

c︸ ︷︷ ︸
b

(38)

where all the unknowns have been gathered in the left-hand side x vector which is premul-
tiplied by the A matrix. The right-hand side of the equality can be computed to form the
b vector. This forms a linear system that can be solved in order to know the full values of
the potential and its directional derivative along the boundary. The last step is to associate
each computed value to the right element so that each element has a proper potential and
directional derivative value.

This kind of organization of the linear system is the reason why the vector of elements should
be sorted.

2.3 Implementation of the representation formula inside the domain

2.3.1 Computation of the potential

Once the potential and its directional derivative is known for each element, it is possible
to calculate the value of the potential at any point inside the domain starting from the
representation formula given by Equation 26. This equation can be discretized in a similar
way than the boundary representation formula. One obtains

ϕ(P) = −
N∑
j=1

Gijϕ
j
n +

N∑
j=1

Hijϕ
j (39)

= −
N∑
j=1

(∫
Γj

φ(P,q) dsq

)
ϕj
n +

N∑
j=1

(∫
Γj

∂φ(P,q)
∂nq

dsq

)
ϕj. (40)
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By injecting φ from Equation 24 inside the above equation, one can write

ϕ(P) = −
N∑
j=1

(∫
Γj

1

2π
ln(r) dsq

)
ϕj
n +

N∑
j=1

(∫
Γj

1

2π

∂ ln(r)

∂nq
dsq

)
ϕj, (41)

≈ − 1

4π

N∑
j=1

ljϕ
j
n

NGP∑
k=1

ln(r(εk))wk +
1

2π

N∑
j=1

(αj+1 − αj)ϕ
j, (42)

=
N∑
j=1

αj+1 − αj

2π
ϕj − lj

4π
ϕj
n

NGP∑
k=1

ln(r(εk))wk

 (43)

Thus, by fully knowing the value of the potential and its directional derivative along the
boundary of the surface, it is possible to determine its value inside the domain.

In practice, the domain will also be meshed where one needs to access the potential, so that
it can be computed at the position of the nodes of the domain (or the barycenter of each
element which is easier). For the nodes on the boundary, one technique is to associate to
it the value of the potential of the element to which they belong. The problem is that this
potential is discontinuous across 2 elements and so the value of the potential at a boundary
node is ambiguous.

2.3.2 Computation of the electric field

From the equation for the electric potential expressed through the BEM within the domain,
it is possible to derive an equation for the electric field. The potential equation for any point
in the domain is given by:

ϕ(P) = −
N∑
j=1

(∫
Γj

φ(P,q) dsq

)
︸ ︷︷ ︸

Gj

ϕj
n +

N∑
j=1

(∫
Γj

∂φ(P,q)
∂nq

dsq

)
︸ ︷︷ ︸

Hj

ϕj. (44)

The electric field can be calculated as the opposite of the gradient of the potential:

E(P) = −∇ϕ(P). (45)

Thus, taking the gradient from the Equation 44, one can write:

∇xϕ(P) = −
N∑
j=1

(∫
Γj

∇xφ(P,q) dsq

)
︸ ︷︷ ︸

G′
j

ϕj
n +

N∑
j=1

(∫
Γj

∇x

(
∂φ(P,q)

∂nq

)
dsq

)
︸ ︷︷ ︸

H′
j

ϕj. (46)

To avoid confusion in the calculations, the convention is chosen such that any point inside
the domain is denoted by P = (x, y) while points on the boundary are denoted by q = (ξ, ν).
As a reminder, the fundamental solution of the Laplace equation and the distance of any
point in the domain from the boundary are written as:

φ(x, y) =
1

2π
ln r r =

√
(ξ − x)2 + (η − y)2 (47)
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To facilitate the calculation of the derivatives of the H and G matrices, it is interesting to
calculate the derivatives with respect to the spatial variables and to introduce the derivation
formula with respect to the normal or tangential component:

∂r

∂x
= −∂r

∂ξ
= −ξ − x

r
= − cosα

∂r

∂y
= −∂r

∂η
= −η − y

r
= − sinα


∂r

∂t
= ∇r · t = −∂r

∂ξ
ny +

∂r

∂η
nx

∂r

∂n
= ∇r · n =

∂r

∂ξ
nx +

∂r

∂η
ny

(48)

It is thus possible to calculate the matrix G′
j, the integrand can be calculated as:

G′
j = ∇xφ(P,q) = −∇ξφ(P,q) =


∂φ

∂x
= −∂φ

∂ξ
=

1

2rπ

∂r

∂x
=

x− ξ

2πr2

∂φ

∂y
= −∂φ

∂η
=

1

2rπ

∂r

∂y
=

y − η

2πr2

(49)

The matrix H ′
j requires more advanced calculations. Using the relations introduced earlier,

it is possible to show that the integrant of H ′
j can be written as:

H ′
j = ∇x

(
∂φ(P,q)

∂nq

)
= ∇x (∇ξφ(P,q) · nq) =


∂

∂x

(
ξ − x

2πr2

)
nx +

∂

∂x

(
η − y

2πr2

)
ny

∂

∂y

(
ξ − x

2πr2

)
nx +

∂

∂y

(
η − y

2πr2

)
ny

(50)

=


(x− ξ)2 − 1

2
r2

πr4
nx +

(x− ξ)(y − η)

πr4
ny

(x− ξ)(y − η)

πr4
nx +

(y − η)2 − 1
2
r2

πr4
ny

(51)

In order to proceed to the integration of the integrants of the matrices H ′
j and G′

j previously
obtained, it is necessary to introduce a parametrisation of the element on the boundary.

ξ(ε) =
xj+1 + xj

2
+

xj+1 − xj

2
ε,

η(ε) =
yj+1 + yj

2
+

yj+1 − yj
2

ε.
(52)

Finally, the gradient of the matrices H and G is obtained. It is possible to express the integral
on the j element using the parametrisation developed previously. Then, the resolution of this
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integral can be considered from a numerical point of view thanks to the Gauss quadrature.

∂Gij

∂x
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∫
Γj

xi − ξ

2πr2
dsq =

∫ 1

−1
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with i denoting the point in the domain at which the electric field has to be calculated.

The above computations show that a representation formula for the electric field can be
derived and it can be integrated to the code by performing numerical integrations as for the
Gij components for the potential computation.

2.4 Numerical implementation of the visualisation

There are three ways for visualizing the data in the domain (through GMSH):

• The ElementData visualization type, which assigns a value to each element and thus
displays a constant value over each element,

• the ElementNodeData visualization type, which assigns a value to each node of each ele-
ment so that the field is interpolated inside each element, but can still be discontinuous
across elements,

• and the NodeData visualization type, which assigns a value to each node and thus
interpolates the value over all the domain.

Only the two first method have been implemented and used here. These implementations
are described here below. In fact, the NodeData visualization type implies a unique value of
the potential for each node which is wrong by construction on the boundary nodes. Also,
the resulting displayed field would have been non-constant over the boundary elements (if
the average value of the potential between two elements was chosen as the nodal value for
example), which is truly in contraction with the BEM hypothesis.
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2.4.1 Visualization by element

Once the solution of the potential has been calculated by the BEM along the boundary, it
is possible to evaluate the potential for any point in the domain. Thus, even if the potential
is discontinuous between two elements of the boundary, the smoothing effect of the Green’s
function allows to obtain a perfectly continuously differentiable potential within the domain.
The ElementData visualization consists in assigning a constant value of the potential for each
element of the domain. The point where the potential is evaluated is the barycenter of each
element.

The advantage of this method is its ease of implementation. As the barycentre of an element
lies strictly inside the BEM domain, the potential can be computed using Equation 43. As
the computation of the potential at the barycentre of each element is independent from the
other domain elements, it is easy to parallelize it (using OpenmMP in this case) to optimize the
calculation time. Once the potential has been computed at the barycenter of each element,
it is enough to associate the potential with the tag of the considered element and to provide
the results to GMSH to visualize them.

However, this method leads to visualization discontinuities of the potential at the boundaries
between the elements, whereas the potential should be smooth inside the domain.

The above method always refers to the computation of the potential, but this is also valid
for visualizing the electric field, applying the exact same method as above.

2.4.2 Visualization by element nodes

In order to obtain a more realistic visualization and to observe the smooth and continuous
behaviour of the potential inside the domain, the ElementNodeData visualization type has
also been implemented.

In fact, since the potential has to be assigned to each node of each element, it will appear
smooth inside the domain, but constant over each boundary element and thus discontinuous
on the boundary. Since this is what represents the best the nature of the potential, this the
preferred visualization method.

Although the association of the potential to each node of each element strictly included inside
the domain is more difficult than for the ElementData visualization, this stays quite simple.
In fact one simply needs to compute only once the potential at each node inside the domain
and associates it with the node tag (under the form of a map in this case). Then, looping
over the elements of the domain and their nodes, one can assign the proper potential to each
element node.

What is more involved is the choice (or the computation) of the potential on the nodes of
the boundary and mainly the association of the nodes to the proper elements.

The first part of the algorithm consists in retrieving the tag of all the elements having at
least one node in common with the boundary. Normally, it would be necessary to loop over
all the nodes of the elements of the domain and all the nodes of the boundary to find a
correspondence. In order to optimize this step, the getElementsByCoordinates function of
GMSH was used. Since this function returns the tags of the elements at a given point, one can
only loop over the boundary nodes and retrieve the tag of the element in contact with the
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boundary. This truly improves the performance of the solver.

The second step is to loop over all these elements in contact with the boundary, then for
each of their node, only focus on the nodes in contact with the boundary. One should then
retrieve the tags of the elements in common with these nodes. In order to do that, before,
one can construct a map assigning a vector of elements tags to each node of the boundary by
looping over the boundary elements. By doing so, one can take advantage of the map data
structure that is a lot more optimized than just looping over all the elements of the boundary
every time. Several configurations can be observed:

• the node is a mid element node and the value of the potential is simply the one of the
unique "neighbour" element,

• the two neighbouring boundary element are not part of the domain element and the
potential at that node is ambiguous. The mean of the potential of the two boundary
element is thus assign to that node,

• only one of the two neighbouring boundary elements is part of the domain element and
the potential at the node is simply the value of the potential of that element,

• the two neighbouring elements are part of the domain element and the potential at that
point is again ambiguous. The potential is thus again computed as the average of the
potential between the two boundary elements.

The result of this method is that the potential inside the domain appears smooth and the
potential on the boundary appears discontinuous and constant over each element, which is
more representative of the true nature of the potential. The only errors that it brings is on
the boundary where the potential is ambiguous for certain nodes.

Contrarily to the ElementData visualization type, the ElementNodeData visualization type
has not been implemented for the electric field.

(a) Association of the potential for the midnode
in the case of second-order elements.

(b) Association of the potential for a node at the
discontinuity between two elements.

(c) Association of the potential for two nodes
matching with a single element.

(d) Association of the potential for the three
nodes matching two elements in a corner.

Figure 15: Different possible geometries for the encounter of a domain element with the
boundary.
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2.5 BEM singularity

One of the biggest weaknesses of the BEM is to be able to correctly evaluate the integrals
when the boundary elements are close to each other. The purpose of this section is to explain
the characteristic singularity of the BEM and how it has been handled in our implementation.
The fundamental solution of the Laplace equation is given by Equation 24. The latter has
a logarithmic singularity in zero. This is not a problem for the computation of the matrix
elements Hii, Gii and Hij since these are evaluated analytically. However, the calculation of
Gij is done numerically and therefore it is important to deal with the case of this singularity.
A numerical integration uses Gauss points for evaluating the integral. When the integration
element j is far from the singularity, the integration can be performed using a small number
of Gauss points and still have a satisfactory approximation to the solution. Conversely, when
the integration element j is close to the singularity, it undergoes large potential variations
along its length. Gaussian integration will then require increasing the number of integration
points in order to obtain a satisfactory result. This phenomenon can be seen in Figure 16.
The singularity lies on the integration element i. The j1 element is close to the singularity
and will require a large number of Gauss points while the j2 element is far away enough and
will only need a small number of Gauss points for a good approximation of the solution.
The problem associated with this singularity was all the more striking in the calculation
of the electric field. The computation of the ∇H and ∇G matrices is performed through
numerical integration and the electric field greatly diverges at points close to the boundary
if the number of Gauss points is not sufficiently large. It should be noted that the number
of integration points has a strong influence on the computation time and is is therefore
important to minimize their number while ensuring a good approximation of the solution.

r1(ε)

r2(ε)

element: i
(xi, yi)

(xj1, yj1)
element: j1

element: j2
(xj2, yj2)

singularity

Figure 16: Figure of the fundamental solution of the potential and its logarithmic growth as
well as the singularity at the midpoint of the integration element.

Different approaches have been considered to solve this problem of numerical integration
and the treatment of these singularities. It was found out that the computation of the
integrals of the BEM in a two-dimensional case could be computed analytically. However,
it would have been very difficult to perform such integrations by hand. Consequently, the
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software Mathematica was used in order to find the different analytical solutions. These
could be computed both for the ∇G and ∇H matrices but also for the G matrix used in the
calculation of the potential.

The main advantage of the analytical solutions was the decrease in the computation time of
the code while providing much more accurate results. In fact, numerical integration near a
singularity requires a lot of Gauss points, resources and computation time, especially since
the Gaussian integration is not optimal for dealing with that kind of problem. Moreover,
since the analytical solutions avoid dealing with singularities of integrands, this is also more
robust to different geometries and meshes (even when the element are relatively close to each
other).

A convergence study of the numerical solution (towards the analytical solution) as a function
of the number of Gauss points, will be carried out in the rest of this report.

The differences in computation time between the two method is introduced below.

The rectangle.geo file where the length and width were fixed to the unit and subdivided
into 100 elements. The calculation of the matrix G appears in the resolution of the potential
on the boundary elements and in the calculation of the potential inside the domain. The
calculation of ∇G and ∇H only appears in the evaluation of the electric field.

CPU time for the numerical solution

Number of Gauss points computeInternalPhi [ms] computeElementData [ms] total time of the code BEM [ms]

2 1231.62 9557.42 11348.4

4 1534.72 11945.1 14049.1

6 1683.04 13289.4 15557.3

8 1866.22 14611.2 17083.8

10 1933.07 15573.9 18100.6

12 2084.77 17226 19928.3

14 2140.04 17857 20601.8

16 2296.15 19475.7 22391.6

18 2846.67 21959.6 25441.6

20 2881.35 24539.3 28365.4

22 2725.68 23422.5 26780.8

24 2815.54 24669 28131.5

26 2813.49 27785.7 31213.9

28 3183.78 27620.6 31450.5

30 3033.35 30274 33944.1

analytical 448.804 1615.84 2618.44|

Table 1: Analysis of the CPU time [s] as a function of the number of Gauss points used for
integration and comparison with the CPU time [s] of the analytical solution.

The comparison of the performance between the analytical solution and the numerical solu-
tion is immediate and is displayed in Tab. 1. The analytical solution is much faster than the
numerical one, while being more accurate. It should be stressed that it is necessary to use at
least a dozen Gauss points to ensure a good convergence of the electric field. The difference
in performance then exceeds a factor of ten in this configuration. If the integration is pushed
to the 30 Gauss points that correspond to the maximum allowed by GMSH, then the difference
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with the analytical solution reaches almost a factor 20.

