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FEM for 2D Linear Elasticity

Summary of equations

Mechanical equilibrium in Q:

T

V.-o+pb=0 (translation)
oc=0 (rotation)

where o is the Cauchy stress tensor, p is the density and b represents the
mechanical volumic forces.

and the boundary conditions on I', the boundary of Q:

u=1u on Iy . prescribed displacement (Dirichlet)
o-n=t on Iz . prescribed surface traction (Neumann)

where u is the displacement, n is the outward unit normal to the boundary,
F,—,UF;:Fand Fl—,ﬂr;:@
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FEM for 2D Linear Elasticity

Summary of equations

Strain-displacement relationship (infinitesimal strains):
e=1(Vu+(Vu)')

where small strains and small displacements are assumed.

Constitutive law (Hooke's law):

o=H:e¢
with the 4" order tensor
E vE E : Young's modulus
LSy PR S—" I Y
K=o +v) T ) —2) M W {1/ : Poisson’s ratio

for an isotropic material.
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FEM for 2D Linear Elasticity

Weak formulation

A weak formulation is obtained by multiplying the PDE by a function w(x) and
by integrating over :

/W-(V-O’) dV—l—/pw-de:O
Q Q

The first term of the left-hand side can be integrated by parts:

/w~(V~0')dV:/ w~o-~nd5+/ w'0'~nd5—/VW:a'dV
Q I r ‘\_t” Q

The integral on '; can disappear if we choose test functions w(x) that vanish on
this boundary.
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FEM for 2D Linear Elasticity

Weak formulation

T

Moreover, since o = o', we can write

Vw: o= (Vw+(Vw)'): 0o

similar to e(u)

The weak formulation becomes!:

Weak formulation
Find u with u = @ on ' such that

/W tdS — /%Vw+ Vw)):adV+/pw-de=0
Q

Iz

for all test functions w which are 0 on ;.

IThis is also called “the principle of virtual work”.
Notations in [Ponthot, 2020]: w <> du and de « % (Vw + (VW)T))
and u+ du = @ on 'y (“kinematically admissible virtual displacement”).
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FEM for 2D Linear Elasticity

Spatial discretization - Finite Element approximation

The discretization procedure is similar to the one followed for the Laplace/Poisson
equation in MATHO0024, except that the unknown field u(x, t) is now a vector
instead of a scalar. The equations are detailed here for the 2D case.

Using Cartesian coordinates, each component of u(x,t) and w(x) are
approximated using well-chosen shape functions N*:

u(x, 1) = N¥(x) uf(t) wi(x) = N¥(x) wf
, and k

w(x,t) =Y N¥(x) us(t) wa(x) = Y N¥(x) wy

where u¥ is the it coordinate of node k (also called “degree of freedom™).
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FEM for 2D Linear Elasticity

Spatial discretization - Finite Element approximation

In matrix form (assuming a mesh of n nodes in a 2D space):

u(x,t) = N(x) d(t)

with
(M 0O N, O ... N O
NCO=To m 0 & ... 0w,
d" = [uf w} ui u3 uf  uf]

Similarly, for the test functions:

w(x)

N(x)h
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FEM for 2D Linear Elasticity

Isoparametric Finite Elements

'
n 11
€
y -1 1,
3
X 1

element from the mesh

: reference element in space
in X,y space &nsp

Isoparametric finite elements (m nodes) are a classical choice. Their geometry
is interpolated with the same shape functions? as the unknown field u(x, t) and
the test functions w(x).

x(&) =) Nk XK
k=1

where £ are reduced coordinates (usually & € [—1,1])

2Nk superscript k is related nodes where Nk =1
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FEM for 2D Linear Elasticity

3D Hooke's law (matrix form)

Voigt’s notation: in a practical implementation, 4™ and 2"9-order tensors are
replaced by matrices and vectors respectively.

o11 1—v v v 0 0 0 11

g22 v 1—v v 0 0 0 €22

033| E 14 14 1—v 0 0 0 £33

o2  (1+v)(1-2v)| O 0 0 L0 0 2¢e15

013 0 0 0 0o = 0 2e13

o2 0 0 0 0 0 1222 [2en5
such that

Hooke's law becomes:
o =HegY

Remark: € involves 2x¢ej; = ;i (shear strain/angle) for i # j.
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FEM for 2D Linear Elasticity

2D Hooke's law (matrix form)

A very common 2D assumption is the plane-stress hypothesis which is valid for

thin structures (o33 = 013 = 023 = 0):