Based on this table, a graph of the total BEM solver computation time versus the number
of Gauss points used can be seen in Figure 17.
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Figure 17: CPU time as a function of the number of Gauss points used in the integration
considering the total time of the BEM code.

A linear regression model could be fitted to the calculation time. As the number of Gauss
points is used for the integration of the boundary elements, it is normal to observe a linear
complexity of the integration time.

2.6 First results

A Figure illustrating the results obtained with the above method is shown on Figure 18. In
order to see the influence of the mesh, one opted for 10 elements on the edge in the first case
and 80 elements along x and 60 along y in the second.

26



Implementation of a FEM-BEM Solver for Electrostatic Actuation May 2022

-1 -0.5 0 0.5 1
-0.75

-0.375

0

0.375

0.75

100 150 200

phi

X

Y

Z

(a) Potential with 10 elements by edge.
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(b) Potential with 80 and 60 elements by edge.

(c) Electric field in vector form with 80 and 60
elements on the edges.

(d) Norm of the electric field with 80 and 60 ele-
ments on the edges.

Figure 18: Electric potential and electric field in a domain with a hole described in the
hole.geo file. The outer boundary of the domain was set at 100 V while the boundary of
the hole inside the domain was set at 200 V

The result seems to be consistent with what is expected in such a situation. The potential
seems to evolve from the value set at the outer boundary to the value at the hole in a smooth,
continuous and homogeneous way. Also the electric field seems to be constant below the hole,
which is in accordance with the parallel plates capacitor.

However, the colour scale proposed for the visualisation in GMSH does not always allow to
understand the behaviour of the potential. Figure 19 shows the electric potential on a cut in
the domain. The purpose of this slice is to display the evolution of the potential in a more
quantitative manner. This graph was made using the GMSH plugin CutPlane. A simple linear
interpolation was performed between the different points to obtain the final result.
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Figure 19: Graph of the potential for a cut located in the middle of the file Hole.geo with
200 [V] imposed on the hole and 100 [V] imposed on the boundary.

Finally, a comparison of the two visualization methods implemented is shown in Figure 20.
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(a) Visualisation using the ElementNodeData vi-
sualization type of GMSH.
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(b) Visualisation using the ElementData visual-
ization type of GMSH.

Figure 20: Comparison of the two visualizations implemented for the BEM solver on the
doubleHole.geo configuration with the potential fixed to 250 [V], 210 [V] and 100 [V] on
the upper hole, bottom hole and boundary respectively.

The electric field of the same configuration can be seen in Figure 21.
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(a) Electric field in vector form. (b) Norm of the electric field vector.

Figure 21: Electric field for the geometry of the doubleHole.geo file with the same Dirichlet
boundary conditions as in Figure 20.

As in Figure 19, Figure 22 shows the potential on a slice of the doubleHole.geo file with
the same Dirichlet boundary conditions as in Figure 20.
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Figure 22: Graph of the potential for a cut located in the middle of the geometry described
by the file DoubleHole.geo.

Different geometries have also been tested. A study of concave shapes is displayed in Fig-
ure 23b. In addition, a geometry consisting of two distinct meshes with second-order elements
was considered in order to check the robustness of the code. This configuration can be seen
in Figure 23a.
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(a) Geometry consisting of two types of meshes.
The first type of elements are squares while
the second type of elements are triangles, both
of order two. This is described by the
complex_validation.geo file.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

100 150 200

phi

X

Y

Z

(b) Geometry with a concave shape described by
the l_shape.geo file.

Figure 23: Application of the boundary element method to more complex meshes.

The electric field associated to the l_shape.geo file was also tested. The fact that it is
a concave geometry with a right angle generates a singularity for the electric field. This
singularity becomes more visible as the mesh is refined, as can be seen in Figure 24. The
mesh was removed in this image because the potential was barely visible.

(a) Displays the electric field in
vector form.

(b) Display of the electric field
norm.

(c) Display of the electric field
norm with a refined mesh.

Figure 24: Electric field diagram for the geometry described by the l_shape.geo geometry
file.

2.7 Multiple BEM domain

The ultimate test of the BEM code was to be able to manage a separate domain in several
parts. As the problem is based on the application of an electrostatic potential, it seemed
appropriate to split the domain to simulate the impact of two electrodes for example. It
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should be noted that this difficulty is mainly due to the two-dimensional nature of the prob-
lem. If the problem had been three-dimensional, the different 2D domains could certainly
have been connected by a common volume. Considering the construction of GMSH a first idea
could be to simply divide the domain by gathering them within various PhysicalGroups.
However, such an option is in reality difficult to implement due to the fact that the different
BEM domains must be independent. This is particularly problematic when applying bound-
ary conditions. Several tests have been performed. It is not easy to show graphically the
problem with this method but errors were found in the results. This was particularly true
when the different BEM domains were close to each other. Irregularities in the values of the
boundary potential were observed. It is possible that a detail was missed in the use of this
GMSH tool. To avoid any problems, the decision was made to consider each BEM domain
independently. Thus, for each BEM domain appearing in a geometry file, the BEM code will
be called iteratively in order to solve them one after the other. It is then possible to group
the different potentials and electric fields in a single view for display. This method is not
limited to two BEM domains and can therefore be used for any number of these domains.
The implementation of this functionality will be heavily used for the applications that will
be presented in the following. A simple example of the division of BEM domains is shown in
Fig. 25. This consists of two BEM domains separated by a beam embedded on either side.
On each of the two domains, Dirichlet and Neumann conditions are defined on opposite sides.
The first domain has Dirichlet conditions on the top and bottom with Neumann conditions
on the right and left edges, while the second domain has Neumann conditions on the top and
bottom with Dirichlet conditions on the right and left. This geometry is taken from the file
two_BEM_test.geo.

Figure 25: Simple geometry from the file two_BEM_test.geo illustrating the use of two BEM
domains.

2.8 Performance and parallelisation

With the aim of improving computational performance, the most time-consuming routines
and functions in the code were analysed.

The first most time consuming part is solving the linear equation system. Tough, it is very
difficult to do anything about it as it is solved using the solver in the Eigen library of C++.
Several Eigen solvers were tested in order to increase the resolution speed and performance
of the code. It turned out that the partialPivLu solver was the most suitable for the BEM
code. A more detailed study of the performance of the solvers is described in the next sub-
section. This will allow to justify this choice in a more rigorous way.
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The second and most resource-intensive part is the calculation of the potential inside the
domain. Fortunately, the BEM code has the advantage of being easily parallelizable. The
calculation of the potential at the barycentres or nodes can be done independently and
the problem is embarrassingly parallelizable. Note however that this is less trivial for the
ElementNodeData visualization type.

OpenMP was also applied to the calculation of the elements of the matrices G and H . This
part of the code is not the most time-consuming compared to the previous ones. It is there-
fore difficult to see a significant improvement in the total code time.

For the sake of exercise rather than real performance improvements, OpenMP has also been
implemented on other smaller code functions. As these functions participate in an insignifi-
cant percentage of the BEM code compared to those described above, no performance analysis
was performed. It is quite possible that the use of OpenMP in such situations is counterpro-
ductive, but again this is negligible compared to the computation time of the main routines.

2.9 Complexity of algorithms

In this section, a study of CPU time will be carried out. It is important to specify that the
execution time of the program is obviously dependent on the components of the computer on
which it is launched. The aim is above all to present average calculation time results for the
execution of the BEM solver on a relatively recent machine. To do this, a geometry was set
for performance testing. It was possible to play around with a large number of parameters.
The tests were carried out so that the BEM solver was at the top of the capabilities it is
likely to provide. The geometry used was the rectangle.geo where the length and width
was set to unity. The number of elements was set to 100 in these two dimensions. To solve
the linear equation system, the partialPivLu solver from the Eigen library was used. This
one has the advantage of being compatible with OpenMp. The test was carried out using
first-order triangles. The various calculations are performed using the analytical solution of
the integrals, both for the potential and for the electric field. Parallelization using OpenMp
was performed with a number of threads equal to 12. For this experiment, an idea came
out to check the time of each main algorithms that compose the BEM. It was thus possible
to observe their complexity as well as the final complexity of our solver. The results are
displayed on the Tab. 2

CPU time for a square geometry

Dimensions 50 100 150 200 250 300 350 400 450 500 complexity

fillElementVector [ms] 4.673 3.48806 4.55809 5.35798 5.81503 6.9139 8.40902 8.68392 10.7739 11.0459 O(n)

fillSystem [ms] 7.3421 24.72 54.6901 111.632 171.674 231.721 318.085 387.932 496.784 585.168 O(n2)

Solve linear system [ms] 102.833 284.15 568.803 1197 2184.59 3480.08 5426.99 7643.24 10420.5 13547.8 O(n5/2)

computeElectrostaticPressure [ms] 6.19292 4.28104 5.31411 6.51288 8.26597 9.5849 11.2312 12.7861 15.7599 17.725 O(n)

getModel [ms] 16.5451 70.308 165.576 259.418 383.515 521.679 691.3 900.911 1128.18 1414.31 O(n2)

computeInternalPhi [ms] 81.6369 396.472 1267.63 3017.69 5992.78 10310.3 17109.4 25599.6 38218.8 54369.4 O(n3)

elementNodeData [ms] 41.5909 118.19 260.051 420.37 676.407 953.588 1176.22 1678 1967.36 2356.76 O(n1.8)

computeElementData [ms] 201.94 1361.19 4823.74 11666.7 23107 40638.8 64726.6 96078.8 149318 193999 O(n3)

total time of the code BEM [ms] 481.054 2321.29 7280.73 16884.1 32797.8 56554.7 89968.3 132944 202419 267298 O(n3)

Table 2: CPU time of the different main BEM routines and highlighting the algorithms
complexity.
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The major result of this complexity study was to learn that the BEM solver has a total cubic
complexity. This performance can be considered quite poor. However, it is possible to put
this result into perspective. Indeed, most of the algorithms have a quadratic complexity. Only
the calculation of the potential and the electric field inside the domain has a cubic complexity.
These belong to the post-processing category of the solver. This detail is important for the
following. In the non-linear FEM-BEM coupling, the BEM solver is called iteratively but
only the solution on the boundary at the edge of the domain is required. The calculation
of the potential and the electric field inside the domain is performed only once at the end
of the iterations when the algorithm has converged. It is also interesting to ask why the
computation of the potential and the electric field in the domain have a cubic complexity.
If the length scale is doubled then the number of nodes and elements is quadrupled since a
two-dimensional geometry is considered. However, for each node or barycentre of the domain
where the calculation of the potential and the electric field is performed, the whole set of
elements of the boundary must be traversed. This multiplies this quadratic complexity by
one more dimension and is the reason for this cubic result which was found empirically. There
are two particular complexities. The first concerns the partialPivLu of Eigen which has an
exponent close to 2.5. This has been evaluated empirically. The same applies to the second
complexity which concerns elementNodeData which has a complexity with an exponent close
to 1.8. These results were obtained by minimizing the polynomial in the least squares sense
in order to obtain the curve that best fit the results. Considering that the complexity of
functions is polynomial is an assumption that may not always be verified. The case of more
exotic complexities such as logarithmic 2 or more particular laws have not been considered.
Fig 26 shows the total time of the BEM algorithm when refining the mesh. The data is
superimposed on a cubic interpolation thus empirically highlighting the complexity of the
algorithm.
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Figure 26: Graph of the calculation time of the BEM solver as a function of the number of
elements used over the length and width of the rectangle.geo file. Interpolations of the
empirical data by a polynomial of degree three.

To conclude this section on CPU time, a study on the solution time of the linear system
Ax = b has been performed. Several solution systems were available in the Eigen library.

2In reality, this domain has been explored but no relation to a logarithm could be established
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The computation time was performed on the same geometry. As already presented previously,
the file rectangle.geo was used. The number of elements was set to 100 for the length and
width. These dimensions were both set to a unit size.

CPU time for different kind of solvers

partialPivLu fullPivLu householderQr colPivHouseholderQr fullPivHouseholderQr completeOrthogonalDecomposition

time [ms] 248.74 1180.36 714.478 858.496 1408.56 831.698

Table 3: CPU time [s] of the various systems of linear equations solvers proposed by the
Eigen library.

It can be seen on Tab. 3 that the partialPivLu solver is the fastest of all. This result can
be explained by the fact that it is the only solver tested compatible with OpenMp. It is
enough to specify to Eigen the presence of multi-threading during the execution of the code
so that this one uses it among the algorithms which allow it. However, it should be noted
that speed is not the only criterion for these solvers. Some of these solvers provide a more
accurate solution than others. Precision is generally antagonistic to speed, which may explain
the slowness of some algorithms. The use of partialPivLu provides a sufficiently accurate
result for the problem. However, there is a condition for its use. The matrix A must be
inversible. This condition has never been violated on all the tested geometries. Nevertheless,
it is possible that a particular case was missed. This one could have put this hypothesis in
default. If this situation were to occur, it should be advisable to switch to another solver
without any precondition on the coefficient matrix.

2.10 Convergence of the numerical solution

After having determined a numerical solution and an analytical solution for the calculation
of the matrices ∇H, ∇G and G, it may be interesting to compare these two results. The
idea is to study the convergence of the numerical solution with respect to the analytical one
as a function of the number of Gauss points used for the integration. Moreover, only the
calculation of the electric field will be analyzed. The aim is to show the order of the error
and its convergence in order to extrapolate the result to a three-dimensional geometry where
an analytical solution is no longer possible. The study will focus on the global error. This
may vary according to the complexity of the geometry. In particular, integration on elements
close to the singularity of the potential will provide a larger error than elements far from this
singularity for the same number of Gauss points. The Figure 27a and Figure 27b show the
relative and absolute error found via this analysis. These errors are calculated using the two
norm of vector spaces. The absolute and relative errors are respectively given by:

εabs = ∥x̂− x∥ =

√√√√ 1

N

N∑
i=1

(x̂i − xi)2, εrel =
∥x̂− x∥
∥x∥

=

√√√√ 1

N

N∑
i=1

(
x̂i − xi

xi

)2

. (61)

where in this case N is the total number of elements since the electric field is evaluated at the
barycentre of each element. The vector x̂ is the set of electric field values for the numerical
solution. While x is the vector of the values of the analytical solution of the electric field for
all the elements.
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For this first test, the geometry used is that of rectangle.geo. The width and length
were set to the value of 1 and each of these dimensions was subdivided by 100 to create
the mesh. This is composed of triangular elements of order 1. It was important to start
with a simple geometry in order to validate the results. The maximum number of possible
Gauss points with GMSH is 30. Thus, it was not possible to study the convergence beyond
this limit. It should be noted that the use of specific functions such as the ln and the atan
in the calculation of the analytical solution could eventually lead to rounding errors. One
can observe the convergence of the numerical solution towards the analytical solution as a
function of the number of Gauss points used. This confirms that the analytical solution
found for this two-dimensional case is relevant. It is both more accurate and faster for this
particular type of problem.
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(a) Absolute error as a function of the number of
Gaussian points for the file rectangle.geo.
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(b) Relative error as a function of the number of
Gaussian points for the file rectangle.geo.