1 1 —v -v 0 0 0

€22 -V 1 -V 0 0 0

es3| Ll |—v —v 1 0 0 0

2| E|O0 0 0 Y o0 o0

2e13 o 0 0 0 Hr o

2603 o 0o o o0 0 ¥
H—l

The 2D Hooke's law is obtained by inverting this relationship:

011 E 1 v 0 €11
02| = ﬁ v 1 0 €22
— VvV _

012 0 0 3¢ 201

Hop

This 3 x 3 matrix is used as H in the following equations.
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FEM for 2D Linear Elasticity

Strain-displacement relationship

Using Voigt's notation, the strain-displacement relationship becomes:

)
c1l o g u
€22 | = 0 M [u ]
2e12 0 9 2
3X2 8x1
or, symbolically
e =0u

Remarks:

@ ¢33 does not appear in the 2D equations. However, it can be computed, if
needed, from the stresses:

12
€33 = ¢ (011 + 022)

@ Strains (and stresses) are discontinuous across finite elements boundaries
unless u(x) is C!, which is almost never the case in practise.
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FEM for 2D Linear Elasticity

Strains/stresses as a function of the unknowns

Computation of strains from the nodal displacements d:

e =0u=0Nd=Bd

with
e Ol o NT 0
B _ 0 % ) e o
o B o N ... 0 N
Ox oxq

The stresses can also be obtained from the nodal displacement d:

c”"=HBd
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FEM for 2D Linear Elasticity

Discretized weak formulation

Back to the weak formulation

/W'EdS*/E(VW+(VW)T)ZO‘dV+/pW'deIO
Iz a2 Q

(Bh)-ov

Replacing w = Nh and u =Nd and 0¥ =HBd

h’ (/ NTEds)—hT (/ BTHBdV)d—i-hT (/ pNdeV> =0
Iz Q Q

This relationship should be satisfied for any h.
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FEM for 2D Linear Elasticity

Discretized FE equations

This leads to the system of discretized equations:

(/QBTHBdV> d= (/FENT?dS) + (/QpNdeV>

K f

Discretized equations
Kd = f J
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FEM for 2D Linear Elasticity

Finite Elements

Assembly:

@ The integrals involved in the calculation of K and f are expressed as a sum of
integrals over each finite element. These elemental contributions are then
assembled (summed) in a large and structural matrix and vector.

o K is a symmetric sparse matrix and this property should be exploited to

reduce the required storage and to efficiently solve the linear system of
equations.

Boundary conditions:

@ The equations of the system corresponding to nodes where Dirichlet
boundary conditions are prescribed should be discarded and replaced by
equations enforcing these conditions (u = &) at these nodes.

@ Homogeneous Dirichlet boundary conditions (u = 0) lead to remove the lines
and columns of the matrices corresponding to the components of the
displacement where these conditions are prescribed.
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FEM for 2D Linear Elasticity

Practical calculation of the elemental stiffness matrices
K,'j = / Bk,'(X) Hk/ BU(X) dV
Q
Isoparametric finite elements:

1 1 1 6X
Ki= [ / [ Bute) Hu Byl den() de

N—_——
jacobian
1“‘ x=x(&M) n
/
-1
-1

) element from the mesh

reference element in & space in X,y space
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FEM for 2D Linear Elasticity

Gauss quadrature

This integral is calculated using a Gauss quadrature: (NP chosen — &P, w,)

NGP
Ki~ Y Bu(€) HaBj(¢)detd w,
p=1 all the factors evaluated at £€=£P

with NCP, the number of Gauss points, £” the positions and w,, the weights.

AN

Gauss points
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Jacobian of isoparametric elements at each Gauss points

Jacobian matrix3: let x = (Xl,XQ,X3) and € = (61,52,63)

dx;  ONX(&) 4

o5~ o0& ¢

J;(€) =

where x¥ is the i*" coordinate of the k™" node of the finite element.

The Jacobian matrix and its determinant must be evaluated at each Gauss point
(& = £P) of each finite element.

Note: the derivatives of the shape functions evaluated at the Gauss points
k

%%(Ep) are the same for all elements and can be computed once.
)

3transposed in [Ponthot, 2020]
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Derivatives of the shape functions

9
Bf%gNlo...Nmo
"o %|lo a0 Am

8XQ6x1

The matrix B contains the derivatives of the shape functions with respect to x
which should be transformed into derivatives of the shape functions with respect

to & using the Jacobian matrix:

0 ()0 _, 90 T
85,-(8§,->8XJ-JJ'8XJ- =V,=J""V;

Thus, the derivative of N’ with respect to x can be computed by this formula:

VN =37 TVN
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