This study shows that the numerical solution is able to approach this analytical solution
by increasing the number of Gauss points for the integration. However, it is important to
highlight another problem. The analytical solution obtained is also an approximation. It
comes from the evaluation of the integrals used for the calculation of the matrices ∇H, ∇G
and G, but these are already derived from the discretisation of the problem by the BEM.
The approximation of the potential by a constant value along the boundary implies an error
with respect to the true analytical solution of the problem. In order to reduce this error,
it is necessary to increase the number of discrete elements used. The effects of this error
on the calculated electric field near the boundary have been observed in the case of the
retangle.geo file, as there is a real analytical solution to the corresponding problem. This
can be reduced to the study of a capacitor. Considering the application of a potential of 100
V on one side and 200 V on the opposite side, the electric field should reduce to a constant
value of 100 [V.m] for all the elements. In the BEM approximation, this is not observed along
the edges where an offset occurs. Thus, studying this time the convergence of the numerical
solution as a function of the number of Gauss points with respect to this true analytical
solution, it was found that the convergence stagnates after a certain number of Gauss points
and that the error is consequently constant as depicted in Figure 28a and 28b.
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(a) Absolute error as a function of the number of
Gaussian points compared to the true analytical
solution for the file rectangle.geo.
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(b) Relative error as a function of the number of
Gaussian points compared to the true analytical
solution for the file rectangle.geo.

Figure 29a and 29b show the norm of the electric field for 2 and 30 Gauss points respectively.
The 30-points solution is very close to the analytical solution. For better visualisation the
number of elements on each side has been set to twenty. For an integration using two Gauss
points, it can be directly observed that the electric field solution has a huge error. The
solution with thirty Gauss points approximates the electric field very well inside the domain
but suffers from an error along the edges. This is a direct result of the BEM discretisation
and can be reduced by refining the mesh.

(a) (b)

Figure 29: Norm of the electric field for the numerical solution with an integration performed
using respectively 2 (a) and 30 (b) Gauss points.

Finally, the convergence was tested on the geometry of hole.geo to show its validity against
more complex models. The absolute and relative convergence for this example can be seen
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in Figures 30a and 30b. The conclusions are identical to those drawn previously. For this
case, it is not possible to study the offset with respect to the true analytical solution. Its
existence can nevertheless be highlighted by studying the convergence of the error when the
mesh is refined.
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(a) Absolute error as a function of the number of
Gaussian points for the file hole.geo.
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(b) Relative error as a function of the number of
Gaussian points for the file hole.geo.

2.11 Order of convergence

The convergence of the method can be visualized by comparing a numerical and an exact
solution and by refining progressively the mesh.

More precisely, in each point at which the numerical solution was computed, it is possible to
compare it with the exact solution and to build a local relative error. Then one can average
this local error to compute a global error. The way the average is computed is

|x| =

√√√√ 1

N

N∑
i=1

x2
i , (62)

where |.| represents the average and x is a vector of size N .

Here the location of the points where the comparison between numerical and exact solution
was made is the barycenter of each element.

The convergence of the method has been studied on the particular case of a square of unitary
side length, with the potential being 100 [V] and 200 [V] on the left and right sides (respec-
tively). Zero flux were applied on the top and bottom sides of the square. If the center of
the coordinates system is located at the bottom-left corner of the square and if the axis are
parallel to the sides of the square, the exact solution writes

ϕexact(x, y) = 100 + (200− 100)x = 100 + 100x = 100(1 + x) [V], (63)
Eexact,x(x, y) = 100 [V/m] (64)

The results are presented in Figure 31. It can be seen that the electric field barely converges
towards the analytical solution. This can be explained by the fact that the values of the
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electric field at the boundaries is really bad, which implies a great error. In order not to take
into account that boundary error, the same exact study has been performed for the electric
field, but for a window inside the domain. This error is referred as the "Electric Field without
edges" caption in the legend of Figure 31. This shows that apart from that side effect, the
electric field well converges towards the analytical value.
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Figure 31: Study of the convergence of the BEM solver for a problem described by the
BEM_convergence.geo file.
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3 Linear FEM-BEM coupling
The coupling between the electrostatics and the kinematics of a structure is due to the
electrostatic pressure resulting from the presence of an electric field on the boundary of a
conducting surface. In this section, the one-way coupling between the BEM solver and the
FEM solver is introduced. In Section 5, a more sophisticated two-way coupled solver is
described.

3.1 Electrostatic pressure derivation

The first objective of the coupling is to compute analytically the electrostatic pressure ap-
plied on a charged electrode due to a potential difference between a mass electrode and the
charged one.
The physical principle is the following one: the charged electrode carries a surface charge
distribution so that the electric field due to the potential difference between two electrodes
exertq a force on the charged surface. Since the electrode is considered as an ideal conductor,
the charges are constrained to lie on its surface. Then, the electric field creates a pressure by
its action on the surface charge, which eventually induces a displacement of the geometry.

To obtain the expression of the electrostatic pressure, it must be recalled that the normal
component of the electric field En on both sides of an infinite charged plane is given by:

En =
σ

2ε
, (65)

in which σ [C/m2] denotes the charge per unit surface on the electrode and ε [F/m] the
dielectric permittivity of the medium outside of the conductor.
However, the electrode is not an infinite surface, but if the electric field just above or just
below an infinitesimal square of the electrodes surface is considered, one can assume that
the electric field is evaluated at a very small distance from the square in comparison to the
its dimensions. In that case, the electric field can be considered close to that of an infinite
charged plane.

A Bσ

ds

E1

E1

E2

E2

x

y

Figure 32: Electric fields experienced by a point Px outside a conductor and a point Py inside
a conductor.

The configuration represented in Figure 32 is considered. In particular, the focus is set
on an infinitesimal surface AB of the electrode, with its surface denoted as ds. Since the
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charge density on the electrode is equal to σ, the total charge on the section AB is given
by dq = σds. Two points are then considered: one point Px outside the surface, but close
to the section AB and one point Py inside the surface and also close to the same section.
Each point undergoes an electric field E1 due to the charge density of the section AB in the
direction pointing out of the surface. Moreover, each point also undergoes an electric field
E2 due to the charged density of the rest of the conductor. Since the two points Px and Py

are incredibly close to the section AB, the field E2 is in the direction of the outside normal
for both points, as shown in Figure 32.

Since the electric field outside a conductor (the charged electrode, in the present context) is
given by σ/2ε, the net electric field at Px is

Ex = E1 + E2 =
σ

ε
. (66)

Furthermore, the electric field inside a conductor being equal to zero, the net electric field at
Py is

Ey = E1 − E2 = 0, (67)

so that E1 = E2. Hence:
E1 = E2 =

σ

2ε
. (68)

Knowing the electric field outside the charged electrode, the force experienced by the section
AB is

F = dqE2 = dq
σ

2ε
=

σ2

2ε
ds. (69)

Since the electric field outside the surface is given by E = σ/ε the corresponding surface
charge is σ = Eε.

Finally, the electrostatic pressure pe [Pa] exerted on a charged surface with a normal compo-
nent of the electric field E, is given by:

pe =
F

ds
=

1

2
εE2. (70)

Note that for a perfect conductor, the sign of the electrostatic pressure is always positive,
no matter the sign of the electrical field at the surface. Indeed, if the value of the external
field is reversed, the sign of the surface charges is reversed too, so that the net electrostatic
pressure remains positive, inducing tension.

3.2 Communication between the different computational domains

Before implementing a communication between both solvers, an important step has been for
each solver to focus only on its subdomain. For this purpose, the whole two-dimensional
domain Ω is split into two domains: ΩFEM and ΩBEM. This is done by creating specific phys-
ical surfaces in the .geo file passed as an argument to the solver. Consequently, the BEM
solver only focuses on the nodes and elements in the BEM domain, while the FEM solver
only focuses on the ones in the FEM domain. To allow such a behaviour, a map between the
global node/element tag and the corresponding index in the particular subdomain is used.
First, the BEM solver retrieves the electrostatic solution in the whole BEM domain. This
step does not require any interaction between both subdomains.
In this first step, the electric field on the elements between both subdomains has been com-
puted. It is precisely the electric field at the boundary between the two subdomains that
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induces an electrostatic pressure which acts as a Neumann boundary condition on the FEM
domain. To ease the communication between both solvers, a physical curve named FEM-
BEM-Boundary corresponding to this particular boundary has been defined in the .geo file.
After the resolution of the electrostatic problem, the BEM solver loops on the elements of
this physical curve to fill a map assigning an electric field to each element tag. More precisely,
the electric field is directly converted into an electrostatic pressure according to the relation
derived previously.
This particular map is then passed to the FEM solver and used to compute nodal forces asso-
ciated to the nodes of the corresponding element. This is done by assuming the electric field
and the electrostatic pressure to be constant along one element (reasonable assumption is the
mesh is sufficiently refined) and performing a numerical integration using Gauss quadrature
to assign a consistent nodal force to each node of the element. Hence, the electrostatic pres-
sure can be seen as one more Neumann boundary condition for the FEM solver, as it also
contributes to the nodal forces vector f .
Eventually, the FEM solver computes the solution to the elastic problem in the FEM subdo-
main.

BEM-Domain

FEM-Domain

FEM-BEM Boundary

Figure 33: Example of some geometry subdivided into a BEM domain ΩBEM (in orange), a
FEM domain ΩFEM (in blue) and their boundary (in green). It allows a simple communication
between both solvers.

3.3 Validation

In order to validate the coupling between the BEM solver and the FEM solver, i.e. the
communication of the electrostatic pressure from the BEM solver to the FEM solver, the
geometry represented in Figure 34 is considered. It is constituted from a solid block (in the
FEM domain ΩFEM) and an exterior region at its right which is the BEM domain ΩBEM.
In the BEM domain, the prescribed electrostatic boundary conditions should theoretically
induce a constant uniform electric field |E| = ∆V/LBEM = 3 ·107 [V/m] pointing to the right.
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The uniform field should act on the right edge of the solid block (the boundary between the
two subdomains) as a constant surface traction of pe = ε0|E|2/2 = 3982.5 [Pa], considering
the permittivity of the vacuum ε0 = 8.85 · 10−12 [F/m]. Hence, from a mechanical point of
view, it corresponds to a simple tension configuration similar to the one studied in Figure 1.

ΩFEM ΩBEM

E.n = 0

E.n = 0

ϕ = ∆V ϕ = 0

LFEM
LBEM

H

Figure 34: Validation geometry and corresponding boundary conditions for the linear FEM-
BEM coupled solver. Note that the dimensions are not at scale. The domain of height H = 2
[µm] is split in ΩFEM and ΩBEM. The length of the FEM domain is LFEM = 5 [µm] and the
length of the BEM domain is LBEM = 3 [µm]. No horizontal displacement is allowed on the
left edge (in red), while the vertical displacement is set to uy = 0 at the bottom left corner.
On the middle edge at the boundary of both subdomains (in light green), an electrostatic
Dirichlet boundary condition ϕ = ∆V = 90 [V] is imposed, while the right edge (in dark
green) corresponds to the mass (ϕ = 0 [V]). Finally, a Neumann boundary condition, ensuring
the normal component of the electrical field E · n = 0 [V/m] is applied on the remaining
boundary of the BEM domain.

This geometry is tested with a regular mesh composed of first order quadrangles, using 50 [-]
elements along H, 125 [-] elements along LFEM and 75 [-] elements along LBEM. The corre-
sponding coupling_validation.geo file is available on the master branch. The numerical
results are represented in Figure 35. As expected, the electric potential involves linearly in
the BEM domain, while the electric field is uniform. Note that at the boundary of the BEM
domain, the electric field is not exactly equal to its expected value. In the FEM domain,
the resulting axial stress is almost uniform and equal to its theoretical value. However, as
explained in Section 2.10, the numerical instabilities observed when the BEM solver encoun-
ters corners of the domain seem to introduce some imprecision in the numerical value of
the electric field, hence leading in some error when passing the electrostatic pressure to the
FEM solver. Indeed, at the corners of the BEM/FEM boundary, the axial stress does not
correspond exactly to its theoretical value.

However, this numerical effect is reduced when refining the mesh. As a conclusion, the
communication between both solvers works properly.
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(a) Electric potential field ϕ [V]. (b) Electric field ∥E∥ [V/m].

(c) Axial stress field σxx [Pa].
(d) Axial stress field σxx [Pa] zoomed on the
upper right part of the block.

Figure 35: Electric potential field, electric field and axial stress field obtained for the valida-
tion geometry described in Figure 34. Note that the mesh is not displayed to improve the
readability.
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4 Non-linear FEM solver
In order to tackle more realistic applications involving large rotations of the elastic struc-
ture, a non-linear geometric finite element method solver, using the corotational approach, is
implemented. It is an adaptation of the linear FEM solver, in which an angle of rotation is
assigned to each finite element, defining the rotation between a global (and fixed) system of
axes and the local system of axes attached to the element. Please note that the implemented
algorithm allows to deal with large displacements, not with large deformations which would
require a more complex theory involving other strain tensors, cfr. [4].
An iterative Newton-Raphson algorithm is implemented to compute displacement increments.
Hence, this non-linear solver works with a tangent stiffness matrix.
The method presented in this section has been validated in [5] for 4-nodes element. In this
project, it has been adapted to triangular and higher order elements.
First, the corototational approach is described before detailing the implementation of the
iterative procedure.

4.1 The corotational approach

The corotational approach allows to decompose the total motion into a rigid body motion
and a deformational part. The rigid body motion consists of a translation of the center of
the element, defining the origin of the local system of axes, and the rotation of the element
around its center. In the elemental local system of axes, the deformations are still assumed
to be small. Therefore, the linear elasticity theory described previously allows to compute a
local elemental stiffness matrix. Using some transformation matrices, it is possible to retrieve
the corresponding expression in the global reference system of axes. However, as the rigid
body motion can be large, the non-infinitesimal rotation of each finite element allows the
global structure to reach large displacements.

4.1.1 The kinematics of one finite element

In this section, a finite element with an arbitrary number of nodes n is considered. The
global coordinates (i.e. in the reference system of axes - in the undeformed configuration)
of the node i are denoted as (Xi, Yi), while its global displacements (at a given iteration of
the procedure) are denoted as (Ui, Vi). For each element, the coordinates (XC , YC) and the
global displacement (UC , VC) of the center of the local system axes is computed as:

XC =
1

n

n∑
i=1

Xi, YC =
1

n

n∑
i=1

Yi, UC =
1

n

n∑
i=1

Ui, VC =
1

n

n∑
i=1

Vi. (71)

Note that the coordinates (XC , YC) can only be computed once for a given element, at the
beginning of the iterative algorithm, while the displacement (UC , VC) describing the rigid
body translation of the element must be updated at each iteration.
The local coordinates (i.e. in the system of axes translated by (UC , VC) and rotated by an
angle θ with respect to the reference system of axes) of the node i are denoted as (xi, yi) =
(Xi−XC , Yi−YC), while its local displacements are denoted as (ui, vi) and are computed as:(

ui

vi

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
xi + Ui − UC

yi + Vi − VC

)
−
(
xi

yi

)
. (72)
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The angle of rigid rotation θ is computed in such a way to minimize the euclidian norm of
the local displacements

n∑
i=1

u2
i + v2i (73)

and can be obtained as:

tan(θ∗) =

∑n
i=1 (xi (yi + Vi − VC)− yi (xi + Ui − UC))∑n
i=1 (xi (xi + Ui − UC) + yi (yi + Vi − VC))

. (74)

The angle θ is either θ∗ or θ∗ + π, depending on which one minimizes the euclidian norm of
the local displacements.

θ
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y

x

x

y

XC

C
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O

Xi

xi

UC
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Figure 36: Representation of the different variables associated to the kinematics of one finite
element. The global system of axes is denoted (O,X, Y ) and the local system of axes is
denoted (C, x, y). The global coordinates of the node i is Xi = (Xi, Yi) and its global
displacement is Ui = (Ui, Vi). The coordinates of the center of the element is XC = (XC , YC)
and its displacement is UC = (UC , VC). The local coordinates of the node i is xi = (xi, yi)
and its local displacement is ui = (ui, vi).

4.1.2 The corresponding transformation matrices

In the theoretical description of the linear FEM solver, an elemental stiffness matrix Ke

has been derived. In this section, it corresponds to the local elemental stiffness matrix Ke
l ,

computed in the local system of axes. It can be computed only once for each element at
the beginning of the iterative procedure, in the undeformed configuration, in the exact same
fashion it is computed in the linear solver. As the local stiffness matrix has been derived in
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an energy-consistent way, local nodal forces vector f e
l can be retrieved from the local nodal

displacements de
l :

f e
l = Ke

l de
l , with de

l =
(
u1 v1 u2 ... un vn

)T
. (75)

The correspondance between the global system of axes and the local system of axes of the
element is performed introducing one main elemental transformation matrix C, which differs
from the simple rotation matrix E, but ensures that the work done by internal forces is the
same in both local and global systems of coordinates (the derivation can be found in [5]). It
can be computed as:

C = PET , with P = I −AG, (76)

E = diag(R,R, ...,R︸ ︷︷ ︸
n R matrices

), R =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (77)

A =
(
−[v1 + y1] [u1 + x1] −[v2 + y2] ... −[vn + yn] [un + xn]

)T
, (78)

G =
1∑n

i=1(xi(ui + xi) + yi(vi + yi))

(
−y1 x1 −y2 ... −yn xn

)
. (79)

The elemental nodal forces vector in the global axes f e
g is retrieved as:

f e
g = CT f e

l . (80)

By associating to each node of the element a global node index, the full nodal forces vector fg

can be assembled at each iteration based on each elemental f e
g .

The elemental contribution Ke
g to the full tangent stiffness matrix Kg can be computed as:

Ke
g = CT Ke

l C +Ke
h, (81)

with Ke
h ensuring that the global tangent stiffness matrix involved in the Newton-Raphson

algorithm is defined in a consistent way (once again, the details can be found in [5]):

Ke
h = E

[
−F TG−GTFP

]
ET , (82)

with F =
(
F2 −F1 F4 ... F2n −F2n−1

)
, (83)

defined such that P Tf e
l =

(
F1 F2 F3 ... F2n−1 F2n

)
. (84)

Once the elemental contribution Ke
g has been computed for each element, the full tangent

stiffness matrix Kg is assembled using the global node indexation. It is assembled as a sparse
matrix to speed up the computation.

4.2 The iterative procedure

A summary of the iterative algorithm is represented in Figure 37. The details of the procedure
are described in this section.
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Initialization

fg Computation

if (res < tolerance)

if (res > tolerance)

dg = 0, dtot, fext
and kinematics init.

kinematics update,
fg assemblydtot is THE solution

Kg Assembly Solving
Kg∆dg = fext−fg

Updating
displacementsResidual = fg − fext

Figure 37: Flowchart representing the iterative procedure implemented in the non-linear
FEM solver.

Initialization:
First, the vector dtot containing all the nodal displacements is initialized at 0. If a Dirichlet
boundary condition (imposed displacement) is prescribed at a given node, the corresponding
value is also inserted in dtot. In this case, the value does not vary during the whole iterative
procedure, as the unknown global nodal displacement vector dg contains only the current
nodal displacements corresponding to the degrees of freedoms where no Dirichlet boundary
condition is imposed. The unknown vector dg is fully initialized at 0. Moreover, the nodal
external forces vector fext, corresponding to the discretization of the Neumann boundary
conditions, the volumic forces and the electrostatic pressure (in the case of BEM-FEM cou-
pling), is computed in a similar fashion as in the linear FEM solver. As a reminder, fext can
be decomposed into a volumic contribution of the volumic forces and a surfacic contribution
of the prescribed surface tractions (both purely mechanical Neumann boundary conditions
and electrostatic pressure application). The numerical integration of the different terms is
performed using Gauss quadrature integration rule. Afterwards, the fext vector is reduced to
the degrees of freedom corresponding for which there is not any prescribed Dirichlet bound-
ary condition.
The different variables associated to the kinematics of each element are initialized and stored
in an elementData data structure gathering every vector and matrix introduced in the pre-
vious section. The n node tags, the global (and local !) coordinates of the nodes, as well as
the coordinates of the center of the element are computed once and they do not require any
update during the iterative procedure. The local and global displacements are initialized at
zero, as well as the rigid rotation angle θ. The R, E, A, G, P and C matrices are initialized
according to their respective definitions.
Finally, for each element, the elemental stiffness matrix Ke

l in the local axes is computed as
described for the linear solver. It is also stored in the same data structure as the kinematics-
related variables.
Moreover, a vector containing the different 2D element tags in the FEM domain and a map
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assigning the corresponding elementData structure to each element tag are initialized.

Global internal forces computation:
This second step is the beginning of the iterative procedure. It consists in filling the full
global nodal forces vector fg. It gathers the nodal forces associated to the free degrees of
freedom (all the degrees of freedom except the ones for which there is a prescribed Dirichlet
boundary condition), similarly to the unknown global displacement vector dg.
After the initialization (at the first iteration), the local nodal displacements de

l associated
to each element are equal to zero, so are the local nodal forces f e

l and the global elemental
nodal forces f e

g .
First, for each element, the global displacements (Ui, Vi) of all n nodes are updated according
to the complete nodal displacement vector dtot (gathering dg and the Dirichlet boundary
conditions) obtained at the end of last iteration. Note that after the initialization, dtot only
contains the prescribed Dirichlet boundary conditions. Several kinematics variables are up-
dated according to the nodal displacements, such as the displacement (UC , VC) of the center
of the element, the angle of rigid body rotation θ, the local displacements (ui, vi) of each
node which form de

l , as well as the complete set of transformation matrices A, G, R, E, P
and C.
For each element, the local nodal forces are retrieved as f e

l = Ke
l de

l and converted into
global elemental forces as f e

g = CT f e
l . Finally, using a mapping between the node tags and

the indices of each unknown nodal displacement, the full nodal forces vector fg is assembled.
Note that at the first iteration, it only contains the nodal internal forces resulting from the
initial deformation corresponding to the prescribed Dirichlet boundary conditions.

Residual computation and stopping criterion:
The residual of the global nodal forces are computed as the difference between the internal
nodal forces fg, resulting from each elemental local displacements, and the external nodal
forces fext corresponding to the applied external forces. Ideally, the internal forces should be
equal to the internal forces. However, as the change of geometry induces non-linearities, the
residual is never exactly equal to zero and some tolerance must be introduced.
In order for the code to be able to tackle problems in which only displacements are prescribed
(in such a case, fext = 0 could lead to an inexact solution), it has been decided to focus on
the relative difference between two successive full nodal forces vectors as a stopping criterion.
More precisely, denoting as f

(n)
i the nodal force associated to the degree of freedom indexed

by i at the iteration n, the norm ϵ of the relative nodal force difference at the iteration n is
computed as:

ϵ =

√√√√√√ 1

N

N∑
i=1


∣∣∣f (n)

i − f
(n−1)
i

∣∣∣
max1≤j≤N

∣∣∣f (n)
j

∣∣∣
2

, (85)

in which N = 2m denotes the number of degrees of freedom associated to a mesh constituted
of m nodes.
If ϵ is lower than a fixed tolerance of 10−10 determined empirically, the full nodal displace-
ments dtot obtained at the end of last iteration correspond to the solution of the problem.
Otherwise, the iterative procedure has not converged yet and further nodal displacement
increments must be computed. Note that such a strict tolerance can be chosen as the imple-
mented Newton-Raphson algorithm converges rapidly, as discussed in Section 4.6. In the case
such a strict tolerance can not be reached, the maximal number of iterations has been set to
200. Moreover, as shown in Section 4.6, it is possible that the relative nodal force difference
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converges towards a value which is greater than the fixed tolerance. A mechanism has been
implemented in order to avoid computing tens of iterations without improving the accuracy
of the numerical solution. As the convergence is mostly monotonic (the nodal force differ-
ence does decrease at each iteration, except sometimes at the second iteration), the number
of times the nodal force difference increases between two iterations is count. When such a
phenomenon has occurred five times, convergence is assumed and the program is stopped.
To take the purely divergent cases into account, the final residual is displayed on screen so
that the user can check if its value is low (a value of around ϵ ≈ 10−8 is already acceptable).

Global tangent stiffness matrix assembly:
To compute the next nodal displacement increment ∆dg, the global tangent stiffness matrix
Kg must first be computed.
For each element, as the different transformation matrices have already been updated and
the local nodal forces have already been computed at the current iteration, the Ke

h matrix
ensuring the consistency of the procedure can be computed according to its definition. Sim-
ilarly, the elemental contribution Ke

g to the global tangent stiffness matrix is also retrieved
according to its definition.
Once again, using the mapping between the node tags and the indices of the free degrees
of freedom, the global tangent stiffness matrix Kg is assembled as a sparse matrix, using a
pre-allocated Triplet vector, similarly to what is done in the linear solver.

Computing the nodal displacement increments:
The incremental nodal displacements vector dg is simply obtained solving the linear system:

Kg ∆dg = fext − fg. (86)

The right hand side term has already been computed previously as it is the opposite of the
residual of the nodal forces. As the tangent stiffness matrix Kg is positive definite and sym-
metric, the linear system can be solved efficiently using a SimplicialLDLT object from the
Eigen library (similar to the solving procedure of the single linear system of the linear FEM
solver).

Updating the global nodal displacements:
The vector of unknown global nodal displacements is updated as

d(i+1)
g = d(i)

g +∆d(i)
g , (87)

with d
(i)
g denoting the value of the vector at the beginning of the i-th iteration of the proce-

dure and ∆d
(i)
g the corresponding increment.

Moreover, the full vector of nodal displacements dtot, gathering the displacements of every
node (even the ones which are constrained with Dirichlet boundary conditions), is also up-
dated.

Finally, the iterative procedure keeps going as the global internal forces fg are computed
according to the updated nodal displacements (see step Global internal forces computation).

4.2.1 Parallelization

The code is parallelized using openmp. The kinematics update (first step of the iterative
procedure) consists of one loop over the FEM element tags, it is parellelized using one single
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#pragma omp parallel for command. The global nodal forces fg assembly can be par-
allelized similarly, as local elemental vectors must be computed before writing the global
corresponding results in the global nodal forces vector. To avoid data race between dif-
ferent threads, #pragma omp atomic update commands are used. For the assembly of the
global tangent stiffness matrix Kg, a vector of triplets is initialized for each thread, avoiding
data race once again. Afterwards, the different vectors are assembled in one single vector of
triplets. To speed up the code, the vectors are initialized using the .reserve(approx_size)
method, with approx_size an estimation of the final size of the vector computed by making
the assumption each element inserts 64 values in the sparse global matrix. This estimation is
accurate in the case of first order quadrangles, otherwise it provides a first order of magnitude
which is reasonable.

4.3 Post-processing

First, to ease the iterative coupling between the FEM solver and the BEM solver, the dis-
placements of the nodes located on the FEM-BEM boundary are retrieved as pairs and stored
into a map assigning to each node tag its nodal displacements. The utility of such a data
structure is detailed in the non-linear iterative FEM-BEM solver section.
Once the final nodal displacements dtot are known, the final nodal forces (at each node, even
at the nodes for which there is some prescribed Dirichlet boundary condition) can be retrieved
using an assembly procedure similar to the one described in the Global internal forces com-
putation step. From the local elemental nodal displacements de

l , the local elemental nodal
forces are retrieved as f e

l = Ke
l de

l and converted into global axes using f e
g = CT f e

l . Finally,
the complete nodal forces vector can be assembled by assigning a global index to each node
of the FEM domain.
Once the nodal forces are known, the reaction forces can be computed on the surfaces at
which the displacement is prescribed by Dirichlet boundary conditions, by summing the
nodal forces of the nodes belonging to the given surface.
The final step is to recover the different strains and stresses inside each element. As described
in the linear FEM solver, the strains inside one element can be recovered using following re-
lation: εlxxεlyy

γl
xy

 = Bde
l , with B =

∂x 0
0 ∂y
∂y ∂x

[N1 0 N2 ..
0 N1 0 ..

]
. (88)

Because the reduced system of coordinates (ξ, η) corresponding to one element is attached
to the particular element, the exact same method as the one described in the linear solver
can be used to compute the strain-displacement B matrix.
Moreover, as Hooke’s law of elasticity is isotropic, the Hooke’s matrix H introduced in the
linear FEM solver allows to retrieve the stresses expressed in the local axes:σl

xx

σl
yy

σl
xy

 = H

εlxxεlyy
γl
xy

 . (89)

As explained previously, the local strains and stresses can be evaluated directly at the nodes
(and not at the Gauss points) of each element as linear elasticity is considered locally.
To retrieve the strains and stresses expressed in the global axes, one must first re-construct
the corresponding tensors in the local axes as:

εl =

[
εlxx εlxy
εlxy εlyy

]
, σl =

[
σl
xx σl

xy

σl
xy σl

yy

]
, (90)
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in which the shear strain is given by εlxy = γl
xy/2. Knowing that for one element, the relation

between eX and eY , the unit basis vectors of the global system of coordinates (O,X, Y ), and
ex and ey, the unit basis vectors of the local system of coordinates (C, x, y), can be expressed
as:

eX = cos(θ) ex − sin(θ) ey, eY = sin(θ) ex + cos(θ) ey, (91)

with θ the angle of rotation of the particular element, it is finally possible to obtain the
expression of the tensors in the global axes using the rotation matrix R introduced in Equa-
tion 77,

εg = R εl R
T , σg = R σl R

T . (92)

Moreover, the total potential energy TPE can be computed in a similar fashion as introduced
by Equation 16. For the numerical integration of the internal strain energy U , there is no
need to convert the elemental strain and stress tensors back to global system of axis, the
internal strain energy being a scalar, it is independent from the system of coordinates.
Please note that in the present non-linear case, Clapeyron’s theorem does not hold anymore
and U ̸= P/2.

4.4 Validation

4.4.1 Small displacements configuration

First, the non-linear solver is tested in the exact same geometry as described in Section 1.2
and Figure. 1.
To activate the non-linear solver, please add SetNumber{"Non_linear_solver",1}; in the
simple_tension.geo file. As can be observed in Figure 38, the numerical results are similar
to the ones obtained with the linear solver. Note that the small displacement assumption is
not strictly satisfied as a vertical displacement of around 2 [m] is imposed in order to highlight
the fact that the solver is able handle rigid body modes properly. If the superimposed rigid
body translation is neglected, the displacements of the structure are indeed small.

(a) Horizontal displacement field ux [m]. (b) Vertical displacement field uy [m].

Figure 38: Displacement field obtained with the non-linear solver in the configuration de-
scribed by Figure 1, using a mesh of nx = 50 [-] elements along the x-axis and ny = 20 [-]
along the y-axis, resulting in square elements of side 0.1 [m].

The non-linear solver also works with an hybrid mesh and higher order elements. However,
as can be observed in Figure 39, the prescribed vertical displacement ūy = 2 [m] of the
bottom left node can induce a divergence of the solution if the prescribed displacement is
too important (such a divergence has not been observed for ūy = 0.5 [m]). Strictly speaking,

51



Implementation of a FEM-BEM Solver for Electrostatic Actuation May 2022

the solution does not diverge but it does never converge towards the exact solution. This
problem can be overcome by increasing the number of finite elements.

(a) (b)

Figure 39: Horizontal displacement field ux [m] obtained with an hybrid mesh gener-
ated with the complex_validation.geo file and elements of the second order. In (b),
the element density has been increased by a factor of two with respect to the original
complex_validation.geo file (a).

4.4.2 Angle frame configuration

In this section, the non-linear FEM solver is validated against a geometry which has been
studied in [5]. It consists of an angle frame clamped at its left edge with a surface traction
applied on its upper edge, as described in Figure 40.

F

H

L t

t

A

Figure 40: Geometry associated to an angle frame beam. The beam is clamped on its left
edge corresponding to an imposed zero displacement ux = uy = 0. Its Young’s modulus is
E = 3 · 107 [Pa] and its Poisson ratio ν = 0.3 [-]. Its total length is fixed to L = 10 [m] and
its total height to H = 10 [m]. The thickness of the beam is constant t = 1 [m]. The beam
is uniformly pulled to the right at his top edge by an uniform surface traction. The point at
the middle of the top edge is denoted point A.

For a total horizontal force F = 40000 [N/m], Battini et al. [5] obtained an horizontal dis-
placement of the point A of approximately uA = 6.75 [m], using a fine mesh constituted
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of 304 square elements. They obtained this result using two different local finite element
formulations (two different ways to compute Ke

l in Equation 81). For the same configura-
tion, the results obtained with our implementation are represented in Figure 41a and the
horizontal displacement of point A is uA = 6.73 [m]. As can be observed, they are similar to
the numerical results obtained by Battini et al. using a coarse mesh displayed in Figure 41b.
As a conclusion, the corotational formulation has been implemented successfully.
Moreover, as can be seen in Figure 41a, the FEM domain is consisting of five smaller subdo-
mains, which highlights the ability of the code to handle different subdomains.

(a)

(b)

Figure 41: (a) Deformed configuration and total displacement ∥u∥ [m] represented on the ini-
tial mesh, obtained with a uniform mesh constituted of 304 square elements of edge 0.25 [m].
(b) Deformation computed by Battini et al. [5] using a coarse mesh. This subfigure is directly
taken from [5].

nnodes [-] niterations [-] uA [m] CPU time/niterations [s]
385 16 6.728 0.0034
1377 13 6.779 0.010
2977 18 6.791 0.018
5185 17 6.796 0.033
11425 14 6.799 0.082
20097 15 6.801 0.149
44737 15 6.802 0.431
79105 13 6.803 1.04
177025 15 6.804 2.50
313857 19 6.804 5.30

Table 4: Evolution of the horizontal displacement uA [m] at the tip of the angle frame
described in Figure 40 as a function of the number of nodes nnodes used to discretize the
geometry. The total number of iterations niterations and the CPU time per iteration are also
represented.

Moreover, one can study the convergence of the horizontal displacement of point A uA when
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refining the mesh. The results are gathered in Table 4.

As can be observed, when using 304 elements (385 nodes) for the computation, the error on
uA with respect to the converged solution is only of 1.12 [%], which shows that the numerical
implementation is robust even when dealing with relatively coarse meshes. Moreover, one
can observe that the number of iterations does reasonably vary when the number of elements
is modified. In most cases, it reaches a final value of the relative nodal force difference,
greater than the fixed tolerance, after five to ten iterations, before oscillating slightly and
once the nodal force difference has increased five times between two iterations, the program
stops automatically.
The von Mises stress field is represented in Figure 42. Note that the scale axis has been
modified as the stress at the inner corner (σVM = 8.57 [MPa]) is much greater than in
the rest of the structure. The stress field seems to accurately represent the physics, as it
corresponds to flexion in the horizontal bar and in the bottom part of the vertical bar, while
the tip of the structure is almost stress free.

Figure 42: Von Mises stress σVM [Pa] field for the angle frame geometry described in Figure 40,
it has been obtained using 175104 first order square elements, corresponding to 177025 nodes.

4.5 Code performance

To understand why the CPU time per iteration increases with the number of nodes as ob-
served in Table 4, one can study the relative amount of time each part of one iteration takes.
The study is performed for the angle frame configuration described previously, in the con-
figuration with 175104 first order square elements and 177025 nodes, using 8 virtual threads
(four distinct threads). In average, one iteration of the algorithm takes 2.50 [s]. Updating
the kinematics takes 0.08 [s], retrieving and assembling the global nodal forces vector 0.08 [s]
(including residual and nodal relative difference computation), assembling the global tangent
stiffness matrix 0.34 [s], solving the linear system using the SimplicialLDLT object 1.78 [s].
The remaining time (around 0.2 [s]) is spent in the initialization and in smaller parts of the
algorithm.
Hence, the computation time and the complexity of the implementation are mainly driven
by solving the linear system. Indeed, as can be observed in Figure 43, when increasing the
number of degrees of freedom (twice the number of nodes), solving the linear system takes
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more and more time compared to the global time of the whole iteration. It indicates that the
complexity of our implementation is at most equal to the complexity of the SimplicialLDLT
algorithm, which performs a direct LDLT Cholesky factorization optimized for sparse positive
semi-definite matrices.
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Figure 43: Evolution of the CPU time [s] per iteration and the time [s] for solving the
linear system as a function of the number of nodes, in logarithmic scale. The results are
measured using the angle frame geometry (large_rotation_validation.geo )in the same
configurations as described in Table 4.

Performing a linear regression to estimate the slope of the logarithmic curve for the CPU time
required to solve the linear system, the complexity of our implementation seems to evolve as

CPU Time ∝ nC
nodes, with C ∈ [1.35, 1.40] [s]. (93)

As the most time-consuming part of the algorithm is the resolution of the linear system,
it is relevant to compare the performance of the SimplicialLDLT solver with other direct
solvers of the Eigen library. As discussed previously, iterative solvers for linear systems are
not considered as they are more likely to diverge and as they induce some inaccuracy.
The comparison is performed using once again the angle frame configuration with 177025
nodes and 8 virtual threads. Table 5 gathers the performance of the principal direct solvers
for sparse linear systems available in the Eigen library.3 As can be seen, both SimplicialLLT
and SimplicialLDLT solvers are optimized for positive definite matrices and their perfor-
mance is comparable, the SimplicialLLT is however a bit solver and less stable: divergence
has been observed when using it to solve the linear systems for the configuration described by
Figure 39(b). The LU decomposition takes more time as it is a more general method. Finally,
the QR decompisition can not even be tested for a system of this size. In the configuration
with 1377 nodes, it takes 2.38 [s] to solve the linear system once.
As a conclusion, the SimplicialLDLT algorithm is the most adapted direct solver for solving
the sparse linear systems involved in the FEM computation.

3see Eigen documentation for solving sparse linear systems, consulted on May 13, 2022.
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SimplicialLLT SimplicialLDLT SparseLU SparseQR
CPU time [s] 1.855 1.788 5.029 -

Table 5: Average CPU Time [s] required for the different direct solvers for linear systems
available in the Eigen library to solve the sparse system described by Equation 86 once, for
the large_rotation_validation.geo file using 177025 nodes. The average is performed on
20 different time measurements.

4.6 Convergence study of the iterative algorithm

The convergence of the residual defined by Equation 85 is studied for various geometries and
the results are represented in Figure 44.4
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Figure 44: Evolution of the residual of the relative forces defined by Equation 85
of the iterative non-linear FEM solver as a function of the number of iterations for
various geometries corresponding respectively to the large_rotation_validation.geo,
complex_validation.geo, simple_tension.geo and uniform_charge.geo files.

In some configurations, the convergence of the Newton-Raphson algorithm is not motonic
during the first iterations. This has been observed in particular for the geometries involving
large displacements or non-homogeneous prescribed Dirichlet boundary conditions. However,
one common characteristic to the different geometries is the very rapid convergence of the
residual, once it has started to decrease monotonically. In this case, the fixed tolerance (or
the most precise accuracy which is possible to reach) is reached in a few iterations with a
convergence of almost the fourth order, meaning the residual is decreased by a factor 10−4 at
each iteration. Such a behaviour further validates the correct implementation of the described
iterative algorithm.

4To reproduce the results, please make sure the non linear solver parameter is activated before running
the solver.
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5 Non-linear iterative FEM-BEM coupling
For a non-iterative solver, the BEM solver computes the electrostatic pressures that are given
to the FEM solver which then computes the nodal displacements of the FEM-BEM boundary
nodes (schematized in Figure 33). However, after this structural displacement the electric
potential cannot be considered as being the same as before since the geometry of the problem
has changed a lot (the goal of the non-linear FEM solver is to deal with large displacements).
One should thus solve again the electrostatic problem in order to recompute the electrostatic
pressures and so on. Below the pull-in voltage, the deformed body eventually stabilises in an
equilibrium configuration.

The goal of the iterative coupled solver is then to make the BEM and the FEM solvers
communicate multiple times to exchange respectively the electrostatic pressures and the
nodal displacements.

The difference with the one-way coupled solver is that the BEM solver will have to take
into account the nodal displacements of the FEM-BEM boundary in order to recompute
the electrostatic pressures. Also, the iterative solver will need a condition for stopping the
iterations between the two solvers when the nodal displacements of the deformed body have
converged.

5.1 Method

The nodal displacements (along x and y) of the FEM-BEM boundary (computed with the
FEM solver) are stored under the form of a map that associates a 2D-displacement to each
node tag. This map is passed as an argument to the BEM solver. Every time the BEM solver
is called, it retrieves everything from the .geo file, including the node coordinates. Then it
associates to each boundary element the coordinates of its nodes.

What changes here is that for each node belonging to the FEM-BEM boundary, its coordi-
nates are incremented by its displacement (computed by the FEM solver and passed as an
argument to the BEM solver) given by the boundary displacement map before being stored
in the element structure.

By doing so, the .geo file only gives the undeformed geometry, but all the displacements are
stored and passed to the BEM solver without the help of any .geo file. Sometimes, it can
be interesting to visualize the electrical quantities on the deformed mesh. In order to do so,
a specific tool (the mesh untangler) is used in order to rebuild the mesh in the BEM domain
from the displacements of the FEM-BEM boundary. However, the general post-processing of
both the FEM and BEM solvers is performed only once when convergence is reached. Indeed,
the electric potential and the electric field inside the BEM domain, as well as the strain and
stress fields inside the FEM domain, are not required for performing the iterative algorithm.
By doing so, the computation time of the whole algorithm is reduced and its performance is
increased.

5.2 Stopping criterion

The iterations will continue until the stopping condition is encountered. It should take into
account the displacements from the previous and the current iteration and be true when
their difference is globally sufficiently small. However, it is better to use a relative difference
rather than an absolute difference (between the displacements of two successive iterations)
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since the characteristic size of the considered problem could vary a lot. One thus have the
relative displacement difference of each node and for each iteration

x
(k)
i =

∥u(k)
i ∥ − ∥u(k−1)

i ∥
∥u(k−1)

i ∥
, (94)

with i being the tag of the considered node, k the current iteration, u the vectorial displace-
ment and ∥.∥ representing the Euclidian norm of a vector.

Also, one should define a norm for transforming the relative displacement difference of each
FEM-BEM boundary node into a scalar (some kind of average). The norm that as been
adopted here is

|x| =

√√√√ 1

N

N∑
i=1

x2
i , (95)

where |.| represents the norm and x is a vector of size N .

The stopping condition is thus, |x(k)| < ε, with ε a user defined threshold, set to 10−7 by
default.

However, it is possible that the deformed body does not stabilises around an equilibrium
point and for this reason, one should add a maximum number of iterations. In fact, in the
where the number of iteration reaches the maximum number of iteration, the user should be
warned that the solution has diverged. This limit has typically been set around 50 iterations,
but for some specific applications (typically pull-in evaluation), this number can be set to a
higher value of the order of 100 iterations. In fact, at the edge of pull in, for example, a very
high number of iterations is needed for the solver to converge.

5.3 Convergence

It is possible to study the convergence of the solution as a function of the iterations (between
the BEM and the FEM solvers). This is what has been done in Fig. 45a and 45b. In this
case, the ε parameter has been fixed to 10−5 [%] and so iterations where performed until the
relative displacement difference was lower than 10−5 [%].
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Figure 45: Study of the convergence of the iterative coupled solver as a function of the
number of iterations on a geometric configuration described in the MEMS.geo file available on
the master branch.
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It can be seen in Figure 45a that the semi-log plot behaves as a straight line, meaning
that the relative displacement difference of the coupled iterative solver exponentially decays
with the number of iterations. In order to be more confident with the error, the maximum
displacement at each iteration is presented in Figure 45b. This shows that the maximum
nodal displacement converges towards a fixed value (even after 5-6 iterations) and that the
structure well rapidly converges towards the deformed configuration.
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6 Applications
In this section, several geometries and practical MEMS applications are studied using the
FEM-BEM solver described in previous sections. The general physical behaviour of the
structures, as their displacement-voltage curve, is determined, as well as the stress field and
the electrostatic fields.

6.1 Electrostatically actuated micro-beam clamped on one side

The first application corresponds to the electrostatic actuation of a clamped micro-beam
made of silicon. Its basic geometry allows to fully understand the physics related to the
electrostatic actuation of microsystems, such as the pull-in instability.

6.1.1 Geometry of the problem

The geometry of the micro-beam, as well as the different boundary conditions of the coupled
problem, are described in Figure 46. They are implemented in the clampedMicroBeam.geo
file available on the master branch. Note that no mechanical surface traction is directly
applied to the beam and in this case, gravity is neglected. The beam is actuated electro-
statically, which means that a voltage difference ∆V is applied between the lower electrode
and the silicon structure. The resulting electric field induces an electrostatic pressure on the
surface of the beam, which acts as the only mechanical load of the problem. In this case, the
electric field is expected to be far bigger (in norm) on the lower surface of the beam than on
the top surface. The electrostatic pressure acting as a pull force, the beam will tend to be
pulled down by the applied voltage difference.

E.n = 0 E.n = 0 E.n = 0

E.n = 0E.n = 0

ϕ = ∆V

ϕ = 0

u = 0 ΩFEM

ΩBEM

l

H

L

g

t

Figure 46: Geometry (not at scale) associated to one clamped micro-beam. The silicon beam,
represented by the inside of the FEM domain ΩFEM, is clamped on its left edge corresponding
to an imposed zero displacement ux = uy = 0. Its Young’s modulus is assumed to be
E = 150 [GPa] and its Poisson ratio ν = 0.27 [-]. Its length is fixed to l = 25 [µm] and its
thickness to t = 1 [µm]. The external boundary of the beam (in light green) is supposed to
be conductive and is set to ϕ = ∆V (adjustable), while the lower electrode (in dark green)
is the mass (ϕ = 0 [V]). The gap between the beam and the lower electrode is chosen to
be g = 1 [µm]. On the remaining boundary of the BEM domain (in orange), the normal
component of the electric field is set to E · n = 0 [V/m], so that it does not interfere
with the electrostatics of the micro-system. Air is considered in the ΩBEM domain, so that
ε = ε0 = 8.85 · 10−12 [F/m].
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6.1.2 Comparison between the linear and the non-linear solver

In this section, the results obtained with both implemented coupled solvers are described. In
particular, the focus is set on the displacement field.
For the sake of comparison, a voltage difference of ∆V = 90 [V] is applied. First order
elements are used in the whole domain. The ΩFEM domain is discretized using 400 quadran-
gular, while the boundary of ΩBEM domain is composed of 520 linear elements. The inside
of the ΩBEM domain is filled with triangular elements. The displacement field obtained with
the linear solver is represented in Figure 47. As can be observed, the displacement field in
the beam corresponds roughly to a flexion configuration. The upper part of the beam is
stretched and the lower part is compressed. The maximal vertical displacement is observed
at the tip of the structure.

(a) Horizontal displacement field ux [m]. (b) Vertical displacement field uy [m].

Figure 47: Displacement field u [m] obtained with the linear solver for the micro-beam
actuated electrostatically described in Figure. 46 with ∆V = 90 [V].

However, as the vertical displacement at the tip of the beam uy = 0.135 [µm] corresponds
to 13.5 [%] of the gap between the structure and the electrode, the electric potential field
is perturbed by the displacement of the beam and the iterative non-linear solver is required
in order to obtain physically accurate results. The displacement field obtained with the
iterative solver is represented in Figure 48. The numerical results have been obtained after
13 [-] iterations of the non-linear coupled solver, for a total CPU time of 1.959 [s]. For the
sake of comparison, the linear solver takes 0.443 [s].

The shape of the displacement field is similar, but the maximal vertical displacement is
now uy = 0.173 [µm], which is quite different from the previous result. It implies that the
non-linear iterative solver is best suited to study the considered problem.

(a) Horizontal displacement field ux [m]. (b) Vertical displacement field uy [m].

Figure 48: Displacement field u [m] obtained with the non-linear iterative solver for the micro-
beam actuated electrostatically described in Figure. 46 with ∆V = 90 [V]. It is displayed on
the deformed final configuration.

6.1.3 Resulting stress and electric potential fields

Before focussing on the stress and electric potential fields, some simulations are performed
when refining the mesh, in order to make sure the numerical results have converged towards
the physical ones. The results are gathered in Table 6. As can be seen, using 2500 elements
in the ΩFEM domain is enough to ensure convergence.
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Number of elements [-] Maximal vertical displacement uy [µm]
25 0.110
100 0.155
400 0.173
900 0.177
1600 0.179
2500 0.180
3600 0.180

Table 6: Convergence study for the clamped micro-beam geometry with ∆V = 90 [V], using
the non-linear iterative solver. The number of elements is the total number of elements in
the ΩFEM domain.

The resulting von Mises stress field is represented in Figure 49. The stress is the highest
at the clamped edge of the beam, while the tip of the structure is almost stress free. It
corresponds once again to a configuration similar to bending. Note that the maximal von
Mises stress is far lower than the yield stress of silicon, which is σy = 165 [MPa], so that the
behaviour is indeed elastic.

Figure 49: Equivalent von Mises stress field σVM [Pa] obtained with the non-linear iterative
solver for the micro-beam actuated electrostatically described in Figure. 46 with ∆V = 90
[V]. It is displayed on the deformed final configuration and computed with 2500 [-] elements
inside the ΩFEM domain.

The resulting electric potential field is represented in Figure 50. One can observe as the field
adapts to the bending of the microbeam, the equipotential lines are not horizontal as it would
be the case for a plane capacitor. Once again, this is due to the two-way coupling between
the electrostatics and the displacement of the beam.

Figure 50: Electric potential field ϕ [V] obtained with the non-linear iterative solver for
the micro-beam actuated electrostatically described in Figure. 46 with ∆V = 90 [V]. It is
displayed and computed on the deformed final configuration.
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6.1.4 Voltage-displacement curve

The maximal vertical deflection of the micro beam can be computed as a function of the
applied voltage difference. The results are represented in Figure 51. As can be observed, the
linear one-way coupled solver and the non-linear two-way coupled solver provide very similar
results below ∆V = 50 [V]. For greater voltage differences, the displacement of the beam
impacts the distribution of the electric potential below the beam. In this case, the non-linear
solver is required to obtain realistic results.
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Figure 51: Evolution of the maximal vertical displacement uy (in absolute value and in [µm])
as a function of the voltage difference ∆V [V] for the micro beam described in Figure 46.
Results obtained with both the one-way coupled linear solver and the two-way coupled non-
linear solver, using 900 square elements in the FEM domain ΩFEM.

As can be observed for the the one-way linear solver, the maximal vertical deflection of the
micro beam is a quadratic function of the voltage. This behaviour is a characteristic of the
electrostatic actuators in small displacement configurations using one single electrode as a
mechanical charge. The small displacement assumption implies that the displacement of the
structure does not impact the electrostatics distribution.

Indeed, if the electric potential imposed on the electrode ∆V is the only non-homogeneous
boundary condition on the boundary of the BEM domain ΩBEM, the electric potential field ϕ
and the electric field E are proportional to ∆V . This is a direct result from the superposition
theorem, which holds as Laplace equation (Equation 19) is linear. Hence, the electric field
on the boundary between the FEM and the BEM domains is directly proportional to ∆V .
The electrostatic pressure, related quadratically to the electric field through Equation 70,
is hence proportional to (∆V )2. If the electrostatic pressure is the only mechanical charge
applied on the structure, the superposition theorem (linear elasticity is assumed) states that
the displacement field is proportional to the electrostatic pressure and therefore proportional
to (∆V )2.
Note that this result is only valid if the displacement of the structure does not modify the
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electrostatics distribution.

As can be observed in Figure 51, the maximal displacement increases rapidly for an applied
voltage ∆V > 50 [V] and the non-linear solver is required. The number of iterations required
for the iterative solver to converge (until a certain tolerance) also increases as represented in
Table 7 and Figure 52. This can be explained by the fact the bigger is the voltage difference,
the greater is the displacement and the greater is the impact of the displacement on the
geometry of the electrostatic problem. As a result, the two physics of the coupled problem
strongly interact with each other and a higher number of iterations is required for the solver
to reach the equilibrium configuration. Figure 52 also shows that the relative displacement
difference still exponentially decays with the number of iterations.

Voltage difference ∆V [V] Number of iterations [-]
50 7
60 8
70 9
80 11
90 14
100 18
110 50

Table 7: Number of iterations required for the non-linear iterative solver to reach a relative
displacement difference (Equation 95) of 10−7 for given voltage differences ∆V [V], in the
clamped beam configuration of Figure 46.
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Figure 52: Evolution of the relative displacement difference as a function of the number
of iterations for different voltage differences ∆V [v], in the clamped beam configuration of
Figure 46. The threshold relative displacement difference has been fixed to 10−7.

6.1.5 Pull-in voltage

The pull-in voltage ∆Vpi [V] is defined as the minimal voltage difference for which the micro-
beam is deflected in such a way that it sticks to the bottom electrode. By definition, such a
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configuration requires large displacements, which is why only the non-linear iterative solver
is considered in this section.

As contact between different surfaces has not been implemented, such a deflection is charac-
terized by a simple divergence of the iterative algorithm when the iterative solver is executed.

For the geometry considered in Figure 46, the highest voltage difference that does not induce
a divergence of the iterative solver, hence corresponding to the pull-in voltage, is ∆Vpi =
111.1 [V]. It has been computed using 900 elements in the ΩFEM domain.
An example of a diverged solution is represented in Figure 53.

Figure 53: Deformed configuration obtained after iteration 27 for the clamped micro-beam,
for an applied voltage difference ∆V = 112 [V]. The result does not represent the physics, as
the iterative solver has diverged.

In [6], they developed an approximate analytical formula for the pull-in voltage for such a
clamped micro-beam, by assuming a linear shape between the tip and the anchor of the
structure:

∆Vpi =

√
0.22

Eg3t3

εl4
, (96)

corresponding in the present case to ∆Vpi = 97.702 [V]. However, as can be observed in
Figure 49, the vertical deflection of the beam can not be approximated by a straight line.
Moreover, according to [6], the linear deflection assumption underestimates the pull-in volt-
age.
In [7], they studied the problem numerically by taking the non-uniform electrostatic pressure
acting on the deflected beam into account and they obtained an other formula for the pull-in
voltage in the current configuration:

∆Vpi =

√
0.28

Eg3t3

εl4
, (97)

corresponding now to ∆Vpi = 110.224 [V]. This result is very close to the one obtained in
this report, corresponding to a relative error of 0.8 [%]. This result further validates the
implemented iterative non-linear FEM-BEM solver.
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6.2 Longitudinal comb-drive accelerometer

Comb-drive devices are used for the electrostatic actuation of microsystems in many different
applications from micromirrors to accelerometers. They rely on interdigitated fins with an
applied voltage difference inducing strong electric potential gradients in the free space between
the fins. The strong gradients result in a large electric field and a large electrostatic pressure
acting on the moving electrode. In the present case, the device is first studied as an actuator
and later as an accelerometer.

6.2.1 Geometry of the device
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ϕ = ∆V2
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Figure 54: Geometrical description of a comb-drive actuator / accelerometer, implemented in
the longitudinalCombDevice.geo file. The bottom and the top electrode are fixed and are
respectively subjected to a potential difference ∆V1 and ∆V2 with respect to the central beam
acting as the mass of the system (ϕ = 0 [V]). The central beam of length Lx = 120 [µm] is
clamped at both ends. The height of the numerical domain is H = 60 [µm]. An homogeneous
Neumann condition (normal component of the electric field) is applied on the remaining
boundary of the domain. The present device has Nc = 3 [-] fingers on each side of the beam.
The beam is made of silicon: E = 150 · 109 [Pa], ν = 0.27 [-], ρ = 2300 [kg/m3]. The height
of the central beam is Hb = 0.8 [µm], the length of one fin is Lc = 5.6 [µm] and its width
Wc = 1.6 [µm]. The horizontal space between the fins of the electrodes and the central fins
is g = 1.6 [µm]. The electrode fin length is Le = 4.8 [µm], while their width is equal to the
thickness of the electrode basis te = 2 [µm]. The vertical space between the central beam
and the tip of the fins of the electrodes is s = 2 [µm]. Air is located between the different
electrodes: ε = ε0 = 8.85 · 10−12 [F/m]. a [m/s2] is the vertical acceleration experienced by
the central beam.

The geometry of the comb-drive device is presented in Figure 54. Note that the number Nc of
fins as well as all dimensions can be chosen by the user in the longitudinalCombDevice.geo
file. The bottom and the top electrode are fixed and the central beam plays the role of the
moveable electrode. When used as an accelerometer, the central beam plays the role of
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the proof mass. An homogeneous Neumann boundary condition is applied on the external
boundary of both BEM domains. It can be justified as the electric field far away from the
electrode should be equal to zero, as the electric potential variations should disappear far
from the electrodes.

The first step of the numerical study of the comb-drive device is to check that the dimensions
of the external domain do not modify the electrostatic configuration of the electrodes. As can
be observed in Figure 55(b), the length of the numerical domain must be much larger than
the length of the fixed electrodes, otherwise the lateral boundaries of the numerical domain
impact the distribution of the potential field. The height of the numerical domain should not
be chosen too small either, even if its impact on the potential field between the electrodes is
less significant than in the case of the domain length, as can be seen in Figure 55(c). For the
rest of the study, the reasonable configuration represented in Figure 55(a) is kept. Note that
the electric field acting near the ends of the central beam is negligible with respect to the
electric field at the top of the fins (one thousand times smaller). Note that the variations of the
maximal vertical displacement obtained for the three different configurations are negligible
(less than 0.1 [%] of relative variation), as the electric field between the electrodes is almost
not impacted by the domain dimensions.

Please note the ability of the presented implementation to handle multiple independent BEM
domains.

(a) Lx = 120 [µm], H = 60 [µm]. (b) Lx = 80 [µm], H = 60 [µm].

(c) Lx = 120 [µm], H = 24 [µm].

Figure 55: Electric potential ϕ [V] field obtained for the comb-device configuration described
by Figure 54 with Nc = 10 fins, ∆V1 = 50 [V] and ∆V2 = 40 [V], for various numerical
domain dimensions Lx and H. Results obtained with the iterative solver.

6.2.2 Mesh

The structure of the mesh used to perform the numerical simulations is represented in Fig-
ure 56. In the FEM domain, the mesh is structured and is composed of quadrangular ele-
ments, as triangular elements behave poorly in bending configurations as discussed in Sec-
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tion 1.4. Moreover, the elements are chosen to be square to allow exact numerical integration
using Gauss integration. Inside the BEM domain, the type of the elements does not matter
for the accuracy as the elements are only used for post-processing. Hence, triangular elements
are chosen as they adapt more easily to the complex geometry between the fins of the elec-
trodes. In order to reduce the computation time, the size of the linear elements is increased
on the external boundary of the BEM domain as the solution does not vary significantly and
as the important part of the BEM computation is located at the surface of the electrodes.
For this application, first order elements are chosen.

(a) Global view. (b) Zoom on the left part.

Figure 56: Mesh used for numerical simulations involving the comb-drive device, represented
with Nc = 10 fins. Note that the mesh in the central beam is refined for performing numerical
simulations.

6.2.3 Convergence of the maximal vertical displacement

In order to determine the required number of finite elements in the FEM domain, the con-
vergence of the maximal vertical displacement as the mesh is refined is studied. The study
is performed in the following configuration: Nc = 4 fins, ∆V1 = 60 [V], ∆V2 = 0 [V], a = 0
[m/s2], using the non-linear iterative solver. Numerical results are gathered in Table 8. As
can be seen, more than 100000 nodes are required in order to reach a relative error less than
1 [%]. However, it requires a lot of computation time. Such an important CPU time is
needed because it takes about 20 iterations to reach the nodal difference tolerance of 10−7

and it takes approximately 8 steps for the single FEM solver to converge during one iteration.
Hence, using nFEM = 40174 nodes is satisfactory enough (the relative error is lower than 2
[%]). It corresponds to 2016 square finite elements in each fin.

NBEM [-] nFEM [-] Maximal vertical displacement uy [µm] CPU time [s]
1548 1451 0.250 3.75
2374 5006 0.290 10.28
4022 18398 0.308 33.41
5670 40174 0.314 94.55
7318 70334 0.318 162.51
8966 108878 0.319 246.29

Table 8: Convergence study of the absolute value of the maximal vertical displacement for
the comb-device with Nc = 4 fins, ∆V1 = 60 [V], ∆V2 = 0 [V], a = 0 [m/s2], using the
non-linear iterative solver. The number of nodes nFEM is the total number of nodes in the
ΩFEM domain, while the number of elements NBEM is the total number of linear elements on
the ΩBEM domain boundary.
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Note that the gravity can be neglected as the maximal vertical displacement is 3.47·10−6 [µm]
for Nc = 4 fins, ∆V1 = 0 [V], ∆V2 = 0 [V], a = g = 9.81 [m/s2].

The convergence of the iterative solver as a function of the number of iterations can also be
studied for this application. The results are shown in Figure 57 for different potentials ∆V1

below pull-in. As for the other applications, one can clearly see the exponential convergence
of the relative displacement difference.
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Figure 57: Evolution of the relative displacement difference as a function of the number of
iterations of the iterative solver for the longitudinal comb-drive actuator in the configuration
described in Figure 54, with Nc = 4 fins, ∆V2 = 20 [V], a = 0 [m/s2] and ∆V1 variable.

6.2.4 Different physical fields

It is interesting to observe the distribution of different fields computed numerically. In this
section, the results are presented in the configuration from last section (Nc = 4 fins, ∆V1 = 60
[V], ∆V2 = 0 [V], a = 0 [m/s2]), using nFEM = 108878 elements in the FEM domain.
The electric potential and the electric field between the electrodes are represented in Fig-
ure 58. As can be observed, the equipotential lines follow the geometry of the electrodes and
are squeezed by the vertical displacement of the central beam. The potential varies from 0
[V] to 60 [V] over distances smaller than 2 [µm], resulting in a large electric field of the order
of magnitude of ∥E∥ ≈ 60/2 = 30 [V/µm] = 3 · 107 [V/m]. As the vertical space between
the base of the central beam and the fins of the bottom electrode is 0.8 [µm] larger than
the space between the central fins and the base of the bottom electrode in the undeformed
configuration, it is more than 1 [µm] larger in the present deformed configuration and the
electric field is smaller at this location. However, in the horizontal space between the moving
fins and the fixed fins, the electric field is almost uniform and horizontal (resulting from
almost vertical equipotential lines). Locally, the geometry corresponds to the configuration
of a plane capacitor.
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(a) (b)

Figure 58: (a) Electric potential ϕ [V] and (b) amplitude of the electric field [V/m] computed
for the comb-drive device using the non-linear iterative solver, with Nc = 4 fins, ∆V1 = 60
[V], ∆V2 = 0 [V], a = 0 [m/s2] and nFEM = 108878 elements in the FEM domain.

The von Mises stress field in the central beam is represented in Figure 59. At the clamped
ends of the beam, the stress field is similar to a bending configuration as the neutral axis of
the beam is stress free. The fins are almost stress free, however one suspects a singularity
of the stress field at the corner between the central beam and the fins. Such a divergence at
corners is also encountered in macroscopic mechanics and it could be removed by introducing
fillets, as explained in [1]. However, note that the maximal stress is far lower than the initial
yield stress of silicon σ0

y = 165 [MPa], so that the elastic assumption is still valid.

(a) (b)

(c)

Figure 59: Von Mises stress field σVM [Pa] computed for the comb-drive device using the
non-linear iterative solver, with Nc = 4 fins, ∆V1 = 60 [V], ∆V2 = 0 [V], a = 0 [m/s2] and
nFEM = 108878 elements in the FEM domain. It is represented (a) at the left clamped edge,
(b) in the central part of the beam and (c) zoomed on the base of one fin.
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6.2.5 Voltage-displacement curve for the actuator

From an engineering point of view, the most interesting relation to characterize is the rela-
tion between the voltage difference ∆V between an electrode and the central beam and the
induced vertical displacement. First, the impact of ∆V1 with ∆V2 = 0 [V] is studied and
the resulting curve is represented in Figure 60. The one-way coupled linear solver and the
two-way coupled iterative solver are compared, and once again the results are very similar
for small voltage differences. As discussed in Section 6.1.4, the curve obtained for the linear
solver is quadratic as for the linear solver the electric field is only computed on the undeformed
configuration. However, for large voltage differences, the results obtained with the non-linear
solver, taking the physical coupling between the electrostatics and the displacement of the
beam into account, are more accurate. As can be observed, the vertical displacement in-
creases abruptly as the voltage difference reaches ∆V1 = 72 [V], corresponding to the pull-in
voltage of the comb device. When the voltage difference is greater than the pull-in voltage,
the central beam sticks to the bottom fixed electrode. Note that the exact same curve can
be obtained by setting ∆V1 = 0 and by varying ∆V2. In this case, the vertical displacement
is in the other direction.
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Figure 60: Evolution of the maximal vertical displacement uy (in absolute value and in [µm])
as a function of the voltage difference ∆V1 [V] applied on the bottom electrode of the comb
device described in Figure 54, with Nc = 4 fins, ∆V2 = 0 [V] and a = 0 [m/s2]. Results
obtained with both the one-way coupled linear solver and the two-way coupled non-linear
solver, using 40174 nodes and square first order elements in the FEM domain ΩFEM.

The relation between the applied voltage difference and the maximal vertical displacement
can also be retrieved for a non-zero voltage difference ∆V2 between the upper electrode and
the central beam. In Figure 61, the results obtained with ∆V2 = 20 [V] are compared to
the previous results. As can be observed, when applying a voltage difference on the upper
electrode, the vertical displacement of the central beam is lower than in the previous case.
By symmetry, the vertical displacement is equal to zero for ∆V1 = ∆V2 = 20 [V]. The shape
of both curves are very similar and the pull-in voltage is nearly the same, independently from
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∆V2, provided ∆V2 ≪ ∆V1. This is expected as the force exerted on the central beam is in
first approximation proportional to the square of the voltage difference.
When comparing the behaviour of the vertical displacement as a function of the total voltage
difference between the upper and lower electrodes, the pull-in instability is reached sooner
when ∆V2 is larger
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Figure 61: Evolution of the maximal vertical displacement uy [µm] as a function of (a) the
voltage difference ∆V1 [V] applied on the bottom electrode of the comb device described in
Figure 54; (b) the voltage difference ∆V1 − ∆V2 [V] applied between the bottom and top
electrodes, with Nc = 4 fins and a = 0 [m/s2], for ∆V2 = 20 [V] and ∆V2 = 0 [V]. Results
obtained with the two-way coupled non-linear solver, using 40174 nodes and square first order
elements in the FEM domain ΩFEM.
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Figure 62: Evolution of the maximal vertical displacement uy (in absolute value and in [µm])
as a function of the number of fins Nc of the comb device described in Figure 54, with
∆V1 = 50 [V], ∆V2 = 0 [V] and a = 0 [m/s2]. Results obtained with the two-way coupled
non-linear solver, using 40174 nodes and square first order elements in the FEM domain
ΩFEM.
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Moreover, the impact of the number of fins Nc under constant voltage differences ∆V1 = 50
[V] and ∆V2 = 0 [V] is studied and represented in Figure 62. As expected, the vertical
displacement increases with the number of fins, as the strongest electric field is applied on
the fins and the resulting electrostatic actuation is the most effective on the fins.

For a small number of fins, resulting in small displacements, the dependence seems to be
linear. This can be explained using an approximate theoretical development introduced in
[8]. In the first approximation, the total force exerted by the electric field on one fin can be
split into two components.

c c

a a

b

Figure 63: Representation of the different force components around one fin of the moving
central beam (at the bottom) and the fixed electrode (at the top). The lateral zone (a) can
be approximated as a plane capacitor, as well as the front zone (b) and the base zone (c).

First, a lateral force resulting from the fact that the system tries to increase the overlap of
the moving and fixed fins (zone (a) in Figure 63) as it is favorable from an energetic point of
view, can be derived assuming the configuration of a plane capacitor:

Fa = 2 · ε∆V 2

2g
, (98)

in which the factor 2 corresponds to the two lateral faces of the fin. The second component
of the force is due to the approximate plane capacitor configuration between the top of the
moving fin and the base of the fixed electrode (zone (b) in Figure 63):

Fb =
εWc∆V 2

2s2e
, (99)

with se = s + Le − Lc = 1.2 [µm] the distance between the top of the moving fin and the
base of the fixed electrode. In the first approximation, the total force exerted by the fixed
electrode on the central beam (with Nc fins) is then:

F = Nc · ε
(
1

g
+

Wc

2s2e

)
∆V 2 + (Nc + 1)ε

Wc

2s2
∆V 2, (100)

in which the last term corresponds to the force Fc resulting from the field between the top
of the electrode fins and the base of the central beam (zone (c) in Figure 63). Finally,
by considering that the central beam has a constant rigidity (it is discussed a bit later), the
vertical displacement is proportional to the vertical electrostatic force and hence proportional
to the number of fins. Note that this approximation is only valid for a small number of fins
/ for small displacements, as for a greater number of fins the force is not only applied on the
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middle point of the beam (which breaks the constant rigidity approximation) and a greater
number of fins induces large displacements which are more complex to describe.

One can also study the evolution of the pull-in voltage difference ∆V1 as a function of the
number Nc of fins, for ∆V2 = 0 [V]. As can be observed in Figure 64, the pull-in voltage is
decreased when the number of fins is increased. This is once again expected: as explained
above, increasing the number of fins induces a greater force on the central beam, even if ∆V1

is kept constant.
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Figure 64: Evolution of the pull-in voltage difference ∆V1 [V] applied on the bottom electrode
as a function of the number of fins Nc of the comb device described in Figure 54, ∆V2 = 0
[V] and a = 0 [m/s2]. Results obtained with the two-way coupled non-linear solver, using
40174 nodes and square first order elements in the FEM domain ΩFEM.

The coupling between the electrostatics and the kinematics of the structure is entirely due to
the force resulting from the electrostatic pressure. The relation between the voltage difference
and the electrostatic force applied to the central beam is represented in Figure 65(a). As
explained in Section 6.1.4, the force depends quadratically on the voltage difference in the
small displacements configuration as it is always the case for the linear one-way coupled
solver. The same conclusion can be drawn from Equation 100. For larger displacements, the
deflection of the moving electrode impacts the distribution of the electric potential field and
the force is larger than the linear prediction.

In a second phase, the electrostatic force induces a vertical displacement of the central beam.
In the small displacements configuration (always assumed by the linear solver), the vertical
deflection is proportional to the applied force, due to the linearity of the equations and the
superposition theorem. This result can be observed in Figure 65(b). In fact, the propor-
tionality constant between the force and the displacement is called the rigidity k [N/m2],
defined such that F = k · uy. The rigidity obtained numerically with the linear solver is
equal to k = 8.05 · 105 [N/m2], which is of the same order of magnitude than the rigidity of
a clamped-clamped beam with a point force exerted in its middle:

kth =
16EH3

b

L3
x

= 7.11 · 105 [N/m2], (101)
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predicted by mechanics of materials [9].
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Figure 65: Evolution of (a) the vertical force F [N/m] applied on the central beam as a
function of the voltage difference ∆V1 [V] applied on the bottom electrode of the comb
device described in Figure 54, with Nc = 4 fins, ∆V2 = 0 [V] and a = 0 [m/s2]; (b) the
maximal vertical displacement (in absolute value and in [µm]) as a function of the vertical
force F [N/m] applied on the central beam. Results obtained with both the one-way coupled
linear solver and the two-way coupled non-linear solver, using 40174 nodes and square first
order elements in the FEM domain ΩFEM.

6.2.6 Calibration of the accelerometer

The comb-drive device can also be used as an accelerometer, converting a vertical acceleration
a into a voltage difference ∆V . This type of active sensor is described in [8] and relies on
following principle: when subjected to a constant vertical acceleration, the central beam acts
as a proof mass and is deflected. The voltage difference ∆V1 and ∆V2 are controlled and
adjusted using a feed-back loop in order to induce an electrostatic pressure to cancel out the
vertical deflection induced by the acceleration. In practice, if the central beam is deflected
towards the top fixed electrode (see Figure 54), only the lower electrode is activated while
the top voltage difference ∆V2 remains equal to zero.

The calibration of the comb-drive device used as an accelerometer is performed numerically
and the results are gathered in Figure 66 using logarithmic axes. As can be observed, the
voltage difference ∆V1 is proportional to the square root of the vertical acceleration a. Con-
versely, one can write a ∝ ∆V 2. Note that in practice, such an ADXL accelerometer is used
for measuring accelerations below 100g to 1000g (500 to 10000 [m/s2]), depending on the
dimensions, to avoid an unstable behaviour.
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Figure 66: Relation between the vertical acceleration a [m/s2] applied on the central beam
and the required voltage difference ∆V1 [V] applied on the bottom electrode in order to cancel
the vertical displacement of the comb-device, for ∆V2 = 0 [V] and Nc = 4 [fins]. Results
obtained with the one-way coupled linear solver, using 40174 nodes and square first order
elements in the FEM domain ΩFEM.

One main advantage of such a device is the predictability of the involved physical mechanisms.
Indeed, as the deflection of the beam is controlled to be equal to zero, the displacements can
not be large and the mechanical behaviour of the beam is linear. As explained in Section 6.1.4
(the small displacements assumption is valid in the present context), the electrostatic force
exerted on the central beam is proportional to ∆V 2 and by symmetry, the force must be
vertical. The second force acting on the system is the force induced by the constant vertical
acceleration, which is also vertical and directly proportional to the acceleration a. Finally,
by imposing the vertical deflection of the beam to be equal to zero, the net vertical force
acting on the beam should also be equal to zero (as the vertical deflection is proportional
to the net vertical force exerted to the beam, as explained in previous section). Hence, the
electrostatic force proportional to ∆V 2 must balance the acceleration force proportional to
a, which means the vertical acceleration a must be directly proportional to the square of the
controlled voltage difference ∆V 2.
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6.3 Folded flexure beam

The last application studied in this report is the folded flexure device, which is slightly
adapted from [10]. It is mainly used as an electrostatic actuator in MEMS, but it can also be
used as a accelerometer (only as a one-directional accelerometer as there is one single fixed
controllable electrode). The related geometry is presented in Figure 67.
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Figure 67: Geometrical description of the folded flexure actuator, implemented in the
FoldedFlexureBeam.geo file. The right electrode is fixed and its electric potential is fixed to
ϕ = ∆V . The whole flexure beam (left structure) is moving and is the mass of the electrical
system (ϕ = 0 [V]). The different dimensions are gathered in Table 9. An homogeneous
Neumann condition (normal component of the electric field) is applied on the boundary
of the remaining boundary of the domain. Air is located between the different electrodes:
ε = ε0 = 8.85 · 10−12 [F/m]. The dashed line represents the symmetry of the structure. The
two anchors in bold are fixed, corresponding to homogeneous Dirichlet boundary conditions.
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Dimension Wt Lt Lg Ls Lb Lz La Lc t Lf Wc g Ws s
[µm] 16 40 20 280 10 36 12 30 12 196 4 8 20 10

Table 9: Numerical value for the dimensions of the folded flexure beam introduced in Fig-
ure 67.

Figure 67 must be interpreted as rotated by 90 degrees. The folded flexure structure is made
of silicon: E = 160 ·109 [Pa], ν = 0.22 [-], ρ = 2300 [kg/m3]. The right fixed part corresponds
in practice to the top electrode, with the moving structure below the fixed electrode. The
bottom part, called the anchor, is fixed. The right part between the two horizontal beams of
length Ls is called the truss, while the middle part below the different fins is called the base.
The structure corresponds is the combination of the two first applications as it made of both
clamped beams and comb-like system for the electrodes. Note that the dimensions of the
structure are not the exact same dimensions as the ones introduced in [10]. Such a folded
flexure beam is convenient because axial forces are reduced which facilitates large deflections.

6.3.1 Mesh and symmetry

In order to reduce the computation time, the symmetry between the left and right part of the
structure is used and only the right part of the structure is studied. A peculiar attention must
be paid to the boundary conditions prescribed on the surfaces represented by the dashed line
in Figure 67. For the surfaces which are not in the mechanical moving structure, the normal
component of the electric field must be equal to zero by symmetry, hence an homogeneous
Neumann boundary condition is applied. For the part inside the moving structure of silicon,
the horizontal displacement must also be equal to zero by symmetry and the corresponding
boundary condition is prescribed in the FoldedFlexureBeam.geo file.

The initial structure of the mesh used for numerical simulations is represented in Figure 68(a).
As can be observed, many elements are automatically generated between the two horizontal
beams. The CPU time is increased by a lot as many boundary elements are located on the
bottom half of the moving structure where the electric potential field is known to be equal
to zero, as represented in Figure 68(b).

(a) (b)

Figure 68: (a) Initial global mesh structure for the folded flexure beam and (b) corresponding
electric potential field ϕ [V].
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As the electric field (opposed to the gradient of the electric potential) is equal to zero at the
right of the truss, the BEM domain can be reduced to increase the rapidity of the numerical
computation. The final mesh structure is represented in Figure 69. The mesh at the surface
of the upper fixed electrode is automatically adapted to the density of the elements used in
the FEM domain. Note again that the moving structure corresponding to the FEM domain
has been divided into sub domains to allow a structured meshing using square first order
elements to increase the accuracy of the computation. The results presented in this section
are also validated using an unstructured mesh.

(a) (b)

(c)

Figure 69: (a) Final global mesh structure for the folded flexure beam, (b) zoomed on the
space between the electrodes and (c) zoomed on the horizontal beams.

6.3.2 Convergence of the maximal vertical displacement

To estimate the number of elements required in the FEM domain to obtain an accurate
numerical solution, the convergence of the maximal vertical displacement for ∆V = 80 [V]
is studied when the mesh is progressively refined. The results are gathered in Table 10. As
can be observed, an important number of elements is required for the vertical displacement
to converge.

nFEM [-] NBEM [-] Maximal vertical displacement uy [µm]
1582 583 0.746
5439 1109 1.067
19981 2160 1.225
43627 3209 1.274
76377 4258 1.30
118231 5307 1.32
169189 6536 1.33

Table 10: Convergence study of the maximal vertical displacement for the folded flexure
beam with ∆V = 80 [V], using the non-linear iterative solver. The number of nodes nFEM is
the total number of nodes in the ΩFEM domain, while the number of elements NBEM is the
total number of linear elements on the ΩBEM domain boundary.
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In the following section presenting the physical fields in and around the structure, nFEM =
76377 nodes are used for the numerical computation. However, only nFEM = 19981 ele-
ments are used for performing the numerical simulations required to establish the voltage-
displacement curve as the computation time becomes important when using the iterative
non-linear solver and as many simulations are required in order to obtain these physical
curves.

Figure 70 shows the convergence of the relative displacement difference as the number of
iteration increases for several differences of potential. As for the two other applications, one
can clearly see the exponential behaviour of the convergence in the semi-log plot.

0 5 10 15 20 25 30

10
-5

10
0

Figure 70: Evolution of the relative displacement difference as a function of the number of
iterations of the iterative solver for the folded flexure beam in the configuration described in
Figure 67.

6.3.3 Different physical fields

In this section, the fields obtained numerically are presented for ∆V = 110 [V] and nFEM =
4258 elements in the FEM domain using the non-linear iterative solver.

First, the deformed configuration of the structure is presented in Figure 71. As can be
observed, the most important part of the vertical deformation takes place in the two horizontal
beams connecting the anchor to the truss and connecting the truss to the anchor, which
undergo bending. The homogeneous Dirichlet boundary condition on the displacement is
respected at the anchor. There is almost no deformation in the truss (right part of the
structure) and the displacement is uniform. Similarly, there is almost no deformation in the
base and in the fins, where the displacement is vertical (the symmetry condition is respected)
and the displacement is maximal.

80



Implementation of a FEM-BEM Solver for Electrostatic Actuation May 2022

Figure 71: Deformed configuration and amplitude of the displacement ∥u∥ [m] of the folded
flexure beam introduced in Figure 67 for ∆V = 110 [V]. Results obtained with the two-way
coupled non-linear solver, using 76377 nodes and square first order elements in the FEM
domain ΩFEM.

(a) (b)

Figure 72: (a) Global view and (b) zoomed on the free space between the electrodes view
of the electric potential field ϕ [V] of the folded flexure beam introduced in Figure 67 for
∆V = 110 [V]. Results obtained with the two-way coupled non-linear solver, using 4258
linear elements on the boundary of the BEM domain ΩBEM.

The electric potential field ϕ [V] is represented in Figure 72. When compared to the global
form of the electric potential field obtained with the initial mesh in Figure 68(b), one can
observe as the reduced mesh produces very similar results, which further justifies the use of
such a reduced mesh. As can be seen in Figure 72(b), the electric potential between the
electrodes is impacted by the deflection of the folded flexure beam. Between the fins of the
moving part and the fins of the fixed electrode, the electric potential is very similar to the
one observed in a plane capacitor and the equipotential lines are almost perfectly vertical.
This is expected as it has already been observed for the comb-drive actuator in Figure 58(a).

The amplitude of the corresponding electric field is represented in Figure 73. Note that the
direction of the electric field is opposed to the gradient of the electric potential field and
is hence orthogonal to the equipotential lines observed in Figure 72(b). The electric field
is almost uniformly equal to zero in the whole domain except in the free space between the
electrodes. As mentioned above, the electric field between the fins is uniform and corresponds
to the configuration of a plane capacitor. At the corner of the fins, the electric field seems to
diverge as its amplitude reaches ∥E∥ = 5.65 · 107 [V/m]. Such a behaviour could be due to
the sharp geometrical transition of the corner.
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(a) (b)

Figure 73: Amplitude of the electric field ∥E∥ [V/m] for the folded flexure beam introduced
in Figure 67 for ∆V = 110 [V], (a) between and around the fixed and moving electrodes and
(b) zoomed on the free space between the fins. Note that the maximal value of the color
range has been reduced from ∥E∥ = 5.65 · 107 [V/m] to ∥E∥ = 3 · 107 [V/m] to ease the
visualisation. Results obtained with the two-way coupled non-linear solver, using 4258 linear
elements on the boundary of the BEM domain ΩBEM.

(a) (b)

(c) (d)

Figure 74: Equivalent von Mises stress field σVM [Pa] for the folded flexure beam introduced in
Figure 67 for ∆V = 110 [V], (a) in the global view, (b) zoomed on the truss, (c) zoomed on the
anchor and (d) zoomed on the base. The results are displayed on the deformed configuration
and are obtained with the two-way coupled non-linear solver, using 76377 nodes and square
first order elements in the FEM domain ΩFEM.

The corresponding von Mises stress field in the structure is represented in Figure 74. The
stress is almost uniformly equal to zero in the anchor, in the truss and in the base. The
stress is concentrated in the two horizontal beams and more particularly at the corresponding
junctions with the bigger parts. From the shape of the deformed structure, one can guess
that the stress field in the beams corresponds to a bending configuration. Indeed, one can
observe in Figure 75 that the stress mainly corresponds to an axial σxx stress corresponding
to the bending of the beams around the out-of-plane axis. Note that the maximal stress is
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far lower than the initial yield stress of silicon σ0
y = 165 [MPa], so that the elastic assumption

is still valid.

(a) (b)

Figure 75: Axial stress field σxx [Pa] for the folded flexure beam introduced in Figure 67 for
∆V = 110 [V], (a) zoomed on the anchor and on the truss and (b) zoomed on the truss.
The results are displayed on the deformed configuration and are obtained with the two-way
coupled non-linear solver, using 76377 nodes and square first order elements in the FEM
domain ΩFEM.

6.3.4 Voltage-displacement curve

The most physical relation associated to the folded flexure beam is once again the vertical
displacement of the base induced by the voltage difference ∆V applied between the electrodes.
The numerical results are gathered in Figure 76, for both the linear and the non-linear
iterative solver.
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Figure 76: Evolution of the maximal vertical displacement uy [µm] as a function of the
voltage difference ∆V [V] applied on the fixed electrode of the folded flexure beam described
in Figure 67. Results obtained with both the one-way coupled linear solver and the two-way
coupled non-linear solver, using 19981 nodes and square first order elements in the FEM
domain ΩFEM.
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As observed previously, the results are very similar for small voltage differences inducing
small displacements. For the linear solver, the vertical deflection depends quadratically on
the voltage difference, as explained in Section 6.1.4. For larger voltage differences, the iter-
ative result is moving away from the quadratic curve and even diverges for ∆Vpi = 116 [V],
corresponding to the pull-in voltage of the structure. This shape of the voltage-displacement
curve has already been encountered for the two first applications.

To further study the physical behaviour of the system, the length of the horizontal beams
has been varied from Ls = 160 [µm] to Ls = 280 [µm] and the previous results have been
reproduced. For the different simulations, the density of finite elements in the FEM domain
has been kept constant.

The voltage-displacement curve is represented in Figure 77. As can be observed, the shape
of the curve is rather general as it is quadratic for small displacements before diverging
when reaching the pull-in voltage. For a given voltage difference, the vertical deflection is
reduced when the length of the horizontal beams Ls is decreased. Hence, the pull-in voltage
is greater for shorter beams as they are more rigid as discussed below. Note that the vertical
deflection corresponding to the last stable configuration is of the same order of the magnitude
no independently from the length of the horizontal beams.
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Figure 77: Evolution of the maximal vertical displacement uy [µm] as a function of the
voltage difference ∆V [V] applied on the fixed electrode of the folded flexure beam described
in Figure 67 for different beam lengths Ls. Results obtained with the two-way coupled
iterative solver.

The shape of the curves displayed just above can be explained by the physical coupling
between the electrostatics and the kinematics of the structure, which are summarized in
Figure 78.
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Figure 78: Evolution of (a) the vertical force F [N/m] applied on the folded flexure beam
as a function of the voltage difference ∆V [V] applied between electrodes and (b) maximal
vertical displacement [µm] as a function of the vertical force F [N/m] applied on the moving
structure for different beam lengths Ls. Results obtained with the two-way coupled iterative
solver.

The applied voltage difference induces an electrostatic vertical force on the moving structure,
which is approximately a quadratic function of the voltage difference (at least for small
displacements, as discussed in Section 6.1.4 and shown in Figure 65(a)). This electrostatic
force induces a vertical deflection of the structure which once again impacts the distribution
of the electric potential and the electric field and the electrostatic force. This mechanism
shows how tightly the two physics are coupled. As can be observed in Figure 78(b), the
vertical deflection is a linear function of the vertical force applied on the structure. Hence, it
is convenient to introduce the structural stiffness k [N/m2] of the folded flexure beam, defined
as F = k uy. Graphically, it corresponds to the inverse of the slope of the straight lines in
Figure 78(b). As can be observed, the stiffness of the structure increases when the length Ls

of the horizontal beams is decreased, as summarized in Table 11.

Beam length Ls [µm] 280 240 200 160
Structural stiffness k [106 N/m2] 0.4565 0.6286 0.9197 1.4725

Table 11: Structural stiffness of the folded flexure beam described in Figure 67, computed
numerically for different horizontal beam lengths Ls.

Note that, since the simulations have been carried out on half the geometry of a real folded
flexure device, the obtained vertical force is half the true force. Therefore the structural
stiffness presented here-above is also reduced by half in comparison to the real one.

6.4 Similarities between the different geometries

Although they exhibit very different geometrical configurations, several similarities have been
found across the different studied applications. This shows that there are some phenomena
that are truly related to the physical nature of the elasto-electrostatic interaction itself and
not really related to the geometry of the problem.
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The first phenomenon of interest is rather numerical and is the type of convergence of the
coupled iterative solver. In fact, whatever the studied application (at least for the 3 cases
presented here), it has been shown that the relative displacement difference between two
iterations exponentially decreases as the number of iteration increases. This very fast con-
vergence thus seems to be a characteristic of such coupled solver. This phenomenon has been
observed for the three applications in Figures 52, 57 and 70, respectively.

Another very clear similarity is the relation binding the maximal displacement and the applied
voltage. In fact, even if the exact quantities vary from one application to another, the general
tendency is always the same: the maximal induced displacement is a quadratic function of
the applied voltage for small displacements. This phenomenon has already been theoretically
predicted in Section 6.1.4 and has now been shown numerically. Moreover, since the pull-in
instability tends to make the structure diverge for a too high applied voltage, the quadratic
curve always ends up being nearly vertical just before the pull-in. This corresponds, in fact to
a situation where a small incremental applied voltage implies a huge displacement. Of course,
this can only be observed with the non-linear solver since it implies large displacements.
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Conclusion
Throughout the whole report, the implementation of the coupled FEM-BEM solver has been
validated against many different geometries.

First, the separated solvers have been described theoretically and validated individually.
Some specific features of the different methods have also been studied extensively, such as
their order of convergence or their complexity. Note that the separated solvers also work
independently, such that one can study purely elastic problems or purely electrostatic prob-
lems.

The one-way coupled solver, introducing the electrostatic pressure which is the basis for elec-
trostatic actuation, has allowed to study the physics of MEMS devices in small displacements
configuration. The corresponding numerical results are accurate as long as the displacement
of the mechanical structure does not modify the distribution of the electric potential field
around the structure. Under these conditions, it has been shown that the displacement of
the moving structure is often a quadratic function of the voltage difference applied across the
device.

To tackle more realistic problems and to allow the characterization of the so-called pull-in
instability which involves large displacements, a non-linear FEM solver has been implemented
in order to deal with large rotations of the local finite elements. Once again, the isolated
solver has been validated against results retrieved from the literature. The corresponding
Newton-Raphson algorithm has been found to be particularly efficient and robust.

The two-way coupled solver, in which both the BEM solver and the non-linear FEM solver
communicate until an equilibrium configuration is reached, has allowed to fully couple the
two physics involved in electrostatic actuation. While the electrostatics impact the mechan-
ics through the electrostatic pressure, the mechanics impact the electrostatics through the
displacement of the different electrodes.

The first application, corresponding to the electrostatic actuation of a clamped micro beam,
has confirmed the accuracy of the implemented numerical solver, as the pull-in voltage of the
device computed with the code is very similar to what has been found in the literature.

The second application has introduced the concept of comb-drive device, which is widely
used for electrostatic actuation in microsystems. The physics of such systems have been
studied extensively and many different characteristic curves have been obtained numerically.
This second geometry has also allowed to study an accelerometer, converting a constant
acceleration into a voltage difference. In the discussed configuration, the one-way coupled
solver is accurate as the displacement of the moving structure is feedback-controlled to be
equal to zero.

The final application is the folded flexure beam, which combines mechanisms encountered in
the first applications, as the geometry is composed of both beams and a comb-drive device.
The physical behaviour of the device, as well as the rigidity of the structure depending on
the beam length, have also been quantified.

For the different applications encountered in the report, the voltage-displacement curves
are very similar, which highlights the generality of the physical principle behind the pull-in
mechanism. Moreover, the convergence of the iterative non-linear solver is also equivalent
for different geometries, which shows that it is not specific to a particular configuration.
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It is important to notice that the present implementation of the coupled solver could be
improved. First, it could be generalized to three-dimensional problems. However, even if the
generalization of the FEM code would be straightforward, adapting the BEM code would be
quite more complex.
Also, one could implement the resolution of the dynamical behaviour of the system by intro-
ducing inertial terms in the finite element formulation. Such an improvement would require
to introduce a time-integrating numerical algorithm.
The most useful upgrade of the code would be the possibility to handle composite materials.
In the FEM domain, it could be implemented by assigning different material properties to
different parts of the structure. In the BEM domain, the Laplace equation is not valid across
the interface between different materials (except if the dielectric permittivity is the same in
the two regions) and the whole numerical discretization of the problem should be adapted to
take this physical discontinuity into account.
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